with N 4. We are concerned

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "with N 4. We are concerned"

Transcript

1 Houston Journal of Mathematics c 6 University of Houston Volume 3, No. 4, 6 THE EFFECT OF THE OMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF AN ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS PIGONG HAN Communicated by Giles Auchmuty Abstract. In this paper, we consider the irichlet problem for an elliptic system of two equations involving the critical Sobolev exponents. By means of the variational method, we study the effect of the domain topology on the number of positive solutions, prove the existence of at least cat () positive solutions. 1. Introduction Let be a smooth bounded domain in R N with the problem with N 4. We are concerned (1.1) u = v = α α + β uα 1 v β + λu in, β α + β uα v β 1 + µv in, u, v in, u = v = on, where λ >, µ > are parameters, α > 1, β > 1 satisfying α + β =, denotes the critical Sobolev exponent, that is, = N N. efinition 1. A pair of nonnegative functions (u, v) H 1 () H 1 () is said to be a weak solution of problem (1.1) if Mathematics Subject Classification. 35J6, 35J5, 35B33. Key words phrases. Elliptic system, Energy functional, (P.S.) c condition, Critical point, Critical Sobolev exponent. 141

2 14 P. HAN (1.) ( u ϕ 1 + v ϕ λuϕ 1 µvϕ )dx α α + β u α 1 v β ϕ 1 dx β u α v β 1 ϕ dx α + β = ϕ = (ϕ 1, ϕ ) H 1 () H 1 (). (1.3) The corresponding energy functional of problem (1.1) is defined by J λ,µ (u, v) = 1 α + β ( u + v λu µv )dx u α +v β +dx (u, v) H 1 () H 1 (), where u + = max{u, }. It is well known that the nontrivial solutions of problem (1.1) are equivalent to the nonzero critical points of J λ,µ in H 1 () H 1 (). Moreover, every weak solution of problem (1.1) is classical (see Remark 4 in [1]). In a recent paper, C. O. Alves et al [1] considered problem (1.1) generalized the results in [4] to the case of (1.1). There seems no progress on problem (1.1) since then. In this paper, we are interested in the effect of the domain topology on the number of positive solutions of problem (1.1). N N Let α = β =, λ = µ u = v, then problem (1.1) reduces to the scalar semilinear elliptic problem: u = u N+ N + λu in, (1.4) u in, u = on. O. Rey [9] studied the effect of the topology of the domain on the existence of solutions of problem (1.4) for N 5, proved that problem (1.4) has at least cat () distinct positive solutions for λ > small, where cat () denotes the Ljusternik-Schnirelman category of in itself ( see [11] for the definition). For N 4, M. Lazzo [8] obtained the same result. Relevant papers on this matter are [, 5, 6, 7, 11] the references therein. Set (1.5) S = inf u,v H 1 ()\{} ( u + v )dx ( u α v β dx ),

3 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 143 then (see [1]) (1.6) S = (( ) β ( ) α ) α β + S, β α where S is the best Sobolev constant defined by S = u dx ( u dx ), inf u H 1 ()\{} which is achieved if only if = R N by U(x) = N (N(N )) 4 (1 + x ) N In the present paper, we first establish the concentration-compactness principle for elliptic systems; then by the variational method the category theory, we prove that problem (1.1) has at least cat () positive solutions for λ, µ > small. Let λ 1 be the first eigenvalue of the operator with zero irichlet boundary conditions. We state our main result as the following: 4mm Theorem 1.1. If N 4, then there exists < λ < λ 1 such that for any λ, µ (, λ ), problem (1.1) has at least cat () positive solutions. Throughout this paper, we denote the norm of the Banach space X by X, the positive constants (possibly different) by C... Proof of the main result Before giving the proof of Theorem 1.1, we introduce some notations preliminary lemmas. Lemma.1. Let R N (possibly unbounded) u n u, v n v weakly in H 1 (); u n u, v n v a.e in. Then lim u n u α v n v β dx n (.1) = lim u n α v n β dx u α v β dx. n

4 144 P. HAN Proof. It is not difficult to see that u n α v n β dx (.) where = α +β = α u n u α v n v β dx u n tu α (u n tu)u v n β dxdt u n u α v n tv β (v n tv)vdxdt f n udxdt + β 1 g n vdxdt, f n = u n tu α (u n tu) v n β, g n = u n u α v n tv β (v n tv), t [, 1], since moreover, f n (1 t) α 1 u α u v β g n a. e on (, 1), ( C, ( C, 1 1 f n 1 1 g n we conclude that 1 dxdt ) α 1 ( u n tu 1 dxdt 1 dxdt f n (1 t) α 1 u α u v β Hence ) α ( u n u 1 dxdt 1 1 ) β v n 1 dxdt ) β 1 v n tv 1 dxdt g n weakly in L 1 ( (, 1)). (.3) α α 1 1 f n udxdt (1 t) α 1 u α v β dxdt = u α v β dx,

5 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 145 (.4) β 1 g n vdxdt. Inserting (.3) (.4) into (.), we obtain (.1). To proceed, we need to generalize the concentration-compactness principle (see [3, 11]) to the case of systems. Lemma.. Let {(u n, v n )} 1, (R N ) 1, (R N ) be a sequence such that u n u, v n v weakly in 1, (R N ); u n u, v n v a.e on R N, (u n u) + (v n v) µ weakly in the sense of measures, define (.5) (.6) Then u n u α v n v β ν weakly in the sense of measures, µ = lim lim sup ( u n + v n )dx, R x R ν = lim R lim sup u n α v n β dx. x R (.7) (.8) = lim sup ( u n + v n )dx R N R N ( u + v )dx + µ + µ, lim sup u n α v n β dx = R N u α v β dx + ν + ν, R N (.9) ν S 1 µ, (.1) ν Moreover, if u v ν single point. S 1 µ. = S 1 µ, then µ ν concentrate at a

6 146 P. HAN Proof. Set w 1n = u n u, w n = v n v, then w 1n, w n weakly in 1, (R N ); w 1n, w n a.e on R N, w 1n + w n µ weakly in the sense of measures, w 1n α w n β ν weakly in the sense of measures. For any nonnegative function h C (R N ), by Lemma.1, we have lim h w 1n α w n β dx = lim h u n α v n β dx h u α v β dx. R N R N R N Hence we obtain (.11) u n + v n u + v + µ weakly in the sense of measures (.1) u n α v n β u α v β + ν weakly in the sense of measures. (a) (.13) For any h C (R N ), we infer that ( S 1 hw 1n α hw n β dx R N ) R N ( (hw 1n ) + (hw n ) )dx. Since w 1n w n strongly in L loc, we easily obtain from (.13) that (.14) x >R ( R N h d ν ) S 1 h d µ R N which implies (.9). (b) Since lim sup w 1n dx = lim sup u n dx u dx x >R x >R lim sup x >R w n dx = lim sup v n dx v dx, x >R x >R

7 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 147 we deduce that (.15) x >R lim R lim sup ( w 1n + w n )dx = µ. x >R By Lemma.1, we have lim sup w 1n α w n β dx = lim sup So (.16) lim R x >R lim sup w 1n α w n β dx = ν. x >R u n α v n β dx u α v β dx. x >R Let R >, ψ R C (R N ) be such that ψ R (x) = for x < R; ψ R (x) = 1 for x > R + 1 ψ R (x) 1 on R N. Then we have ( R N ψ R w 1n α ψ R w n β dx ) S 1 ( (ψ R w 1n ) + (ψ R w n ) )dx. R N Since w 1n w n strongly in L loc, we infer that (.17) Observe that ( lim sup S 1 lim sup ψ R w 1n α ψ R w n β dx R N ) R N ( w 1n + w n )ψ Rdx. (.18) x >R+1 w in dx w in ψrdx R N w in dx, i = 1, x >R (.19) w 1n α w n β dx x >R+1 Thus, from (.15)-(.19), we get (.1). ψ R w 1n α ψ R w n β dx R N w 1n α w n β dx. x >R

8 148 P. HAN (c) From (.11) (.1), we deduce that lim sup ( u n + v n )dx R N = lim sup ψ R ( u n + v n )dx R N + lim sup (1 ψ R )( u n + v n )dx R N = lim sup ψ R ( u n + v n )dx R N + (1 ψ R )( u + v )dx + (1 ψ R )d µ. R N R N By the dominated convergence theorem, we obtain that lim sup ( u n + v n )dx = R N ( u + v )dx + µ + µ, R N lim R which is (.7). Similarly we get (.8). (d) Let u v ν we derive that for any h C (R N ) h d ν S R N = S 1 µ µ. By Hölder inequality (.14), N We deduce that ν = S µ N µ. Hence, from (.14) we obtain for any h C (R N ) µ N ( so for each open set Q R N, R N h d µ ) ( µ(r N )) N ( µ(q)) R N h d µ. R N h d µ, µ(q), which is equivalent to µ(r N ) µ(q). This proves that µ is concentrated at a single point. Suppose that (A) X is a Banach space, I C 1 (X, R), I d = {z X I(z) d}, ψ C (X, R), V = {z X ψ(z) = 1}, for every z V, ψ (z).

9 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 149 We denote the tangent space of V at z by T z V = {y X ψ (z), y = } the norm of the derivative of I V at z V by (I V ) (z) := sup I (z), y. y T z V, y =1 The functional I V is said to satisfy the (P.S.) c condition if any sequence {z n } V such that I V (z n ) c, (I V ) (z n ) contains a convergent subsequence. In the sequel, we take X = H 1 () H 1 (), I V (u, v) = I(u, v) = (u + ) α (v + ) β dx, ψ(u, v) = ( u + v λu µv )dx λ, µ (, λ 1 ), V = { (u, v) H 1 () H 1 () ψ(u, v) = 1 }. Obviously, the assumption (A) is satisfied for our choices. Lemma.3. I satisfies (P.S.) c condition for any c (S N, ) on V. Proof. Let {(u n, v n )} V satisfy I(u n, v n ) c, I (u n, v n ). Then, there exists a sequence {t n } R such that as n N α(u n ) α 1 + (v n ) β + + β(u n ) α +(v n ) β 1 + t n ( un v n λu n µv n ) strongly in H 1 () H 1 (). So (α + β)i(u n, v n ) t n, then t n ()c >.

10 15 P. HAN efine w 1n = ( ) N 4 4t n u n, w n = ( ) N 4 4t n v n, we obtain 1 ( w 1n + w n λw1n µw n)dx (w 1n ) α α + β +(w n ) β +dx = 1 ( ) N α + β ( u n + v n λu n µv 4t n)dx n ( ) N α + β (u n ) α α + β 4t +(v n ) β +dx n 1 N ( 1 c ) N w 1n w n λw 1n µw n α α + β (w 1n) α 1 + (w n ) β + β α + β (w 1n) α +(w n ) β 1 + strongly in H 1 () H 1 (). So {(w 1n, w n )} X is a (P.S.) c sequence of J λ,µ, which is defined in (1.3). It follows easily that (w 1n, w n ) X C. Thus, up to a subsequence, we may assume that (w 1n, w n ) (w 1, w ) weakly in H 1 () H 1 (); (w 1n, w n ) (w 1, w ) a.e on. Then (w 1, w ) is a weak solution of problem (1.1) (.) = J λ,µ (w 1, w ) ( 1 1 ) α + β ( w1 + w λw1 µw ) dx. Setting w 1n = w 1n w 1, w n = w n w, we have w in dx = w in dx w i dx + o(1), i = 1,.

11 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 151 By Lemma.1, we also have ( w 1n ) α +( w n ) β +dx = (w 1n ) α +(w n ) β +dx (w 1 ) α +(w ) β +dx + o(1). Hence ( w 1n + w n )dx ( w 1n ) α +( w n ) β +dx as n. We may assume that as n ( w 1n + w n )dx a, ( w 1n ) α +( w n ) β +dx a, where a is a nonnegative number. If a =, the proof is complete. Assume a >, since ( ) S ( w 1n ) α +( w n ) β +dx ( w 1n + w n )dx, we get S ( a (.1) ) a, then a ( S On the other h, by (.) we have ) N. a a α + β = 1 α + β ( w 1n + w n )dx = J λ,µ ( w 1n, w n ) + o(1) ( w 1n ) α +( w n ) β +dx + o(1) = J λ,µ (w 1n, w n ) J λ,µ (w 1, w ) + o(1) J λ,µ (w 1n, w n ) + o(1) which contradicts (.1). = 1 ( 1 N c < N ( S ) N ) N, The following lemma follows from [1].

12 15 P. HAN Lemma.4. Let N 4, λ, µ (, λ 1 ). Then m(λ, µ, ) := sup (u,v) V Moreover, m(λ, µ, ) is achieved on V. efine H(u, v) = then we have the following I(u, v) > S N N. x ( u + v λu µv ) dx (u, v) V, Lemma.5. If {(u n, v n )} V satisfies lim (u n) α +(v n ) β +dx = S N N, then (.) lim dist(h(u n, v n ), ) =. Proof. Since {(u n, v n )} V, it is easy to verify that (u n, v n ) is bounded in H 1 () H 1 (). Thus, up to a subsequence, we may assume that (u n ) + u (v n ) + v weakly in H 1 (), ((u n ) + u) + ((v n ) + v) µ weakly in the sense of measures, (u n ) + u α (v n ) + v β ν weakly in the sense of measures. Since is bounded, Lemma. implies (.3) (.4) (.5) 1 = ( u + v )dx + µ, S N N = S ν u α v β dx + ν, µ.

13 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 153 If ( u + v )dx µ =, we deduce that ( ) 1 = ( u + v )dx + µ > ( S = S = 1, ( u + v )dx N S N ) u α v β dx + S ν + µ which is a contradiction. Thus, ( u + v )dx = or µ =. If µ =, from (.3)- (.5), we get ( u + v )dx = 1 u α v β dx = S N N. Then R ( u + v )dx ( R u α v dx) β = S, which means that S is achieved by (u, v). It is impossible since S cannot be attained on any bounded domain. Hence, (.6) ( u + v )dx = µ = 1. Then, u v on, so lim n we easily have ν single point x. Thus H(u n, v n ) = ( λu n + µv n) dx =. From (.3), (.4), = 1 = S 1 µ. By Lemma., µ is concentrated at a x( u n + v n λu n µvn)dx xd µ = x. Without loss of generality, we may assume choose r > small enough such that B r (), such that + r = {x R N dist(x, ) r} r = {x dist(x, ) r}

14 154 P. HAN are homotopically equivalent to. efine m(λ, µ, r) := m(λ, µ, B r ()) > S N N, recall I d = {z H 1 () H 1 () I(z) d}. Then we have Lemma.6. If N 4. Then there exists < λ < λ 1 such that for any λ, µ (, λ ), (.7) cat Im(λ,µ,r) (I m(λ,µ,r) ) cat (). Proof. We first show that there exists < λ < λ 1 such that for any λ, µ (, λ ), if (u, v) I m(λ,µ,r), then H(u, v) + r. In fact, set λ (, λ 1 ), λ, µ (, λ ), from the proof s process of (.), we know that there is a positive number ɛ (independent of λ, µ) such that (u, v) V, N u α +v+dx β S N + ɛ = H(u, v) + r. Choosing λ = { ( )} λ, λ 1 1 (1 + ɛs ) (, λ1 ), for any λ, µ (, λ ) (u, v) I m(λ,µ,r), we obtain u α +v β +dx S ( ( S λ1 S ( u + v )dx ) ) ( v µv )dx ( u λu )dx + λ 1 λ 1 λ λ 1 µ ( λ 1 ( u + v λu µv )dx λ 1 max{λ, µ} ( ) < S λ1 λ 1 λ = S N N + ɛ. So that H(u, v) + r. efine γ : r I m(λ,µ,r) by (u λ,µ ( x y ), v λ,µ ( x y )) x B r (y), γ(y)(x) = x \B r (y), )

15 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 155 where (u λ,µ ( x ), v λ,µ ( x )) is a positive function, radially symmetric about the origin, such that (see [1]) B r () B r () u α λ,µv β λ,µ dx = m(λ, µ, r) ( u λ,µ + v λ,µ λu λ,µ µv λ,µ)dx = 1. It is not difficult to check that H γ = id. Let n = cat Im(λ,µ,r) (I m(λ,µ,r) ), then there exist n closed, contractible sets {A i } (1 i n) in I m(λ,µ,r) n corresponding mappings h i C([, 1] A i, I m(λ,µ,r) ) (1 i n) such that I m(λ,µ,r) = n A i for any (u, v), (ū, v) A i i=1 h i (, (u, v)) = (u, v), h i (1, (u, v)) = h i (1, (ū, v)). Set B i = γ 1 (A i ) (1 i n). Then the sets B i are closed r = n B i. Let g i (t, x) = H(h i (t, γ(x))), then g i C([, 1] r, + r ) for any x, y r i=1 g i (, x) = H(h i (, γ(x))) = H(γ(x)) = x g i (1, x) = H(h i (1, γ(x))) = H(h i (1, γ(y))) = g i (1, y). So B i (1 i n) is contractible in r. Therefore, cat () = cat + r ( r ) n. Proof of Theorem 1.1. It is not difficult to check that m(λ, µ, r) < m(λ, µ, ). By Lemmas.3.4, I satisfies the (P.S.) c condition for any c [m(λ, µ, r), m(λ, µ, )]. Let J(u) = I(u) J d = {z H 1 () H 1 () J(z) d}. Then J is bounded below on V. Since (J V ) = (I V ) for every u V, it follows that J V satisfies the (P.S.) c condition for any c m(λ, µ, r), u is a critical point of I V if only if it is a critical point of J V. Hence, Lemma.6 Theorem 5. in [11] yields that I m(λ,µ,r) = J m(λ,µ,r) contains at least cat () critical points of I V, denoted by (u i, v i ) (1 i cat ()) satisfying

16 156 P. HAN u i = αt i α + β (u i) α 1 + (v i ) β + + λu i in, v i = βt i α + β (u i) α +(v i ) β µv i in, u i = v i = on, 1 where t i = I(u i,v i ) > is a Lagrange multiplier. Since λ, µ (, λ ), by the strong maximum principle, (u i, v i ) > in, 1 i cat (). Let ũ i = t N 4 i u i, ṽ i = t N 4 i v i. Then (ũ i, ṽ i ) (1 i cat ()) is a positive solution of problem (1.1). Acknowledgements The author would like to thank the anonymous referee for carefully reading this paper suggesting many useful comments. References [1] C. O. Alves,. C. de Morais Filho M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal, TMA., 4 (), [] V. Benci G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), [3] G. Bianchi, J. Chabrowski A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal, TMA., 5 (1995), [4] H. Brezis L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), [5]. Cao J. Chabrowski, On the number of positive solutions for nonhomogeneous semilinear elliptic problem, Advs. iff. Equats., 1 (1996), [6] A. Castro M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity, 16 (3), [7]. Cao, G. Li X. Zhong, A note on the number of positive solutions of some nonlinear elliptic problems, Nonlinear Anal, TMA., 7 (1996), [8] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l exposant critique de Sobolev, C. R. Acad. Sci. Paris 314 (199), [9] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal, TMA., 13 (1989), [1] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. ifferential Equations, 4 (1981), [11] M. Willem, Minimax Theorems, PNLE 4, Birkhäuser, Boston-Basel-Berlin 1996.

17 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 157 Received March 3, 4 Revised version received ecember 8, 4 Institute of Applied Mathematics, Academy of Mathematics Systems Science, Chinese Academy of Sciences, Beijing 18, P. R. China address: pghan@amss.ac.cn

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term On a p(x-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term Francisco Julio S.A. Corrêa Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

Existence and Multiplicity of Solutions for Nonlocal Neumann Problem with Non-Standard Growth

Existence and Multiplicity of Solutions for Nonlocal Neumann Problem with Non-Standard Growth Existence and Multiplicity of Solutions for Nonlocal Neumann Problem with Non-Standard Growth Francisco Julio S.A. Corrêa Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at and superlinear at +

Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at and superlinear at + Revista Colombiana de Matemáticas Volumen 4(008), páginas 0-6 Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at and superlinear at Soluciones no triviales para un

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

GAUGES OF BAIRE CLASS ONE FUNCTIONS

GAUGES OF BAIRE CLASS ONE FUNCTIONS GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Phase-Field Force Convergence

Phase-Field Force Convergence Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

ON A BIHARMONIC EQUATION INVOLVING NEARLY CRITICAL EXPONENT

ON A BIHARMONIC EQUATION INVOLVING NEARLY CRITICAL EXPONENT Available at: http://www.ictp.trieste.it/~pub off IC/004/ United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ADUS SALAM INTERNATIONAL CENTRE FOR

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

arxiv: v3 [math.ca] 4 Jul 2013

arxiv: v3 [math.ca] 4 Jul 2013 POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We

Διαβάστε περισσότερα

Positive solutions for three-point nonlinear fractional boundary value problems

Positive solutions for three-point nonlinear fractional boundary value problems Electronic Journal of Qualitative Theory of Differential Equations 2, No. 2, -9; http://www.math.u-szeged.hu/ejqtde/ Positive solutions for three-point nonlinear fractional boundary value problems Abdelkader

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα