Existence and Nonexistence of Weak Positive Solution for Classes of 3 3 P-Laplacian Elliptic Systems
|
|
- Χρυσάωρ Νικολαΐδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Intenational Jounal of Patial Diffeential Euations Alications 03 Vol. No. 3-7 Aailable online at htt://ubs.scieub.co/ijdea///3 Science Education Publishing DOI:0.69/ijdea---3 Existence Nonexistence of Weak Positie Solution fo Classes of 3 3 P-Lalacian Ellitic Systes Guefaifia Rafik Akout Kael * Saifia Wada LAMIS Laboatoy Tebessa Uniesity Tebessa Algeia LANOS Laboatoy Badji Mokhta Uniesity Annaba Algeia *Coesonding autho: akoutkael@gail.co Receied Noebe 03; Reised Noebe 9 03; Acceted Decebe 3 03 Abstact In this ok e ae inteested to obtain soe esult of existence nonexistence of lage ositie u = α x f u in u = µβ ( x g ( u in eak solution fo the folloing -lalacian syste hee = νγ ( x h ( u in u = = = 0 on σ σ z = di z z σ µ ν ae a ositie aaete is a bounded doain in N ith sooth bounday. The oof of the ain esults is based to the sub-suesolutions ethod. Keyods: Positie solutions Sub-suesolutions -Lalacian systes Cite This Aticle: Guefaifia Rafik Akout Kael Saifia Wada Existence Nonexistence of Weak Positie Solution fo Classes of 3 3 P-Lalacian Ellitic Systes. Intenational Jounal of Patial Diffeential Euations Alications no. (03: 3-7. doi: 0.69/ijdea Intoduction Pobles inoling the -Lalacian aise fo any banches of ue athe-atics as in the theoy of uasiegula uasiconfoal aing as ell as fo aious obles in atheatical hysics notably the flo of non-netonian fluids. Hai Shiaji [9] studied the existence of ositie solution fo the -Lalacian syste u = f in = g u in u = = 0 on (. hich f(s; g(s ae the inceasing functions in [0 satisfy M( gs li f = 0 M > 0 s + S the authos shoed that the oble (. has at least one ositie solution oided that > 0 is lage enough. In [6] the autho studied the existence nonexistence of ositie eak solution to the folloing uasilinea ellitic syste α γ u = u in δ β u = u in u = = 0 on (. The fist eigenfunction is used to constuct the subsolution of oble (.3 the ain esults ae as follos: (i If α β 0 γ δ > 0 θ = ( α (( β γδ > 0 then oble (.3 has a ositie eak solution fo each k > 0; (ii If = 0 γ= ( α then thee exists 0 > 0 such that fo 0 < < 0 then oble (.3 has no nontiial nonnegatie eak solution. In this ae e ae concened ith the existence nonexistence of ositie eak solution to the uasilinea ellitic syste u = α x f u in = µβ x g u in = νγ x h u in u = = = 0 on σ hee z di ( z σ z (.3 = σ µ ν ae a ositie aaete is a bounded doain in
2 4 Intenational Jounal of Patial Diffeential Euations Alications N ith sooth bounday. We oe the existence of a lage ositie eak solution fo µ ν lage hen ( ( ( f ttt gttt httt li 0 t t = t = + t =. Definitions Notations Definition. We called ositie eak solution (u; ; of (.3 such that satisfies u u. = α( x f ( u u. ω dx = µ β( x g ( u u3. = γ ( x h( u fo all ω Η 0 ( ith ω 0 Definition. We called ositie eak subsolution ( 3 suesolution (z z z 3 of (.3 such that i zi i= 3 satisfies 3. α x f 3. ω dx µ β x g γ x h z z. α( x f ( z z z3 z z. ω dx µ β( x g ( z z z3 z3 z3. γ ( x h( z z z3 fo all Η 0 ( ith 0. We suose that α β γ f g h eify the folloing assutions; (H f gh : ([ 0 [ ae C onotone functions such that = li f t t t3 li g t t t3 t t t3 + t t t3 + = li ht ( t t3 = + t t t3 + k0 > 0: f yz g yz h yz k0 fo all yz 0 ( x ( x ( x α0 α α α0 β0 γ0 α β γ > 0: β0 β β γ0 γ γ ( ( ( f ttt gttt httt (H li 0 t t = t = + t = ξ ξ ξ3 η η η3 3 > 0: f ( t t t3 ξt ηt t (H3 g( t t t3 ξt ηt t ht ( t t3 ξ3t + η3t + 33 t Let µ ν be the fist eigenalue of ith Diichlet bounday conditions the coesonding ositie eigenfunction ith = = = δ > 0 such that on δ = x d x µ { : ( δ} We denote by ( ( ( ( ( ( µ ξ η ξ ξ 0 = ( µ 0 = + ( µ η ξ η η µ 0 = + + ( ξ3 + η Existence Results Theoe. Let (H (H hold. Then fo lage the syste (.3 has a lage ositie solution (u : Poof. We shall eify that α = µβ = γ 3 = is a subsolution of (.3 fo lage: Let ω ω 0.A calculation shos that ω dx = H 0 ith k0 = dx σ σ σ ω k 0 σ σ ( σ ω dx = σ k0 = ( σ σ.
3 Intenational Jounal of Patial Diffeential Euations Alications 5 No on σ e hae α 3 α β γ ( x f ( ( α α( x 3 ( x f ( µ β ( β β( x ( γ ( x f ( 3 ( γ γ ( x Next on / σ e hae ρ fo soe ρ 0 theefoe fo µ ν lage f ( 3 g ( 3 µ µ ( 3 ( h Hence 3. f 3. ω dx µ g h i.e. ( 3 is a subsolution of (.3. Next let ae the solution of = in = in = in = 0 on. = 0 on. = 0 on. Let C z = z = µ g z3 = h Whee C > 0 is a lage nube to be chosen late: We shall eify that (z z z 3 is a suesolution of (.3 fo µ ν lage. To this end let ω H 0 ( ith ω 0. By (H (H e can choose C lage enough so that then g C C C µ µ g = z z h h = z3 then z3 hich ily that f C C C C f C C C f C C f ( z z z3 = Then e hae z z. C = C = f ( z z z3
4 6 Intenational Jounal of Patial Diffeential Euations Alications in anothe h z z. = µ g. C µ g ( µ g z z z siila z z. = h. C h ( h z z z 3 i.e (z z z 3 is a suesolution of (.3 ith z i i fo C lage i = 3. Thus thee exists a solution (u of (.3 ith u z z 3 ω z3. 4. Nonexistence Results Theoe. If f g h eify (H 3 the syste (.3 has not nontiial ositie solutions fo 0 < 0 < 0< µ 0 < µ 0 < 0 <. (4. Poof. Multilying the fist euation by u; e hae fo Young ineuality that u ( = f u udx ξ u + η + udx ( η ξ u u u dx η + ( ( ( ξ η + η + ξ + u + η + dx = + + u then e hae ( ( u ( ξ +η+ u + η + ( µ µ ξ u + ( ξ + η + µ + ( ( ( ξ 3 u + η Note that u = inf inf u inf = µ = ( ξ η Cobining (4. (4.3 e obtain ( ( µ µ 0 u (4. (4.3 hich is a contadiction if (4. hold. Thus (.3 has no nontiial nonnegatie eak solution. 5. Alications P Theoe 3. conside the folloing syste in W ( n l u = u in n l = µ u in 3 n3 l3 = u in u = = = 0 on the syste has a lage ositie solutions if In the case hee + n+ l < + n + l < 3 + n3 + l3 < ( + n+ l = + n + l = 3 + n3 + l3 = the syste has not non tiial ositie solutions if 0 (5. (5. (5.3 0 < < 0< µ < µ 0 < <. (5.4 Poof. (5. ily that (H. By using theoe the syste has a lage ositie solutions. The fist euation in (5.3 ily that + + = + + = 3 n l θ θ θ then the genealized Young ineuality gies (5.5
5 Intenational Jounal of Patial Diffeential Euations Alications 7 n l n lθ 3 f ( u = u θ u + θ + θ θ θ3 = u + + θ θ θ3 By the sae anne e conclude that the assution (H3 holds. Then he syste (5. has not nontiial ositie solutions if hich ily that 0 = ( ( < µ 0 = ( n+ ( n + + n3 < µ µ µ 0 = ( l+ µ l + l ( 3 + <. ( ( µ µ + + < (5.6 0 this ineuality hold if (5.4 hold. Theoe 4. The folloing oble has a lage ositie solution if lage 3 3 u x H u u u in = γ u = u = u = 0 on (5.7 hee is a bounded doain in N ith sooth bounday is a ositie aaete γ is a function of class L ( : ([ 0 [ 3 ( 3 ( H is of class C H t t t is inceasing ith esect to t t 3 H t t t 3 is deceasing ith esect to t ( H t t t li = 0 > + t t ([ [ k > 0: H t t t k t t t Poof. The oble (5.7 can be itten unde the folloing syste fo u = in = in = γ ( x H ( u in u = = = 0 on In this case the assutions of theoe (3. holds. Refeences [] S. Ala G. A. Afouzi Q. Zhang & A. Nikna Existence of ositie solutions fo aiable exonent ellitic systes Bounday Value Pobles 0 0:37. [] G. A. Afouzi & J. Vahidi On citical exonent fo the existence stability oeties of ositie eak solutions fo soe nonlinea ellitic systes inoling the ( -Lalacian indefinite eight function Poc. Indian Acad. Sci. (Math. Sci. Vol. No. Febuay [3] G. A. Afouzi & Z. Valinejad Nonexistence of esult fo soe - Lalacian Systes The Jounal of Matheatics Coute Science Vol. 3 No. (0-6. [4] J. Ali R. Shiaji Existence esults fo classes of Lalacian systes ith sign-changing eight Alied Matheatics Lettes 0 ( [5] J. Ali R. Shiaji Positie solutions fo a class of -Lalacian systes ith ultile aaetes J. Math. Anal. Al. 335 ( s [6] C. Chen On ositie eak solutions fo a class of uasilinea ellitic systes Nonlinea Analysis 6 ( [7] R. Dalasso Existence uniueness of ositie solutions of seilinea ellitic systes Nonlinea Analysis 39 ( [8] H. Dang S. Ouganti & R. Shiaji nonexistence of non ositie solutions fo a class of seilinea ellitic systes Rocky Mountain Jounal of atheatics Volue 36 Nube [9] D. D. Hai R. Shiaji An existence esult on ositie solutions fo a class of -Lalacian systes Nonlinea Analysis 56 ( [0] P. Dˆabek & J. Hen ez Existence uniueness of ositie solutions fo soe uasilinea ellitic obles Nonlinea Analysis 44 (00. [] S. Haghaieghi & G. A. Afouzi Sub-sue solutions fo (- Lalacian systes Bounday Value Pobles 0 0:5. [] R. Shiaji a & J. Ye Nonexistence esults fo classes of 3 3 ellitic systes Nonlinea Analysis 74 (
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM
Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Product of two generalized pseudo-differential operators involving fractional Fourier transform
J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay
17 Monotonicity Formula And Basic Consequences
Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
The Laplacian in Spherical Polar Coordinates
Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Iterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS
H. Yin Q. Qiu Nagoya Math. J. Vol. 154 (1999, 157 169 THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS HUICHENG YIN QINGJIU QIU Abstact. In this pape, fo thee dimensional compessible
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2
Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,
3.7 Governing Equations and Boundary Conditions for P-Flow
.0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS
Математичнi Студiї. Т.39, Matematychni Studii. V.39, No. УДК 59.23.2+57.53 М. I. Paolya, М. М. Sheemeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS M. I. Paolya, M. M. Sheemeta.
Boundary-Layer Flow over a Flat Plate Approximate Method
Bounar-aer lo oer a lat Plate Approimate Metho Transition Turbulent aminar The momentum balance on a control olume o the bounar laer leas to the olloing equation: + () The approimate metho o bounar laer
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
The Critical Exponent of Doubly Singular Parabolic Equations 1
Jounal of Mathematical Analysis and Applications 257, 70 88 (200) doi:0.006/jmaa.2000.734, available online at http://www.idealibay.com on The Citical Exponent of Doubly Singula Paabolic Equations Xinfeng
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Positive solutions for three-point nonlinear fractional boundary value problems
Electronic Journal of Qualitative Theory of Differential Equations 2, No. 2, -9; http://www.math.u-szeged.hu/ejqtde/ Positive solutions for three-point nonlinear fractional boundary value problems Abdelkader
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and