Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών. ΗΥ-561 ιαχείριση εδοµένων στο Παγκόσµιο Ιστό Βασίλης Χριστοφίδης
|
|
- Ἀπολλωνία Δεσποτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-561 ιαχείριση εδοµένων στο Παγκόσµιο Ιστό Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Άσκηση 1 (55 µονάδες) Τελική Εξέταση (3 ώρες) Ηµεροµηνία: Τρίτη 28 Ιουνίου 2005 Σας δίνεται το παρακάτω µοντέλο οντοτήτων-συσχετίσεων (ΟΣ) για την αναπαράσταση πληροφορίας σχετικής µε την εξυπηρέτηση πελατών από διαφορετικές εταιρίες κινητής τηλεφωνίας. Area Code Phone No. State Zip Phone Year of Birth City Address Customer Name Street Name SSN Street No. Uses Service Provider Name Service Plan Plan Id Plan Title Monthly fee Anytime minute Night weekend minute 1.(15 µονάδες) Μεταφράστε το παραπάνω µοντέλο ΟΣ σε σχήµα XML. Σχεδιάστε κατάλληλους τύπους στοιχείων XML για κάθε οντότητα λαµβάνοντας υπόψη τους περιορισµούς ακεραιότητας (κλειδιά, εξωτερικά κλειδιά) καθώς και ότι: Α) Για κάθε Πελάτη (Customer): SSN (1 occurrence, required) Name (1 occurrence, required) Year of Birth (CCYY-MM-DD) (0 or 1 occurrence, optional)
2 Phone (1 occurrence, required) Address (0 or 1 occurrence, optional) (0 or more occurrences, optional) Plan Id (1 occurrence, required) Β) Για κάθε προσφερόµενη Υπηρεσία (Service Plan): Plan Id (1 occurrence, required) Plan Title (1 occurrence, required) Service Provider Name (1 occurrence, required) Monthly fee (values from 10 to 115, required) Anytime minute (1 occurrence, required) Night & weekend minute (0 or 1 occurrence, optional) Για λόγους ευκολίας, υποθέστε ότι κάθε πελάτης έχει µόνο ένα κινητό τηλέφωνο. <?xml version="1.0" encoding="utf-8"?> <xs:schema elementformdefault="qualified" xmlns:xs=" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata" xs:nonamespaceschemalocation="plans.xsd"> <xs:element name="customers"> <xs:element ref="customer" minoccurs="0" maxoccurs="unbounded" /> <xs:element name="customer"> <xs:element name="ssn" type="xs:string" <xs:key name="customerskey"> <xs:selector xpath=".//customer" /> <xs:field xpath="ssn" /> </xs:key> <xs:element name="name" type="xs:string" <xs:element name="year_of_birth" type="rsh_date" minoccurs="0" maxoccurs="1" nillable="true"/> <xs:element ref="phone" <xs:element ref="address" minoccurs="0" maxoccurs="1" nillable="true"/> <xs:element name=" " type="xs:string" minoccurs="0" maxoccurs="unbounded" nillable="true"/> <xs:element name="plan_id" type="xs:int"> <xs:keyref name="uses" msdata:refrencekey="true" refer="service_planskey"> <xs:selector xpath=".//customer" /> <xs:field xpath="plan_id" /> </xs:keyref> <xs:simpletype name="rsh_date"> <xs:restriction base="xs:string"> <xs:pattern value="\d{4-\d{2-\d{2" /> <!-- Normal date --> <xs:pattern value="\d{4-\d{1-\d{2" /> <xs:pattern value="\d{4-\d{2-\d{1" /> <xs:pattern value="\d{4-\d{1-\d{1" />
3 </xs:restriction> </xs:simpletype> <xs:element name="phone"> <xs:element name="area_code" type="xs:string" /> <xs:element name="phone_no" type="xs:string" /> <xs:element name="address"> <xs:element name="street_no" type="xs:string" /> <xs:element name="street_name" type="xs:string" /> <xs:element name="city" type="xs:string" /> <xs:element name="state" type="xs:string" /> <xs:element name="zip" type="xs:string" /> </xs:schema> <?xml version="1.0" encoding="utf-8"?> <xs:schema elementformdefault="qualified" xmlns:xs=" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"> <xs:element name="serviceplans"> <xs:element ref="service_plan" minoccurs="0" maxoccurs="unbounded" /> <xs:element name="service_plan"> <xs:element name="plan_id" type="xs:int" <xs:key name="service_planskey" msdata:primarykey="true"> <xs:selector xpath=".//service_plan" /> <xs:field xpath="plan_id" /> </xs:key> <xs:element name="plan_title" type="xs:string" <xs:element name="service_provider_name" type="xs:string" <xs:element name="monthly_fee" type="fee_type" <xs:element name="anytime_minute" type="xs:int" <xs:element name="night_and_weekend_minutes" type="xs:nonnegativeinteger" minoccurs="0" maxoccurs="1"/> <xs:simpletype name="fee_type"> <xs:restriction base="xs:unsignedbyte"> <xs:mininclusive value="10" /> <xs:maxinclusive value="115" /> </xs:restriction> </xs:simpletype> </xs:schema>
4 2.(25 µονάδες) ώστε τις εκφράσεις XQuery καθώς και τον τύπο του αποτελέσµατος τους για τις παρακάτω επερωτήσεις, υποθέτοντας ότι σας δίνονται δύο σχετικά έγγραφα XML customers.xml και plans.xml: a) ώστε τις διευθύνσεις ηλεκτρονικού ταχυδροµείου για κάθε πελάτη. (Κάθε διεύθυνση ηλεκτρονικού ταχυδροµείου πρέπει να διαχωρίζεται από ","). Ταξινοµήστε το αποτέλεσµα σε αύξουσα σειρά ως προς το όνοµα των πελατών. for $customer in document("customers.xml")//customer order by $customer/name ascending return < _info> { $customer/name, < s> {for $em in $customer/ return ($em/text(), ", ") </ s> </ _info> element _info { element Name {xsd:string, element s {{text* * b) ώστε τον αριθµό πελατών για κάθε ταχυδροµικό κώδικα (zip). Ταξινοµήστε το αποτέλεσµα σε φθίνουσα σειρά ως προς τον αριθµό των πελατών. for $zip in (distinct-values(document("customers.xml")//zip)) let $customer_num := count(document("customers.xml")//customer [Address/Zip = $zip]) order by $customer_num descending return <customer_num> { $zip, if ($customer_num < 10) then <count>0{$customer_num</count> else <count>{$customer_num</count> </customer_num> element customer_num { element Zip {xsd:string, element count {xsd:integer * c) ώστε τη µέση µηνιαία χρέωση σύνδεσης για κάθε εταιρία παροχής κινητής τηλεφωνίας. (Η συνάρτηση avg της XQuery δέχεται ως είσοδο µια ακολουθία τιµών µε τύπο xdt:anyatomictype οι οποίες στην συνέχεια µετατρέπονται σε double για να τις χειριστεί η συνάρτηση. Τελικά ο επιστρεφόµενος τύπος είναι xdt:anyatomictype.)
5 for $sp in distinct-values(document("plans.xml") //Service_Provider_Name) let $monthly_fee := document("plans.xml")//service_plan [Service_Provider_Name = $sp]/monthly_fee return <Avg_Monthly_Fee> { $sp, <Average_Monthly_Fee>{avg($monthly_fee)</Average_Monthly_Fee> </Avg_Monthly_Fee> element Avg_Monthly_Fee { element Service_Provider_Name {xsd:string, element Average_monthly_Fee {xdt:anyatomictype * d) ώστε τον αριθµό πελατών για κάθε εταιρία παροχής κινητής τηλεφωνίας. Ταξινοµήστε το αποτέλεσµα σε φθίνουσα σειρά ως προς τον αριθµό των πελατών. let $sp := document("plans.xml")//service_plan for $spn in distinct-values($sp/service_provider_name) let $customer_num := count(document("customers.xml")//customer [Plan_ID = $sp[service_provider_name = $spn]/plan_id]/ssn) order by $customer_num descending return <Num_Customers> { $spn, if ($customer_num < 10) then <count>0{$customer_num</count> else <count>{$customer_num</count> </Num_Customers> element Num_Customers { element Service_Provider_Name {xsd:string, element count {xsd:integer * e) ώστε το όνοµα των πελατών που έχουν την υπηρεσία χαµηλής χρέωσης την νύχτα και τα Σαββατοκύριακα (Night and weekend minute service). for $customer in document("customers.xml")//customer, $sp in document("plans.xml")//service_plan where $sp/plan_id = $customer/plan_id and not(empty($sp/night_and_weekend_minutes)) return $customer/name element Name {xsd:string* 3. (15 µονάδες) Καθορίστε τη σχέση εγκλεισµού (περιέχει, περιέχεται, ισοδύναµη, ή κανένα από τα ανωτέρω) µεταξύ των παρακάτω XPath εκφράσεων E και E': 1. E = /a/b[.//a/b], E' = //a/b 2. E = /a[.//b[c/d]]/b/c/d, E' = /a/b/c/d 3. E = /a[b > 0]/c, E' = /a[b > 10]/c ικαιολογήστε σύντοµα την απάντησή σας.
6 1. E' contains E (i.e., The answers for the query E' is ALWAYS a superset of the results for E) 2. E' = E 3. E contains E' Άσκηση 2 (20 µονάδες) 1.(10 µονάδες) Είναι οι ακόλουθοι δύο γράφοι bisimilar; ικαιολογήστε σύντοµα την απάντησή σας. Για ευκολία υποθέστε ότι όλες οι ακµές έχουν την ίδια ετικέτα "L". X X Z W Y Y Z Claim: These graphs are bisimilar. Proof: Let G1 and G2 be the graphs above, and let R be the following relation over the nodes of G1 and G2 (described as a set of pairs): (X, X ), (Y, Y ), (Z, Z ), (W, Z ) It is easy to check that the following three statements are true: (a) R is maximal (all nodes of G1 and G2 are involved in R) (b) For each pair (t,s) in R, and for each edge (t,a,t ) in G1, there exists an edge (s,a,s ) in G2 such that (t,s ) is in R (c) [reverse of (b)] For each pair (t,s) in R, and for each edge (s,a,s ) in G2, there exists an edge (t,a,t ) in G1 such that (t,s ) is in R. Therefore R is a desired relation that establishes bisimilarity of G1 and G2. 2.(5 µονάδες) Ποια είναι τα σηµαντικά κοινά χαρακτηριστικά του αντικειµενοστρεφούς µοντέλου δεδοµένων και του µοντέλου ηµι-δοµηµένων δεδοµένων που δεν υπάρχουν στο σχεσιακό µοντέλο δεδοµένων; 1) Values are not required to be atomic (like in relational model) but can be themselves sets, tuples or relations (sets of tuples) objects have identity 2) In both the complex object and semistructured data models the data can be viewed as a graph with an arbitrary structure whereas in the relational data model we have a tree of uniform structure DB is a set of relations, relation is a set of tuples, tuples have attributes that are atomic values. 3.(5 µονάδες) Ποιες είναι οι κύριες διαφορές του αντικειµενοστραφούς µοντέλου δεδοµένων και του µοντέλου ηµι-δοµηµένων δεδοµένων; Τι επιπτώσεις έχουν αυτές οι διαφορές στην αναπαράσταση και επερώτηση των δεδοµένων;
7 1) Unlike complex object data models, semistructured data are self-describing (the schema is described as part of data). This could complicate query formulation and optimization. 2) The complex object data model implies only an arbitrary nesting of the data. The values inserted have to conform to this nested structure. In the semistructured data model, we can cope with irregular structure. Elements may be missing, or different elements may have a different structure. Facilities like regular path expressions have to be provided in order to query uncertain or irregular structure. For example if we have defined a complex object consisting of a set of tuples with a certain tuple structure then all tuples inserted for this object are of the same structure. This is not the case in semistructured data. E.g., in a complex object data model, when we define a nested structure like Bibliography: { <Title, Authors: {<Firstname,Lastname>> then the values for all tuples <Title, Authors: {<Firstname,Lastname>> will have to fit into the same structure Title Authors First Last abc f1 l1 f2 l2 xyz f1 l1 f2 l2 with semistructured data, it is possible to define tuples of (title,author) that do not all have the same structure. Άσκηση 3 (25 µονάδες) α) (5 µονάδες) ώστε τις βασικές διαφορές ενός µπλοκ For-Let-Where- Return (FLWR) της ΧQuery µε το αντίστοιχο µπλοκ Select-From-Where (SFW) της SQL. (a) Variables are bound based on path expressions (which may require new query primitives); (b) Query block output should be a collection of trees with bound variables within tags, rather than a collection of tuples; (c) FLWR filter supports variables assignment which combined with conditionals and functions make XQyery a fully programming language rather than a query language like SQL β) (10 µονάδες) Προτείνετε µια γλώσσα προγραµµατισµού XML για το βασικό µπλοκ δηλώσεων (FLWR) της ΧQuery η οποία να βασίζεται στον Κατηγορηµατικό Λογισµό (πχ. όπως ο Σχεσιακός Λογισµός Πεδίων) The variables in our language are bound to trees or sets of trees. We allow XPath expressions as primitives in the language, which we interpret as functions from trees to sets of trees, in the usual way. We also take as a primitive the document function. For simplicity, we ignore order. A query result is a set of trees. The head of the expression in our language is a template corresponding to the XQuery return clause, composed of a variable or list of variables, possibly nested inside XML tags. For example, return <answer > $t </answer > would map to { <answer > $t </answer >... The body of the expression contains quantifiers and conditions corresponding to the quantifiers and conditions in the XQuery for, let, where clauses. For example, for $p in document( dbinproc.xml")/dblp/inproceedings translates to { ( p)(p document( db-inproc.xml")/dblp/inproceedings).
8 γ) (10 µονάδες) ώστε ένα παράδειγµα της προτεινόµενης λογικής γλώσσας, µεταφράζοντας την ακόλουθη επερώτηση ΧQuery: for $p in document(`dblp-inproc.xml')/dblp/inproceedings, $a in $p/author let $t := $p/title where $a = `Serge Abiteboul' return $t; {t ( p,a,t) (p document( dblp-inproc.xml )/dblp/inproceedings a p/author t = p/title a = Serge Abiteboul )
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
5. Επερώτηση XML Εγγράφων: Εισαγωγή στη Γλώσσα XQuery
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Επερώτηση XML Εγγράφων: Εισαγωγή στη Γλώσσα XQuery ιαχείριση εδομένων στον Παγκόσμιο Ιστό Χρήστος ουλκερίδης
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
About these lecture notes. Simply Typed λ-calculus. Types
About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Μοντέλο. για ημι-δομημένα μημ δεδομένα. Ημι-δομημένα δεδομένα XML DTD XML Schema
Μοντέλο για ημι-δομημένα μημ δεδομένα Ημι-δομημένα δεδομένα XML DTD XML Schema Εισαγωγικά 3 βασικές κατηγορίες δεδομένων: Δομημένα (structured): τα δεδομένα σε ΒΔ, όπου η αναπαράσταση γίνεται σύμφωνα με
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
SOAP API. https://bulksmsn.gr. Table of Contents
SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850
Εισαγωγή(στη(γλώσσα(XML(
Εισαγωγή(στη(γλώσσα(XML( Μανόλης(Γεργατσούλης(( Χρήστος(Παπαθεοδώρου( Ομάδα(Βάσεων(Δεδομένων(και(Πληροφοριακών( Συστημάτων,(Τμήμα(Αρχειονομίας( (Βιβλιοθηκονομίας(( Ιόνιο(Πανεπιστήμιο( HTML(! Απλή(γλώσσα&σημειοθέτησης((markup&language)(!
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. ΗΥ-561 Διαχείριση Δεδομένων στο Παγκόσμιο Ιστό Βασίλης Χριστοφίδης
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-561 Διαχείριση Δεδομένων στο Παγκόσμιο Ιστό Βασίλης Χριστοφίδης Ονοματεπώνυμο: Αριθμός Μητρώου: Τελική Εξέταση (3 ώρες) Ημερομηνία: Παρασκευή 14 Ιουλίου
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example
Overview LTL to Buchi Buchi Model Checking LTL Translating LTL into Buchi Ralf Huuck Buchi Automata Example Automaton which accepts infinite traces δ A Buchi automaton is 5-tuple Σ, Q, Q 0,δ, F Σ is a
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Τα web services του παρατηρητηρίου τιμών ακολουθούν λογική REST και απαντούν σε GET requests ως ακολούθως:
ΓΕΝ.ΓΡΑΜΜΑΤΕΙΑ ΕΜΠΟΡΙΟΥ ΠΡΟΔΙΑΓΡΑΦΕΣ ΥΠΗΡΕΣΙΩΝ ΙΣΤΟΥ (WEB SERVICES) ΤΟΥ ΠΑΡΑΤΗΡΗΤΗΡΙΟΥ ΤΙΜΩΝ (e-prices.gr) 1. Προδιαγραφές Υπηρεσιών Ιστού (Web Services) Το Παρατηρητήριο Τιμών (e-prices.gr) δημιουργήθηκε
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Βάσεις Δεδομένων (4 ο εξάμηνο) Εργαστήριο MySQL #2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Βάσεις Δεδομένων (4 ο εξάμηνο) Εργαστήριο MySQL #2 Διδάσκων: Γιάννης Θεοδωρίδης Συντάκτης Κειμένου: Βαγγέλης Κατσικάρος Φεβρουάριος 2008 Περιεχόμενα SQL Language
ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης. Φροντιστήριο SQL Examples ΙΙ Ξένου Ρουμπίνη
ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο SQL Examples ΙΙ Ξένου Ρουμπίνη 1 SQL(DML) - Query Example 1 Query:1 Βρείτε τα ονόματα των έργων που δεν αφορούν το τμήμα research
Πληροφοριακά Συστήµατα
Nell Dale John Lewis Chapter 12 Πληροφοριακά Συστήµατα Στόχοι Ενότητας Η κατανόηση της έννοιας «Πληροφοριακό Σύστηµα» Επεξήγηση της οργάνωσης λογιστικών φύλλων (spreadsheets) Επεξήγηση της ανάλυσης δεδοµένων
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Oracle SQL Developer An Oracle Database stores and organizes information. Oracle SQL Developer is a tool for accessing and maintaining the data
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.