arxiv:math-ph/ v1 22 Mar 2006

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv:math-ph/ v1 22 Mar 2006"

Transcript

1 10-COMMUTATOR AND 13-COMMUTATOR A.S. DZHUMADIL DAEV arxiv:math-ph/ v1 22 Mar 2006 Abstract. Skew-symmetric sum of N! compositions of N vector fields in all possible order is called N -commutator. We construct 10 -commutator and 13 -commutator on V ect(3) and 10 - commutator on a space of divergenceless vector fields V ect 0 (3). We show that 2 -commutator, 10 -commutator and 13 -commutator form final list of N -commutators on V ect(3) and under these polylinear operations V ect(3) has a structure of sh-lie algebra. We establish that the list of 2 -and 10 -commutators on V ect 0 (3) is also final. Constructions are based on calculations of powers of odd derivations. Let (A, ) be an algebra with vector space A and multiplication. Let C < t 1,..., t k > be a space of non-commutative non-associative polynomials. Any f C < t 1,..., t k > induces a k -ary map f : A A A, }{{} k that corresponds to any a 1,..., a k A element f(a 1,..., a k ) calculated in terms of multiplication. If this map is trivial, i.e., f(a 1,..., a k ) = 0, for any a 1,..., a k A then f = 0 is said an identity on (A, ). If f is polylinear, then f induces a k -ary multiplication on A. For example, if s 2 = t 1 t 2 t 2 t 1 C < t 1, t 2 >, then s 2 (a, b) = a b b a is an ordinary commutator. Let s k = sign σ t σ(1) ( (t σ(k 1) t σ(k) ) ) σ Sym k be standard skew-symmetric polynomial. Let Diff n be a space of differential operators with n variables. For simplicity assume that variables are from C[x 1,..., x n ]. Let Diff n [d] be a subspace of differential operators of order d : n Diff n u [d] = α α = α i = d. 1 i=1

2 2 A.S. DZHUMADIL DAEV We can interpret differential operators of first order as vector fields and identify Diff n [1] with a space of vector fields V ect(n). Consider s k as a k -ary operation on a space of differential operators Diff n. So, s k (X 1,..., X k ) is a skew-symmetric sum of compositions of k operators X σ(1) X σ(k) by all k! permutations. In general, composition of k operators of orders d 1,..., d k is a differential operator of order d d k. Therefore, X 1 Diff [d 1] n,..., X k Diff [d k] n s k (X 1,..., X k ) Diff [d 1+ +d k ] n. In fact differential order of s k (X 1,..., X k ) is less than d d k. For example, differential order of s k (X 1,..., X k ) is no more than n, if all X 1,..., X k are operators of order 1 (vector fields) on n -dimensional manifold for any k [2]. Moreover, for some k might happen that s k will be well-defined operation on Diff n [1] : X 1,..., X k Diff [1] n s k (X 1,..., X k ) Diff [1] n. In [1] is established that s n 2 +2n 2 is well-defined on V ect(n) = Diff n [1] and in [2] is proved that s n 2 +2n 1 = 0 is identity on V ect(n). For example, V ect(2) has 6 -commutator and skew-symmetric identity of degree 7. Space of Hamiltonian vector fields on 2 -dimensional plane V ect 0 (2) has 5 -commutator and skew-symmetric identity of degree 6. Question 1. (n > 1). Is it true that N = n 2 + 2n 1 is index of nilpotency for operator D, i.e., D n2 +2n 1 = 0, but D n2 +2n 2 0? We think that coefficient at i η i (i,j) (n,n) i η j i n i 2 η i n of D n2 +2n 2 is non-zero. Computer calculations on Mathematica shows that this coefficient is equal 1, 2, 3600 for n = 2, 3, 4. Question 2. (n > 3). Is it true that s n 2 +2n 2 is a unique N - commutator well-defined on V ect(n), for N > 2? In other words, is it true that D N Der L n, n > 3, N = 2 or n 2 + 2n 2? In our paper we prove that for n = 3 answer to this question is negative. According to our results V ect(3) has 2-commutator, 10-commutator and 13-commutator and this list of N -commutators is complete. Notice that 13-commutator is connected with a skewsymmetric identity of degree 14, but 10-commutator has no such connection with skew-symmetric identity of degree 11: s 11 even is not well-defined operation on V ect(3). Let us give some quantitive parameters about D 10 and D 13. D 10 has three escort invariants. They have types (2, 7, 1), (3, 5, 2) and (3, 6, 0, 1). It has 489 terms of type (2, 7, 1), 3093 terms of type (3, 5, 2), 480 terms of type (3, 6, 0, 1) and all together 4062 terms.

3 10 -COMMUTATOR AND 13 -COMMUTATOR 3 D 13 has one escort invariant. It has type (3, 8, 2) and has 261 terms. In other words, s 10 (X 1,..., X 10 ) can be presented as a sum of determinants of three types. Similarly, s 13 (X 1,..., X 13 ) can be presented as a sum of 261 matrices of order To see that D 10 is well-defined on V ect 0 (3), we change all terms of D 10 like α η 3 3, α 3 > 0, to α ε 3+ε 1 η 1 1 α ε 3+ε 2 η 2 2. We obtain element with 864 terms, among them 82 has type (2, 7, 1), 76 has type (3, 6, 0, 1) and 706 has type (3, 5, 2). It is easy to see that D k is a sum of compositions of the form D 1 (D 2 (D k 1 D) ), where ( 1,..., k 1 ) is a sequence of two symbols or such that there are no two consequative and whole number of is no more than I. In particular we see that the differential order of D k is no more than min(k + 1/2, I ). This estimate is not strong. One can see that, for n = 2, 3 differential orders of D k are given as follows n = 2 k deg D k n = 3 k deg D k If D Der 0 L n, i.e., Div D = 0, then the growth of differential orders of D k given as n = 2 k deg D k n = 3 k deg D k We pay attention to a drammatical jumping of deg D k in (n, k) = (3, 10). Here we see that D 10 is a derivation or that the 10-commutator is defined correctly on V ect(3). One can check that Div D 10 = 0 and hence 10 -commutator is a well defined commutator on V ect 0 (3) also. Theorem 0.1. Let D = 3 i=1 η i i Der L 3 be odd derivation. Then D 10 Der L 3 C[x 1, x 2, x 3 ], D 13 Der L 3 C[x 1, x 2, x 3 ],

4 4 A.S. DZHUMADIL DAEV D 14 = 0. If D N Der L 3 C[x 1, x 2, x 3 ], then N = 2, 10, 13. Theorem 0.2. Let D = 3 i=1 η i i Der L 3 be odd derivation and Div D = 3 i=1 i η i = 0. Then D 10 Der L 3 C[x 1, x 2, x 3 ], Div D 10 = 0, D 11 = 0. If D N Der L 3 C[x 1, x 2, x 3 ], and Div D = 0, then N = 2 or sl n -module structure on U = C[x 1,..., x n ] and Diff n (U) Endow U by a structure of module over Lie algebra gl n =< x i j : i, j = 1,..., n, i j >. Define an action of gl n on generators of U by n x i j ( α (u s )) = δ i,s α (u j ) + α j α ǫ j+ǫ i (u s ) i=1 and prolong this action to U as an even derivation: a(xy ) = a(x)y + Xa(Y ), for any X, Y U. Prolong the gl n -module structure by natural way to Diff n (U). Notice that gl n acts on Diff n (U) as a derivation a(fg) = a(f)g + Fa(G), and as gl n -module subspaces < u i j : i, j = 1,..., n > Diff n (U) and < i (u j ) : i, j = 1,..., n > are isomorphic to adjoint module. Denote by π 1,..., π n 1 fundamental weights of sl n and by R(γ) the irreducible sl n -module with highest weight γ. Let D [s] =< α : α Z n +, α = s > and U s =< α u i : α Z n +, α = s, i = 1,..., n >. Since i are even and u i are odd elements, take place the following isomorphisms of sl n -modules In particular, D [s] = R(sπ1 ), U s = R(sπ1 ) = R(π n 1 ). D :=< i : i = 1,..., n > = R(π n 1 ), D [2] :=< i j : i, j = 1,..., n > = R(2π 1 ), U 0 =< u i : i = 1,..., n > = R(π 1 ),

5 10 -COMMUTATOR AND 13 -COMMUTATOR 5 U 1 =< i (u j ) : i, j = 1,..., n > = R(π 1 ) R(π n 1 )R(π 1 +π n 1 ) R(0), U 2 =< i j (u s ) : i, j, s = 1,..., n > = R(2π 1 ) R(π n 1 ) = R(2π 1 +π n 1 ) R(π 1 ). We use the following well-known isomorphisms without special mentioning: n 1 R(π 1 ) = R(π n 1 ), n R(π 1 ) = R(0), n2 1 R(π 1 + π n 1 ) = R(π 1 + π n 1 ), n2 R(π 1 + π n 1 ) = R(0). Lemma 1.1. a(d k ) = 0 for any a gl n. Proof. If k = 1 then action of a gl n corresponds to adjoint derivation and D corresponds to Euler operator. Therefore, n a(d) = [a, u i i ] = 0. i=1 If our statement is true for k 1 then a(d k ) = kd k 1 [a, D] = Escort invariants of N -commutators Let L = W n be Witt algebra and U = C[x 1,..., x n ] be natural L -module. Then L = i 1 L i is a graded Lie algebra, L s =< x α j : α = s + 1 >, U = i 0 U i be associative commutative graded algebra with 1, U s =< x α : α = s >, L acts on U as a derivation algebra, i.e., X(uv) = X(u)v + u(xv), for any X L, u, v U and this action is graded: L i U j U i+j, i 1, j 0.

6 6 A.S. DZHUMADIL DAEV In particular, L 0 is a Lie algebra isomorphic to gl n and all homogeneous components L s and U s have structures of gl n -modules. Then as sl n -modules, L 1 =< i : i = 1,..., n > = R(π n 1 ), L 0 =< x i j : i, j = 1,..., n > = R(π 1 ) R(π n 1 ) R(0), L 1 =< x i x j s : i, j, s = 1,..., n > = R(2π 1 + π n 1 ) R(π 1 ). Let M be graded L -module. It is called (L, U)-module if it has additional structure of graded module over U such that X(um) = X(u)m + ux(m), for any X L, u U, m M. Call M (L, U) -module with a base N if N = M L 1 =< m M : X(m) = 0, X L 1 > and M is free U -module with base N. If M 1,..., M k and M are (L, U) - modules with bases and N is a base of M, then a space of polylinear maps C(M 1,..., M k ; M) =< ψ : M 1 M k M > is (L, U) -module with base and this base as a vector space is isomorphic to C(M 1,..., M k ; M). In particular, to any L 1 -invariant polylinear map ψ C(M 1,..., M k ; M) one can correspond some polylinear map esc(ψ) C(M 1,..., M k ; N) called escort of ψ, by esc(ψ)(m 1,..., m k ) = pr(ψ(m 1,..., m k )), where pr : M N, is a projection map to N, i.e., pr(x α m) = δ α,0 m. Inversly, for any φ C(M 1,..., M k ; N) one can correspond some L 1 -invariant polylinear map ψ = Eφ C(M 1,..., M k ; M) by Eφ(X 1,..., X k ) = E a1 (X 1 ) E ak (X k )φ(a 1,..., a k ), a 1 M 1,...,a k M k where a i run basic elements of M i of the form x α n i, n i run basic elements of a base of M i. If M 1 = = M k = L all are adjoint modules then α (v) E x α i (v j ) = δ i,j. α! Details of such constructions see [3]. Apply this theory for L -module of differential operators M = Diff n =< u α : u U, α Z n + >. Endow M = Diff n by grading: M s =< x α β : α = s >. Diff n has a structure of associative algebra, in particular, it is a Lie algebra under commutator. As a Lie algebra it has a subalgebra isomorphic to W n, and hence it has a structure of adjoint module over

7 10 -COMMUTATOR AND 13 -COMMUTATOR 7 W n. Make Diff n U -module under action u(v β ) = uv β. We see that M L 1 =< α : α Z n + > and M is free U -module with base M L 1. Therefore, Diff n is (L, U) -module. Define s k C k (L, M) by s k (X 1,..., X k ) = sign σ X σ(1) X σ(k). σ Sym k We see that s k is L 1 -invariant and graded: k i (s k (X 1,..., X k )) = s k (X 1,..., X s 1, [ i, X s ], X s+1,..., X k ), s=1 for any i L 1, X 1,..., X k L, and s k (L i1,..., L ik ) M i1 + +i k, Fix some ordering on the set of basic elements of W n. Let us take, for example, the following ordering: x α i < X β j, if i < j or α < β if i = j or α < β in lexicographic order if i = j and α = beta. As we mentioned above any L 1 -invariant cochain C k (W n, Diff n ) can be restored by its escort. In particular, s k can be restored by its escort. Any escort is defined as a polylinear map on its support. Call a subspace of k -chains a 1 a k k L generated by basic vectors a 1,..., a k such that s k (a 1,..., a k ) < α : α Z n + > as a support of s k. Then supp(s k ) has a structure of sl n -module as a sl n -submodule of k L. We know that sl n -module Diff L 1 n =< α : α Z n + > is isomorphic to a direct sum of sl n -modules R(pπ n 1 ): < α : α = p, α Z n + > = R(pπ n 1 ) >. Then supp(s k ) is also a direct sum of sl n -submodules supp p (s k ), where supp p (s k ) is a sl n -submodule of k L generated by suppport k -chains a 1 a k such that s k (a 1,..., a k ) < α : α Z n +, α = p >. So, we see that any standard skew-symmetric polynomial s k induces a serie of sl n -invariant maps supp p (s k ) R(pπ n 1 ). Call such maps escort invariants. So, the calculation problem of k - commutators is equivalent to the problem of finding escort invariants. Example. esc(s k ) = 0 if k n 2 +2n 1 and s n 2 +2n 2 has exactly one escort invariant R(π 1 ) R(π n 1 ) n 1 R(2π 1 +π n 1 ) R(π n 1 ).

8 8 A.S. DZHUMADIL DAEV 3. Differential polynomials super-agebra L n Let Z be set of integers, Z + a set of non-negative integers, Z n a set of n-typles α = (α 1,..., α n ), α i Z, i I, and Z n + = {α Z n α i 0, i I}. Let ε i Z n with i -th component 1 and other components are 0. Then α = n i=1 α i ε i, for any α Z n. Set n α = α i. Endow sets Z n + and Zn + {1,..., n} by linear ordering: α < β, if or i=1 α < β α = β, α 1 = β 1,..., α s 1 = β s 1, α s > β s, for some s = 1,, n. Set (α, i) < (β, j), if i < j or i = j, α < β. Let L n be an super-commutative associative algebra over a field K generated by odd elements e α,i, where α Z n +, i I. Then e α,i e β,j = e β,j e α,i, e α,i (e β,j e γ,s ) = (e α,i e β,j )e γ,s, for any α, β, γ Z n +, i, j, s I. Elements e α,ie β,j e γ,s with (α, i) < (β, j) < < (γ, s) form base of L n. We fix this base and call such elements base elements of L n. Call number of indexes i, j,, s of base element e as its length and denote l(e). Any base element of L n can be presented as e = e [ 1] e [0] e [1] e [r], where e [s] is a product of ordered generators of a form e α,i with α = s+1. Call e [s] s-component of e and its length l(e [s] ), denote it l s (e), call as s-length of e. Thus, l(e) = l i (e). i 1 Let i = i, i I, are partial derivations of U = K[x 1,..., x n ]. Prolong these maps to maps of L n by i e β,j = e α+εi,j. It is easy to see that i satisfies Leibniz rule i (e β,j e γ,s ) = ( i e β,j )e γ,s + e β,j ( i e γ,s ), for any β, γ Z n +. So, we have constructed commuting even derivations 1,..., n Der(L n U) and e α,i = α e 0,i, for any α Z n +, i I. Here 0 = (0,..., 0) Z n +.

9 10 -COMMUTATOR AND 13 -COMMUTATOR 9 Space L n has three kinds of gradings. The first one, Z n -grading is defined by e α,i = α ε i and for other base elements are prolonged by multiplicativity, e α,i e β,j e γ,s = α ε i + β ε j + + γ ε s. The second grading is induced by Z n -grading. It is Z -grading defined on base element e = e α,i e β,j e γ,s by e = l(e) + α + β + + γ. The third grading is defined by length. Let l(ξ) = s, if ξ is a nontrivial linear combination of homogeneous base elements of length s. Call wt(e) = α + + β l(e) weight of e. A parity on L n is defined by length. Let L [l] n span of base elements u with l(u) = l. Let L [l,w] n base elements u with l(e) = l, wt(e) = w. Example. L [1] n = e α,i α Z n, i = 1,..., n, L [n] n = e 0,1 e 0,n, L [1, 1] n = e 0,i. be linear be a linear span of Proposition 3.1. L n is associative, super-commutative graded algebra: (uv)w = u(vw), uv = ( 1) q(u)q(v) vu, L n = l 1,w n L [l,w] n, for any u, v, w L n. L [l,w] n L l 1,w 1 ] n L [l+l 1,w+w 1 ] n. Note that any base element u L n can be presented in a form u 1 u 0 u r where u s, s = 1, 0,..., r are base elemenents and u s are products of generators of weight s. We say that base element u L n has type (l 1, l 0,..., l r ), if u is a product of l s generators of weight s, for s = 1, 0,..., r.

10 10 A.S. DZHUMADIL DAEV Lemma 3.2. Any base element u L n satisfy the following conditions l i (u) = l(u), i 1 i 1 i l i (u) = wt(u), ( ) n + i l i (u) n, i 1. i + 1 Proof. First two relations are reformulations of grading property of L n (proposition 3.1). As far as last two relations, they follow from the fact ( ) n + i {α Z n + α = i + 1} =. i + 1 Example. Let u = η 1 1 2η η 2. Then u is odd base element of type (1, 0, 2) and l(u) = 3, wt(u) = 1. Let Diff n be an algebra of differential operators on L n. It has a base consisting differential operators of a form u α, where α Z n + and u is a base element of L n. Endow Diff n by multiplication given by u α v β = γ ( ) α u γ v α+β γ. γ Here ( ) ( ) β n βi + γ i =. γ i=1 γ i Multiplication corresponds to composition of differential operators. Endow Diff n also by two more multiplications and. They are given by the following rules u α v β = γ 0 ( ) α u γ v α+β γ, γ u α v β = uv α+β. We see that X Y = X Y + X Y, for any X, Y Diff n. For a base element X = u α Diff n define length l(x), weight wt(x), parity q(x) and differential order deg(x) by l(x) = l(u), wt(x) = wt(u) + α, q(x) = l(u),

11 Let 10 -COMMUTATOR AND 13 -COMMUTATOR 11 Diff [d] n Diff [l,w] n deg(x) = α. = X deg(x) = d. = X l(x) = l, wt(x) = w, Diff n [l,w,d] = X l(x) = l, wt(x) = w, deg(x) = d. Denote a space of differential operators of first order Diff n [1] by W n. For a differential operator X = α Z n v α α Diff + n, define its differential order deg(x) as maximal α, such that v α 0. Proposition 3.3. Space of differential operators under different multiplications have the following properties. The algebra (Diff n, ) is associative super-algebra: X (Y Z) = (X Y ) Z, for any X, Y, Z Diff n. This agebra is graded, Diff n = l>0,w n Diff [l,w] n, Diff [l,w] n Diff [l 1,w 1 ] n Diff [l+l 1,w+w 1 ] n. The algebra (W n, ) is super-left-symmetric: (X, Y, Z) = ( 1) q(x)q(y ) (Y, X, Z), for any differential operators of first order X, Y, Z, where (X, Y, Z) = X (Y Z) (X Y ) Z is associator. Moreover, super-left-symmetric rule is true for any X, Y Diff n [1], Z Diff n. This algebra is graded, W n = l>0,w n W [l,w] n, W [l,w] n W [l 1,w 1 ] n W [l+l 1,w+w 1 ] n. The algebra (Diff n, ) is associative super-commutative: X Y = ( 1) q(x)q(y ) Y X, X (Y Z) = (X Y ) Z, for any X, Y, Z Diff n. This algebra is graded under length, weight and differential order, Diff n = l>0,w n,d 0 Diff [l,w,d] n, Diff [l,w,d] n Diff [l 1,w 1,d 1 ] n Diff [l+l 1,w+w 1,d+d 1 ] n. Any differential operator of first order under multiplication acts on (Diff n, ) as a derivation: X (Y Z) = (X Y ) Z + ( 1) q(x)q(y ) Y (X Z), for any X W n, Y, Z Diff n.

12 12 A.S. DZHUMADIL DAEV Proof. Notice that natural action of W n on L n coincides with left-symmetric product: X(η) = X η, for any X W n, η L n. Therefore, we have the following connection between composition and left-symmetric multiplications: (X Y )(η) (X Y )(η)) but (X Y )(η) = X Y (η), for any X, Y Diff n, η L n. Moreover,composition of differential operators of first order can be expressed in terms of left-symmetric multiplication, (X Y )(η) = X (Y η), for any X, Y W n, η L n. Thus, (X Y + X Y )(η) = X (Y η), and X (Y η) (X Y )(η) = (X Y )(η). Since X Y W n, this means that X (Y η) (X Y ) η = (X Y )(η). (1) for any X, Y W n, η L n. By these facts we see that ([X, Y ] Z)(η) = (X Y ( 1) q(x)q(y ) Y X)(Z(η)) = (X Y + X Y ( 1) q(x)q(y ) Y X ( 1) q(x)q(y ) Y X) (Z(η)) = (X Y ( 1) q(x)q(y ) Y X) (Z(η)). On the other hand Hence, ([X, Y ] Z)(η) = (X (Y Z) ( 1) q(x)q(y ) Y (X Z))(η) = X (Y Z)(η) ( 1) q(x)q(y ) Y (X Z)(η) = X (Y Z(η)) ( 1) q(x)q(y ) Y (X Z(η)). (X Y ( 1) q(x)q(y ) Y X) (Z(η)) = X (Y Z(η)) ( 1) q(x)q(y ) Y (X Z(η)). In other words, (X Y ( 1) q(x)q(y ) Y X) Z = X (Y Z) ( 1) q(x)q(y ) Y (X Z), for any X, Y W n, Z Diff n. Other statements of our proposition are evident. For a base element X = u α Diff n say that it has type (l 1, l 0, l 1,..., l r ; d) if u has type (l 1, l 0,..., l r ) and α = d.

13 10 -COMMUTATOR AND 13 -COMMUTATOR 13 Example. Let X = η 1 η 3 1 η 1 2 η 1 2 η η Then X is base element of Diff 3 of type (2, 3, 0, 1; 1), weight 2 and differential order 2. Lemma 3.4. Any base element X Diff n conditions: l i (X) = l(x), i 1 i 1 i l i (X) + deg(x) = wt(x), ( ) n + i l i (X) n, i 1. i + 1 satisfies the following Proof. Follows from proposition 3.3 and Lemma 3.2. Let Diff (l 1,l 0,...,l r;d) n be a subspace of Diff n generated by base elements of type (l 1, l 0,..., l r ; d). Let τ (l 1,l 0,...,l r;d) : Diff n Diff (l 1,l 0,...,l r;d) n, τ d : Diff n Diff n [d] be projection maps. Polynomial space U = K[x 1,..., x n ] has natural gradings: x α = α, x α = α. It has standard base {x α = n i=1 x α i i α Z n }. These gradings on L n and U induce gradings on L n U. In previous section we define parity q on L n U. Below we set η i = e 0,i. So, instead of e α,i we can write α η i. Then for η = α 1 η i1 α k ηik we have l(η) = k. We identitfy L n with L n 1 and consider L n as a subalgebra of L n U. 4. Differential operators of first order on L n W n = Diff n [1] has two algebraic structures. The first one, a structure of super-lie algebra, is well-known. Let be super-commutator. Then [D 1, D 2 ] = D 1 D 2 ( 1) q(d 1)q(D 2 ) D 2 D 1. [D 1, D 2 ] = ( 1) q(d 1)q(D 2 ) [D 2, D 1 ], [D 1, [D 2, D 3 ]] = [[D 1, D 2 ], D 3 ] + ( 1) q(d 1)q(D 2 ) [D 2, [D 1, D 3 ]].

14 14 A.S. DZHUMADIL DAEV Notice that q(ξ i ) = q(ξ), for any ξ L n. Recall that for any D W n, corresponding adjopint operator ad D : W n W n is a derivation of W n. Therefore, W n can be interpretered as a derivation super-lie algebra of L n. The second structure of algebra on W n can be done by left-symmetric multiplication. It is less known. Define a product by Then for ant D 1, D 2, D 3 W n, (ξ i ) (η j ) = ξ i (η) j. (D 1, D 2, D 3 ) = ( ) q(d 1)q(D 2 ) (D 2, D 1, D 3 ) (left-symmetric identity). Here (D 1, D 2, D 3 ) = D 1 (D 2 D 3 ) (D 1 D 2 ) D 3 is associator. Remark. Let Diff n (k) k. Well known that be subspace of Diff n of order no more than Diff (0) 0 = U Diff (1) n Diff (2) n is an increasing filtration on Diff n, Diff (k) n Diff (s) n Diff (k+s) n, k, s 0. So, Diff n (k) has a structure of algebra under composition operation, if k = 0, Diff n (1) has an algebraic structure under commutator. One cas ask about algebraic structures on Diff n (k) for k > 0. In other words, is it possible to find some N = N(n, k), such that X 1,..., X N Diff (k) n One can prove the following s N (X 1,..., X N ) Diff (k) n. Theorem 4.1. Let n > 1. Then s (n+1) 2 = 0 is identity on Diff n (1) and s n 2 +2n, s n 2 +2n 1 are well-defined operations on Diff n (1). Moreover, s n 2 +2n(X 1,..., X n 2 +2n) Diff n (0), for all X 1,..., X n 2 +2n Diff n (1).

15 10 -COMMUTATOR AND 13 -COMMUTATOR Calculation of D n Let η 1,..., η n are odd elements and n D = η i i, F = D D = i=1 n i,j=1 η i i η j j.. Notice that D W n [1,0] F is even element of W n l 1 (F) = 1, l 0 (F) = 1, l s (F) = 0, s > 0. Therefore, D k Diff n [k,0]. Define left-symmetric power D k by D k = D D (k 1), if k > 1, D 1 = D. Similarly one defines bullet power D k and associative power D k. Since multiplications and are associative, in last cases D k and D k have usual properties of powers D k D s = D (k+s), D k D s = D (k+s), These facts are not true for left-symmetric powers. For example, but Lemma 5.1. D 2 = F. Proof. D (D D 2 ) = (D D) D 2, D D 2 D) (D D 2 ) D. D 2 = D D = n i,j=1 η i i η j j + Since η i η j = η j η i and i j = j i, we have n η i η j i j = 0. Thus, i,j=1 n i,j=1 n D 2 = η i i η j j = D D = F. i,j=1 η i η j i j.

16 16 A.S. DZHUMADIL DAEV Lemma 5.2. D (2n) = F n for any n = 1, 2, 3, Proof. We use induction on n. If n = 1, then nothing is to prove. Suppose that D (2(n 1)) = F (n 1) for some n > 1. Then by definition D (2n) = D (D D 2(n 1) ) Since D is odd, by left-symmetric property of (W n, ) (proposition 3.3) (D, D, G) = for any G W n. Thus, D (D G) = (D D) G. Therefore, D (2n) = (D D) D (2(n 1)). By inductive suggestion, D (2n) = F F (n 1) = F n. Lemma 5.3. F F k = kf (k 1) F 2 Proof. Since F W n is even derivation, any any left-symmetric multiplication operator acts on (Diff n, ) as a super-derivation (proposition 3.3) we have F (F F) = (F F) F + F (F F). By commutativity of bullet-multiplication this means that F F 2 = 2F F 2. Easy induction on k based on a such arguments shows that our lemma is true in general case. Lemma 5.4. D 4 = F 2 + F 2 Proof. By Lemma 5.1 and by associativity of, D 4 = D 2 D 2 = F F = F F + F F. Lemma 5.5. D 6 = F 3 + 3F F 2 + F 3. Proof. By Lemma 5.1 and Lemma 5.4, D 6 = D 2 D 4 = D 2 D 4 + D 2 D 4 = F (F 2 + F 2 ) + F (F 2 + F 2 ) F 3 + F F 2 + F F 2 + F 3.

17 Thus by Lemma 5.3, 10 -COMMUTATOR AND 13 -COMMUTATOR 17 D 6 = F 3 + 3F F 2 + F 3. Lemma 5.6. D 8 = F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4. Proof. By Lemma 5.3 F F 3 = 3F 2 F 2. Therefore, by Lemma 5.1, Lemma 5.5 Lemma 5.7. D 8 = D 2 D 6 = D 2 D 6 + D 2 D 6 = F (F 3 + 3F F 2 + F 3 ) +F (F 3 + 3F F 2 + F 3 ) = F 4 + 3F 2 F 2 + 3F F 3 + 3F 2 F 2 +F F 3 + 3F 2 F 2 + F 4 = F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4. D 10 = F 5 +5(F 2 F 3 + F (F F 3 )) +5(2F 3 F 2 + 3F F 2 F 2 ) +4F 2 F 3 + 6F 2 F 3 + F 5 Proof. By Lemma 5.6 and Lemma 5.3 D 10 = D 2 D 8 = D 2 D 8 + D 2 D 8 = F (F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4 ) +F (F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4 ) = F 5 +3F (F 2 F 2 )+4F (F F 3 )+6F (F 2 F 2 )+F (F 4 ) +F F 4 + 3F F 2 F 2 + 4F 2 F 3 + 6F 2 F 3 + F 5 ) = F 5 + 6F 2 F 3 + 4F 2 F 3 + 4F F 4 +6F 3 F F 2 F 2 F + 4F 2 F 3 +F F 4 + 3F F 2 F 2 + 4F 2 F 3 + 6F 2 F 3 + F 5 ) = F 5

18 18 A.S. DZHUMADIL DAEV By Lemma 5.3, +10F 2 F 3 + 5F F 4 +10F 3 F F F 2 F 2 +4F 2 F 3 + 6F 2 F 3 +F 5. F (F 3 F) = F 4 F + F 3 F 2. Thus 2F 2 F 3 + F F 4 = F 2 F 3 + F (F F 3 ). Our lemma is proved. Lemma 5.8. For any G Diff n, n F ( η r G) = 0. Proof. We have where If s i, then where Since η i η i = 0, this means that r=1 η i i (η j ) j (η 1 η n ) n = ξ s, s=1 ξ s = η i i η j η 1 η s 1 j (η s )η s+1 η n. ξ s = ±η i η i ξ i,s, ξ i,s = i η j j η s if s i. If s = i, then ξ s = ±η i i η j j η i We have where n i,j=1 ξ s = 0, r i,s η r. r i η r = i η j j η i ( r i η j j η i = θ 1 + θ 2 + θ 3, θ 1 = i<j i η j j η i, η r ). θ 2 = i i η i i η i,

19 10 -COMMUTATOR AND 13 -COMMUTATOR 19 θ 3 = i>j i η j j η i, Since elements i η j and j η i are odd, Thus, Let θ 1 + θ 3 = 0, θ 2 = 0. n n F ( η r G) = ( i η j j η i ) r=1 i,j=1 r η r G = 0. Diff [s] n =< u α u L n, α Γ n, α = s > be a space of differential operators of order s and be projection map. τ s : Diff n Diff [s] n Lemma 5.9. If n = 3, D = n i=1 u i i, and u i are odd, then τ 1 D = F 5, τ 2 D 10 = 5(F 2 F 3 + F (F F 3 )), τ 3 D 10 = 5(2F 3 F 2 + 3F F 2 F 2 ), τ s D 10 = 0, s > 3. Proof. Follows from Lemma 5.7 and from the fact that F s = 0, if s > n. Conclusion. To find D 10 we need to calculate F s, for s = 1, 2, 3 and F Second bullet-power of F The following calculations are not difficult. F 2 η 1 η 2 ; 2 1 = 2η 1 η 2 1 η 1 2 η 1, F 2 η 1 η 3 ; 2 1 = η 1 η η 1 3 η 1 2 1, F 2 η 2 η 3 ; 2 1 = 2η 2 η 3 2 η 1 3 η 1 2 1,

20 20 A.S. DZHUMADIL DAEV 7. Second left-symmetric power of F It is not hard to obtain the following results. F 2 η 1 ; 1 = η 1 ( 2 1 η 1 2 η 1 1 η η 1 3 η 1 1 η η 1 1 η 2 2 η 2 2 η 1 3 η 2 1 η η 1 1 η 2 2 η η 1 1 η 3 3 η 3 ) 1, F 2 η 2 ; 1 = η 2 ( 1 η 1 2 η 1 2 η 2 1 η 1 3 η 1 2 η 3 2 η 1 3 η 1 1 η 3 2 η 1 3 η 2 2 η η 1 2 η 2 2 η η 1 2 η 3 3 η 3 ) 1, F 2 η 3 ; 1 = η 3 ( 1 η 1 2 η 1 3 η 2 1 η 1 3 η 1 3 η 3 2 η 1 2 η 2 3 η η 1 3 η 1 1 η 2 2 η 1 3 η 2 3 η η 1 3 η 2 2 η 3 ) 1, F 2 η 1 η 2 ; 1 = η 1 η 2 ( 1 η η 1 1 η η 1 1 η η η η η η η η 1 ) 1, F 2 (η 1 η 3 ; 1 ) = η 1 η 3 ( 1 η η 1 1 η η 1 1 η η η η η η η η 1 ) 1, F 2 η 2 η 3 ; 1 = η 2 η 3 ( 2 η η 1 2 η η 1 2 η 3 2 3η η η η 2 2 2η η η 1 ) 1.

21 10 -COMMUTATOR AND 13 -COMMUTATOR Third left-symmetric power of F In this section we give results of some calculations concerning F 3 = F (F F) F 3 η 1 ; 1 = η 1 (2 1 η 1 2 η 1 1 η 2 3 η 2 2 η η 1 2 η 1 2 η 2 3 η 2 1 η η 1 2 η 1 3 η 1 1 η 2 1 η η 1 2 η 1 3 η 2 1 η 3 3 η η 1 3 η 1 1 η 2 2 η 2 2 η η 1 3 η 1 1 η 2 2 η 3 3 η η 1 3 η 1 3 η 2 1 η 3 2 η η 1 1 η 2 2 η 2 3 η 2 2 η η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 η 1 2 η 2 3 η 2 1 η 3 3 η η 1 3 η 1 1 η 2 1 η 3 3 η η 1 3 η 1 1 η 2 2 η 2 1 η η 1 1 η 2 2 η 2 2 η 3 3 η 3 3 η 1 2 η 2 3 η 2 1 η 3 2 η η 1 3 η 2 1 η 3 2 η 3 3 η 3 ) 1 (all together 15 terms ) F 3 η 2 ; 1 = η 2 (2 1 η 1 2 η 1 2 η 2 3 η 2 2 η η 1 2 η 1 3 η 1 1 η 2 2 η η 1 2 η 1 3 η 1 2 η 2 1 η 3 1 η 1 2 η 1 3 η 2 2 η 3 3 η 3 1 η 1 3 η 1 2 η 2 2 η 3 3 η η 1 3 η 1 1 η 2 2 η 2 2 η η 1 3 η 1 2 η 2 1 η 3 3 η η 1 3 η 1 3 η 2 1 η 3 2 η 3 ) 1. (all together 8 terms) F 3 η 3 ; 1 = η 3 ( 1 η 1 2 η 1 2 η 2 3 η 2 3 η η 1 2 η 1 3 η 1 1 η 2 3 η η 1 2 η 1 3 η 1 3 η 2 1 η η 1 3 η 1 2 η 2 3 η 2 2 η η 1 3 η 1 3 η 2 2 η 3 3 η 3 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 η 1 3 η 1 1 η 2 3 η 2 2 η η 1 3 η 1 3 η 2 1 η 3 3 η 3 ) 1. (all together 8 terms) F 3 η 1 η 2 ; 1 = η 1 η 2 (3 1 η 1 1 η 2 2 η 2 2 2η η 1 1 η 2 2 η η η 1 1 η 3 2 η 3 2 3η 1 1 η 1 1 η 3 3 η η η 1 2 η 1 1 η η η 1 2 η 1 1 η η η 1 2 η 1 1 η η η 1 2 η 1 1 η η η 1 2 η 1 2 η η η 1 2 η 1 2 η 2 2 1η η 1 2 η 1 2 η η η 1 2 η 1 3 η 1 2 1η η 1 2 η 1 3 η η η 1 2 η 2 1 η η η 1 2 η 2 2 η η η 1 2 η 3 3 η η η 1 3 η 1 1 η 2 2 2η η 1 3 η 1 1 η η η 1 3 η 1 1 η η η 1 3 η 1 2 η η η 1 3 η 1 2 η η η 1 3 η 1 2 η η η 1 3 η 1 2 η 3 2 1η η 1 3 η 1 3 η η 3

22 22 A.S. DZHUMADIL DAEV + 1 η 1 3 η 2 1 η η η 1 3 η 2 2 η η η 2 2 η 2 2 η η η 2 2 η 3 3 η η η 2 3 η 2 2 η 3 2 2η η 3 2 η 3 3 η 3 2 3η η 1 1 η 2 1 η η η 1 1 η 2 2 η η η 1 1 η 2 2 η η η 1 1 η 2 2 η η 2 2 η 1 1 η 2 3 η 2 2 2η η 1 1 η 3 2 η 3 2 3η η 1 1 η 3 3 η η η 1 2 η 2 1 η η 1 2 η 1 2 η 2 1 η η 2 2 η 1 2 η 2 2 η η η 1 2 η 2 3 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η η 1 2 η 1 3 η 1 2 η η 2 2 η 1 3 η 1 3 η 3 2 1η η 1 3 η 2 1 η η η 1 3 η 2 1 η η 3 2 η 1 3 η 2 2 η η 3 2 η 1 3 η 2 2 η η η 2 1 η 3 2 η η η 2 1 η 3 3 η η η 2 2 η 3 3 η η 1 2 η 2 3 η 2 1 η η η 2 3 η 2 2 η η η 1 1 η 2 1 η η η 1 1 η 2 2 η η η 1 1 η 2 2 η η η 1 1 η 2 2 η η 3 3 η 1 1 η 2 2 η η 2 3 η 1 1 η 2 3 η 3 2 2η η 1 1 η 3 2 η η 1 3 η 1 1 η 3 2 η η η 1 1 η 3 2 η η 3 3 η 1 1 η 3 3 η η 1 3 η 1 1 η 3 3 η η η 1 2 η 2 1 η η η 1 2 η 2 1 η η η 1 2 η 2 2 η η η 1 2 η 2 2 η 3 2 1η η 1 2 η 2 3 η η η 1 2 η 3 3 η η η 1 2 η 3 3 η η η 2 1 η 3 2 η η 1 3 η 2 1 η 3 3 η η η 2 2 η 3 3 η η 1 ) 1. (all together 76 terms) F 3 η 1 η 3 ; 1 = η 1 η 3 ( 1 η 1 1 η 2 2 η η 1 1 η 1 1 η 2 2 η η η 1 1 η 2 3 η η η 1 1 η 2 3 η η η 1 1 η 3 3 η η η 1 2 η 1 1 η η η 1 2 η 1 1 η η η 1 2 η 1 1 η 3 2 3η η 1 2 η 1 2 η η η 1 2 η 1 3 η η η 1 2 η 1 3 η η η 1 2 η 1 3 η η η 1 2 η 1 3 η 2 2 1η η 1 2 η 1 3 η η η 1 2 η 2 3 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η 3 2 3η η 1 3 η 1 2 η η η 1 3 η 1 3 η η η 1 3 η 1 3 η η η 1 3 η 1 3 η η η 1 3 η 2 1 η η η 1 3 η 2 2 η η η 1 3 η 2 3 η η 1 1 η 2 2 η 2 2 η 3 2 3η η 2 2 η 2 3 η η η 2 2 η 2 3 η η η 2 2 η 3 3 η η η 2 3 η 2 2 η η η 2 3 η 2 3 η 3 2 2η η 1 1 η 2 1 η 3 2 3η 1 2 η 1 1 η 2 2 η η 1 2 η 1 1 η 2 2 η η η 1 1 η 2 3 η η 1 2 η 1 1 η 2 3 η η η 1 1 η 2 3 η 2 2 2η η 1 1 η 2 3 η η 1

23 10 -COMMUTATOR AND 13 -COMMUTATOR η 1 1 η 2 3 η η η 1 1 η 3 3 η η η 1 2 η 2 1 η η 2 2 η 1 2 η 2 3 η η 2 2 η 1 2 η 2 3 η 2 2 1η 1 2 η 1 2 η 2 3 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η η η 1 3 η 1 1 η η η 1 3 η 1 2 η 2 2 1η η 1 3 η 1 3 η 2 2 1η η 1 3 η 2 1 η η η 1 3 η 2 1 η η η 1 3 η 2 1 η η 3 2 η 1 3 η 2 3 η η 3 2 η 1 3 η 2 3 η 3 2 1η η 2 3 η 2 1 η η 1 2 η 2 3 η 2 2 η η 1 2 η 2 3 η 2 3 η η η 1 1 η 2 1 η η η 1 1 η 2 2 η η η 1 1 η 2 2 η η 1 3 η 1 1 η 2 2 η η η 1 1 η 2 3 η η 3 3 η 1 1 η 2 3 η η η 1 1 η 2 3 η η 3 3 η 1 1 η 3 2 η 3 2 3η η 1 1 η 3 3 η η η 1 1 η 3 3 η η 3 3 η 1 2 η 3 3 η η η 1 3 η 2 1 η η η 1 3 η 2 2 η η η 1 3 η 2 2 η η η 1 3 η 2 3 η η η 2 1 η 3 2 η η η 2 1 η 3 3 η η η 2 2 η 3 3 η η 1 ) 1. (all together 76 terms) F 3 η 2 η 3 ; 1 = η 2 η 3 ( 1 η 1 2 η 1 1 η η η 1 2 η 1 1 η η η 1 2 η 1 2 η η η 1 2 η 1 2 η η η 1 2 η 1 2 η η 2 1 η 1 2 η 1 3 η η 2 1 η 1 2 η 1 3 η η η 1 2 η 1 3 η 1 2 1η 1 1 η 1 2 η 1 3 η η 1 1 η 1 2 η 1 3 η η 2 1 η 1 2 η 1 3 η η η 1 2 η 2 3 η η η 1 2 η 2 3 η η η 1 2 η 3 3 η 3 2 3η 1 1 η 1 3 η 1 1 η 2 2 2η 1 1 η 1 3 η 1 1 η η η 1 3 η 1 2 η η η 1 3 η 1 2 η η η 1 3 η 1 2 η η 3 1 η 1 3 η 1 3 η η 3 1 η 1 3 η 1 3 η η 1 1 η 1 3 η 1 3 η η η 1 3 η 2 2 η η 1 2 η 1 1 η 2 2 η η η 1 1 η 2 3 η η η 1 1 η 2 3 η η η 1 1 η 3 3 η η η 1 2 η 2 1 η 3 2 3η η 1 2 η 2 2 η 3 2 3η η 1 2 η 2 3 η η 1 2 η 1 2 η 2 3 η η η 1 2 η 2 3 η η η 1 2 η 2 3 η η η 1 2 η 2 3 η η η 1 2 η 3 3 η 3 2 3η η 1 3 η 1 1 η η η 1 3 η 1 1 η η 1 2 η 1 3 η 1 2 η η η 1 3 η 1 2 η η 1 2 η 1 3 η 1 2 η η 2 2 η 1 3 η 1 3 η η 3 2 η 1 3 η 1 3 η η η 1 3 η 1 3 η η η 1 3 η 2 1 η η η 1 3 η 2 2 η η η 1 3 η 2 2 η η η 1 3 η 2 2 η 3 2 3η η 1 3 η 2 3 η η 1 2 η 1 3 η 2 3 η η η 2 2 η 3 3 η η 1 2 η 2 3 η 2 2 η η η 2 3 η 2 3 η 3 2 2η 1 3 η 1 1 η 2 2 η 2 2 2η η 1 1 η 2 2 η η 1

24 24 A.S. DZHUMADIL DAEV + 3 η 1 1 η 2 3 η η η 1 1 η 3 2 η η η 1 1 η 3 3 η η η 1 2 η 2 1 η η η 1 2 η 2 2 η η 1 3 η 1 2 η 2 2 η η η 1 2 η 2 3 η η η 1 2 η 2 3 η η η 1 2 η 2 3 η η η 1 2 η 3 3 η η 1 3 η 1 2 η 3 3 η η η 1 2 η 3 3 η 3 2 3η η 1 3 η 2 2 η η η 1 3 η 2 2 η η η 1 3 η 2 2 η η η 1 3 η 2 3 η η 3 3 η 2 2 η 3 3 η η 1 ) 1. (all together 71 terms) 9. Quadratic differential part of D 10 For G Diff n denote by G ηi1 η ik ; α projection to subspace of Diff n generated by differential operators of the form η i1 η ik s,β 0 β u s α. For example, if G = 5η 1 2 η 2 3 η η η 1 η 3 2 η 1 1 η η η 1 η 3 1 η 1 2 η 1 2 η η η 1 η 3 1 η 1 2 η 1 2 η η 3 2 7η 1 η 3 1 η 1 3 η 2 1 η η 3 2 3, then G η1 η 3 ; 2 3 = η 1η 3 2 η 1 1 η η η 1η 3 1 η 1 3 η 2 1 η η Lemma 9.1. F 2 F 3 + F (F F 3 ) = 0. Proof. Let Q = F 2 F 3 + F (F F 3 ). It is enough to prove that 1 2 -part of Q is equal to 0. Then by symmetry 2 2 -, 3 2 -parts of Q should be 0, and 1 2 -, 1 3 -, 2 3 -parts of G also will vanish. Let us show how to calculate η 1 η 2 η part of Q. Notice that η 1 η 2 η part of F 2 F 3, denote it by G 1, is equal to G 1 = Fη 2 1 ; 1 Fη 3 2 η 3 ; 1 + Fη 2 2 ; 1 Fη 3 1 η 3 ; 1 + Fη 2 3 ; 1 Fη 3 1 η 2 ; 1 + Fη 2 1 η 2 ; 1 Fη 3 3 ; 1 + Fη 2 1 η 3 ; 1 Fη 3 2 ; 1 + Fη 2 2 η 3 ; 1 Fη 3 1 ; 1. Using results of sections 7, 8 we obtain that F 2 η 1 ; 1 F 3 η 2 η 3 ; 1 + F 2 η 2 ; 1 F 3 η 1 η 3 ; 1 + F 2 η 3 ; 1 F 3 η 1 η 2 ; 1 = η 1 η 2 η 3 ( 5 1 η 1 2 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η η 1 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 3 η η η 1 2 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3η η 1 2 η 1 2 η 2 3 η 2 1 η 3 3 η η 1

25 10 -COMMUTATOR AND 13 -COMMUTATOR η 1 2 η 1 2 η 2 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 1 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 1 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η η 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 3η η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η 3 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 2η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 2 3η η 1 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 2η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 3 η η η 1 2 η 1 3 η 1 1 η 3 2 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η η 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 2 3η η 1 2 η 1 3 η 1 2 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 2η η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 3 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η η 3 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 2 2η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 2 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2η η 1 3 η 1 2 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η η η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η 3 2 3η η 1 3 η 1 1 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 1 η 3 2 η η η 1 3 η 1 1 η 2 2 η 2 1 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 1 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 1 η 2 3 η 2 1 η 3 3 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3η η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η η 3 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η 1

26 26 A.S. DZHUMADIL DAEV 2 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η 3 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η η 1 ) 2 1. Similarly, F 2 η 1 η 2 ; 1 F 3 η 3 ; 1 + F 2 η 1 η 3 ; 1 F 3 η 2 ; 1 + F 2 η 2 η 3 ; 1 F 3 η 1 ; 1 = η 1 η 2 η 3 ( 4 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 2 η 1 1 η 2 2 η 2 3 η 2 3 η 3 2 2η η 1 2 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 2 η 1 2 η 2 3 η 2 1 η 3 3 η η η 1 2 η 1 2 η 2 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 1 η 3 2 η 3 2 3η η 1 2 η 1 3 η 1 1 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 1 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2η 1 1 η 1 3 η 1 2 η 2 1 η 3 2 η 3 3 η 3 2 3η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 2 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 1 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 1 η 3 2 η η η 1 3 η 1 1 η 2 2 η 2 1 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 1 η 3 2 2η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 1 η 2 3 η 2 1 η 3 3 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η η η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η η 1 ) 2 1. Thus, G 1 = η 1 η 2 η 3 ( 5 1 η 1 2 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 2 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 2 η 1 2 η 2 3 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η η 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 3η η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 2η 3 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η 3 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 2η 2

27 10 -COMMUTATOR AND 13 -COMMUTATOR η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 2 3η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 1 η 2 3 η 2 3 η η η 1 2 η 1 3 η 1 1 η 3 2 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 1 η 3 2 η η 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η η 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 2 3η η 1 2 η 1 3 η 1 2 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η η 1 2 η 1 3 η 1 2 η 2 3 η 2 3 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η η η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η η 3 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 2 2η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 2 1η η 1 2 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η η 3 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3η 3 ) 2 1. Now calculate η 1 η 2 η part of F (F F 3 ). Set G = F F 3. It is easy to see that G η1 η 2 ; 2 1 = F η 1 ; 1 F 3 η 2 ; 1 + F η2 ; 1 F 3 η 1 ; 1, G η1 η 3 ; 2 1 = F η 1 ; 1 F 3 η 3 ; 1 + F η3 ; 1 F 3 η 1 ; 1, G η2 η 3 ; 2 1 = F η 2 ; 1 F 3 η 3 ; 1 + F η3 ; 1 F 3 η 2 ; 1.

28 28 A.S. DZHUMADIL DAEV By results of section 8, G η1 η 2 ; 1 2 = η 1η 2 H η1 η 2 1 2, G η1 η 3 ; 1 2 = η 1η 3 H η1 η 3 1, 2 where, G η2 η 3 ; 2 1 = η 2η 3 H η2 η 3 2 1, H η1 η 2 = 4 1 η 1 1 η 2 2 η 1 2 η 2 2 η 3 3 η η 1 1 η 2 2 η 1 2 η 3 3 η 1 3 η 3 1 η 1 1 η 3 2 η 1 2 η 2 3 η 1 3 η η 1 1 η 3 2 η 1 2 η 3 3 η 1 3 η η 2 2 η 1 2 η 2 2 η 3 3 η 1 3 η η 3 2 η 1 2 η 2 2 η 3 3 η 1 3 η η 3 2 η 1 2 η 3 3 η 1 3 η 2 3 η 3, H η1 η 3 = 1 η 1 1 η 2 2 η 1 2 η 2 3 η 1 3 η η 1 1 η 2 2 η 1 2 η 3 3 η 1 3 η η 1 1 η 3 2 η 1 2 η 2 3 η 1 3 η η 1 1 η 3 2 η 1 3 η 1 3 η 2 3 η η 2 2 η 1 2 η 2 2 η 3 3 η 1 3 η 2 1 η 2 2 η 1 2 η 3 3 η 1 3 η 2 3 η 3 1 η 3 2 η 1 2 η 2 3 η 1 3 η 2 3 η 3, H η2 η 3 = 3 1 η 1 2 η 1 2 η 2 2 η 3 3 η 1 3 η η 1 2 η 1 2 η 3 3 η 1 3 η 2 3 η 3. Thus, η 1 η 2 η part of F G by Lemma 5.8 is equal to η 1η 2 η part of F (G η1 η 2 ; G η 1 η 3 ; G η 2 η 3 ; 2 1 ). So, η 1 η 2 η part of F G is equal to η 1 η 2 η 3 ( 1 (D) H η2 η 3 ; (D) H η1 η 3 ; (D) H η1 η 2 ; 2 1 ) 2 1 Calculations show that this expression is equal to G 1. So, we obtain that η 1 η 2 η part of F 2 F 3 + F (F F 3 ) is equal 0. Similar calculations show that sums of η i η j 2 1 -parts of F 2 F 3 and F (F F 3 ) are also vanish, if i j. So, we have established that F 2 F 3 + F (F F 3 ) = 0.

29 10 -COMMUTATOR AND 13 -COMMUTATOR Qubic differential part of D 10 In this section we use denotions and results of calculations of section 9. Lemma F 3 F 2 = 0 Proof. Recall that G = F F 3. By associativity and supercommutativity of bullet-multiplication (proposition??) we have F 3 (F F) = F (F F 3 ). So, η 1 η 2 η part of F 3 F 2 is equal to F (η 1 η 2 H η1 η 2 + η 1 η 3 H η1 η 3 + η 2 η 3 H η2 η 3 ) 2 1 = η 1 η 2 η 3 ( 1 η 1 1 H η2 η η 1 1 H η1 η η 1 1 H η1 η ). By results of section 9 it is easy to obtain that 1 η 1 H η2 η 3 = 0, 2 η 1 H η1 η 3 = 0, 3 η 1 H η1 η 2 = 0. So, η 1 η 2 η part of F 3 F 2 is 0. Since number of bullets is two, η i η j 1 3 -parts and η i 1 3 -parts of F 3 F 2 are also 0. So, 1 3 -part of F 3 F 2 vanishes. By symmetry α -part of F 3 F 2 vanishes also for any α Γ 3, such that α = 3. Lemma is proved. Lemma F F 2 F 2 = 0. Proof. Let R = F 2 F 2. We use calculations on F 2 ( section 7) to obtain R η1 η 2 ; 2 1 = η 1 η 2 (8 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 ) 2 1, R η1 η 3 ; 2 1 = η 1 η 3 ( 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 ) 2 1, R η2 η 3 ; 2 1

30 30 A.S. DZHUMADIL DAEV = η 2 η 3 ( 6 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 ) 2 1. We have η 1 1 η 1 1 R η2 η 3 ; 2 1 = 0, η 2 2 η 1 1 R η1 η 3 ; 2 1 = 0, η 3 3 η 1 1 R η1 η 2 ; 2 1 = 0. Therefore η 1 η 2 η part of F F 2 F 2 is equal to η 1 1 η 1 1 R η2 η 3 ; η 2 2 η 1 1 R η1 η 3 ; η 3 3 η 1 1 R η1 η 2 ; 1 2 = 0. By symmetry, η 1 η 2 η 3 1 α -part of F F 2 F 2 are also 0 for any α Γ 3, such that α = 3. As we mentioned above η i - and η i η j -parts of elements obtained by two bullets are equal to 0. Lemma is proved. By Lemma 5.9 τ 3 (F 5 ) = 5(2F 3 F 2 + 3F F 2 F 2 ). Therefore, we come to the following Conclusion. τ 3 (D 10 ) = 0. Proof of Theorem 0.1 By Theorem 0.1 of [2] if η i1 η ir α -part of D 10 is nonzero, then So, α 3. D 10 = τ 1 (D 10 ). 11. N -commutators and super-derivations In this section we explain how escort invariants appear in calculating powers of odd derivations. Suppose now I = {1,..., n} and D = n i=1 u i i Der L odd super-derivation. For α Z n + set x (α) = xα α!. Denote by Supp(s k ) a set of k -typles {(α (1), i 1 ),, (α (k), i k )} with α (1),..., α (k) Z n +, i 1,..., i k I, such that k p=1 α (p) ǫ ip has a form β for some 0 β Z n +. Theorem k!d k = α (u i1 ) β (u i2 ) γ (u ik )esc(s k )(x (α) i1, x (β) i2,..., x (γ) ik ), where summation is given by {(α, i 1 ), (β, i 2 ),..., (γ, i k )} Supp(s k ).

31 10 -COMMUTATOR AND 13 -COMMUTATOR 31 If we use order on basic elements x α i we can omit the coefficient k! : D k = α(1) (u i1 ) α(k) (u ik )esc(s k )(x (α(1)) i1,..., x (α(k)) ik ). (α (1),i 1 )< <(α (k),i k ) Proof. Recall that U = C[x 1,..., x n ] and i are partial derivations of U. Let Gr k be a Grassman algebra with exterior generators η 1,..., η k, i.e., it is associative super-commutative algebra of dimension 2 k. For U = C[x 1,..., x n ] take its Grassman envelope U = U Gr k. Prolong derivation i Der U to a derivation of U by i (v ω) = i (v) ω. We obtain commuting system of even derivations D = { 1,..., n } of U. For any f 1,..., f n U and α Z n + elements α u j are odd. So, we obtain D -differential super-algebra U and we can consider its algebra of super-derivations L =< f i : f U > and its algebra of super-differential operators Diff =< f α : α Z n +, f U >. We can endow Diff by composition operation, by left-symmetric multiplication and by bullet multiplication. In particular, we can consider L as a left-symmetric algebra and as a super-lie algebra. Thus, L = W n Gr k is isomorphic to a current algebra with coefficients not in Laurent polynomials as usual, but in exterior algebra. We see that for any f 1,..., f n we can consider a homomorphism L n U, u i f i, i = 1,..., n. and this homomorphism can be extended to a homomorphism of leftsymmetric or Lie algebras Der L n L and to a homomorphism of associative (left-symmetric) algebras Diff Diff We can use this homomorphism in calculating F k for F = n i=1 f i i L. In other words, in the formula for D k we can make substitutions u i f i and calculate obtained expressions in U. Use this method for calculating coefficients λ {(α,i1 ),(β,i 2 ),...,(γ,i k );µ}, where D k = λ {(α,i1 ),(β,i 2 ),...,(γ,i k );µ} α (u i1 ) β (u i2 ) γ (u ik ) µ.

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: May 29, 2017 7.2 Properties of Exchangeable roots The notion of exchangeable is explained as follows Proposition 7.20. If C and C = C

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

MATH1030 Linear Algebra Assignment 5 Solution

MATH1030 Linear Algebra Assignment 5 Solution 2015-16 MATH1030 Linear Algebra Assignment 5 Solution (Question No. referring to the 8 th edition of the textbook) Section 3.4 4 Note that x 2 = x 1, x 3 = 2x 1 and x 1 0, hence span {x 1, x 2, x 3 } has

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

THE BIGRADED RUMIN COMPLEX. 1. Introduction

THE BIGRADED RUMIN COMPLEX. 1. Introduction THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

Comultiplication Structures for a Wedge of Spheres

Comultiplication Structures for a Wedge of Spheres Filomat 30:13 (2016), 3525 3546 DOI 10.2298/FIL1613525L Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Comultiplication Structures

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα