17 Monotonicity Formula And Basic Consequences
|
|
- Παρθενορή Κουρμούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.). Ou ai is to obtai ifoatio about V by aig aoiate choice of X i the foula (see 6.5) M i R c 7., ( ; iv Xµ XHµ X C U ) Fist we choose X γ()( ), whee U is fie,, a γ is a C ( R ) fuctio with γ' () t 0 t; γ() t fot / ; γ() t 0 fot> whee > 0 is such that B( ) U. ( Hee a subsequetly B ( ) eotes the oe ball i R with cete a aius. ) Fo ay f C ( U) a ay M such that TM eists M l (see.4.6) we have (by.) f( ) edf( e ) whee Df l eotes the atial eivative, l, f l i U a whee ( e ) is the ati of the othogoal l l of f tae oectio of R oto TM. Thus witig M M ei ( as i 7
2 Lectues o Vaifols Leo Sio Zhag Zui Sectio 6), with the above choice of X we euce iv X X e e M Moe ecise, a l l M l () '() γ γ i l, M f( ) P ( ) TM ga f P TM Df l el R l l l Df l PTMe l Df l ee edf l e l l, l, iv X M ei X M M l ei edxe l l, l edx l l, X l l l e γ' () i( ) γ() δ l l, l l l γ' () e i γ() e l, l l l γ' () e e, l γ' P DD, γ () () TM γ' D γ () () e γ () l Sice ( e ) eesets the othogoal oectio oto TM 8
3 Lectues o Vaifols Leo Sio Zhag Zui we have e a i l, l l l e D, whee D eotes the othogoal oectio of D (which is a vecto of legth TM. ) oto The foula 7. thus yiels (*) () '() γ µ γ µ Hi( ) γ () µ γ '() D µ ovie B( ) U. Now tae φ such that φ() t fo t, φ () t 0 fo t a φ't () 0 fo all t. The we ca use (*) with γ() φ. Sice γ' () φ' φ this gives whee I I' J' L I φ µ, L φ ( ) Hµ J φ D µ Thus, ultily by a eaagig we have 7. I J' L Thus lettig φ icease to the chaacteistic fuctio of the iteval (, ), we obtai, i the istibutio sese, 9
4 Lectues o Vaifols Leo Sio Zhag Zui 7.3 µ ( B() ) D µ ( ) Hµ B( ) i B( ) ( B ) This is the fuaetal ootoicity ietity. Sice µ () a D µ ae iceasig i it also hols i the B( ) classical sese fo ae.. > 0 such that B( ) U. Moe ecise, µ ( B() ) µ ( B() ) µ ( B() ) ' a li li B( ) B( ) B ( ) B( ) B ( ) D µ D µ D µ whee we ca estiate the last quatity as follows, B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) D µ D µ D µ 0
5 Lectues o Vaifols Leo Sio Zhag Zui Notice that if H 0 the 7.3 tells us that the atio µ ( B () ) is o-eceasig i. Geeally, by itegatig with esect to i 7.3 we get the ietity 7.4 µ ( B ()) µ B() D B ( ) Β ( ) ( ) H µ i µ fo all 0< with B( ) U, whee a {, }, so that if H 0 we have the aticulaly iteestig ietity 7.5 µ ( B ()) µ B() D B ( ) B ( ) µ Moe ecise, itegatig 7.3 with esect to, we get µ ( B() ) µ B() D µ ( ) Hµτ B( ) B( ) τ i Bτ( ) D µ χb ( ) ( ) H τ µτ B( ) B( ) τ i B( ) χb ( ) τ i B( ) B ( ) B ( ) D µ ( ) H τ µ B( ) B( ) i B( ) a {, } τ B( ) B ( ) D µ H τ µ τ D µ ( ) H i µ B( ) We ow wat to eaie the iotat questio of what 7.3
6 Lectues o Vaifols Leo Sio Zhag Zui tells us i case we assue boueess a L coitios o H. 7.6 Theoe If U,0< α, Λ 0, a if α (*) Hµ Λ µ ( B() ) foall ( 0R, ) α B( ) R α αµ ( B () R Λ ) whee BR() U, the e is a o-eceasig fuctio of ( 0R, ), a i fact () Wheeve 0 () α α ( ()) () R B α α B D Λ µ µ R Λ e e µ B( ) B( ) < < R. Also, α α ( ()) () R B α α B D Λ µ µ R Λ e e µ B( ) Poof Fo 7.3, ultily by the itegatig facto get e α α ΛR we D α α D ΛR e B ( ) B ( ) µ µ ( ()) R α α µ B α α Λ ΛR e e ( ) Hµ i B( ) α α ( B ()) R µ α α Λ ΛR e e Hµ B( ) α α α ( B ()) R µ α α Λ ΛR e e αλ µ ( B () ) R ( ()) ( () R α α µ B α α µ B R Λ Λ α α ) e e ΛR α i
7 Lectues o Vaifols Leo Sio Zhag Zui α αµ ( B () R ) e Λ Thus itegate with esect to o the iteval (, ), () follows, B ( ) µ ( B() ) α α ΛR µ B() e α α ΛR µ e D Fo (), we ust use the sae etho, D α α D ΛR e B ( ) B ( ) µ µ ( ()) R α α µ B α α Λ ΛR e e ( ) Hµ i B( ) α α ( B ()) R µ α α Λ ΛR e e Hµ B( ) α α ( B ()) R µ α α α Λ ΛR e e αλ ( ()) µ B R ( ()) ( () R α α µ B α α µ B R ) Λ Λ α α e e ( ΛR α ) i α αµ ( B () R ) e Λ 7.7 Theoe If U a BR( ) H µ Γ, whee BR( ) U a >, the µ ( B () ) B () µ Γ 3
8 Lectues o Vaifols Leo Sio Zhag Zui wheeve 0 < < R. Poof Fo 7.3, we get µ ( B() ) ( ) Hµ i B( ) Hµ i B( ) B ( ) µ ( B() ) Γ H µ µ ( B() ) That is, µ B() Γ Itegatig with esect to, we have µ ( B ()) ( ()) µ B Γ 7.8 Coollay If H L ( µ ) i U fo soe >, the the loc µ B esity Θ ( µ, ) li eists at evey oit U, 0 ω a Θ ( µi,) is a ue-sei-cotiuous fuctio i U : Θ ( µ, ) lisu Θ ( µ, y), U y Poof The iequality 7.7 tells us that ( ()) µ B Γ 4
9 Lectues o Vaifols Leo Sio Zhag Zui µ ( B () ) is a o-eceasig fuctio of, hece li eists 0 µ ( B () ) µ ( B() ) µ B( ) (a is the sae as li ). [ li li µ B () ( ()) li µ B li, 0 0 N ] ( ) Now fo the oof of coollay, Θ ( µ, ) li su Θ ( µ, y) y Θ ( µ, ) li su Θ ( µ, y) ε 0 y < ε Θ ( µ, ) δ ( 0, ), > lisu y < εθ ( µ, y) δ ε 0 Θ ( µ, ) δ ( 0, ), ε> 0st,.. if y < ε, theθ ( µ, y) < δ Θ ( µ, ) δ ( 0, ), ε> 0st,.. if y < ε, theθ ( µ, y) < δ get Thus we ove the last assetio, to this e, let 0, we µ B ( y) Γ Θ ( µ, y) ω ω µ ε c (,, ) ω ε Θ ( µ, ) < δ ( B ε ) ( ) if we tae ε sall eough. 5
10 Lectues o Vaifols Leo Sio Zhag Zui 7.9 Reas () If θ µ ae.. U, H L ( U), > as i 7.8, the loc Θ ( µ, ) at each oit of stµ U, a hece we ca wite (, ) V U v M θ whee M* stµ U, θ* Θ ( µ, ), U. * * Thus V U is eesete i tes of a elatively close coutably ectifiable set with ue-sei-cotiuous ultilicity fuctio. Obseve that H ( A M) H A M A M ( θ θ ) A Mθ( µ H ) fo ay H easuable subset of µ ae is equivalet R... to H ae.. o M, the Rea is uestaable. Fo esity µ B Θ ( µ, ) li li 0 ω 0 θh B ( ) N li 0 ω B M ω θh whee N is C subaifol of R with N, such N eists by.7. Fo vaifol ( ( )) M U stµ µ 0 θ H H M U st µ U stµ 6
11 Lectues o Vaifols Leo Sio Zhag Zui () If U, Θ ( µ, ), a H µ Γ ω BR( ), whee B () U a >, the both iequalities 7.6(), () R hol with Λ ΓR a α, ovie ΓR. Poof Notice fist that Hµ H µ µ ( B() ) Γ ω µ B( ) B ( ) B ( ) ( B ) We estiate µ () usig 7.7 as follows (lettig 0 ) Γ ω µ ( B() ) ω ω µ ( B ()) µ ( B() ) Γ ω ω The µ B() ω [ ], hece, Hµ Γ ω ω µ B i i i B ( ) ( ) [ ] () Γ µ ( B() ) Γ R µ B() i R Thus the hyothesis of 7.6 hol with α. Λ ΓR a (3) Notice that eithe 7.6() o 7.7 give bous of the fo µ ( () ) β, 0< < R fo suitable costat β. Such a B 7
12 Lectues o Vaifols Leo Sio Zhag Zui iequality ilies B ( ) α β µ α α fo ay ( 0R, ) a 0 < α<. Poof We ust aly the follow lea. α µ α ( B () α α ) B( ) B( ) µ µ α ( α ) t µ ; t > t µ ( B () α ) α ( α ) t µ B() t µ B () α α β β α ( ) t t α t α ( α) β β α α α t β α 7.0 Lea If X is a abstact sace, µ is a easue o X, { } α> 0. f L( µ ), f 0 a if A X; f( ) > t, the Moe geeally α t ( At) t 0 A α α µ f µ α µ f t µ t t α α α t At t 0 A 0 t0 Poof It is a by-ouct of Fubii s theoe. Moe ecise, we have t0 8
13 Lectues o Vaifols Leo Sio Zhag Zui α α ( t) ( ) α α A t ( At ) 0 t0 t0 0 f( ) α α α ( α t t ) µ ( f t0) µ α t µ A t α t µ t t t A 0 0 t α t χ µ t α t χ tµ t A A t A t t0 0 t0 A 7. Lea Suose θ µ ae.. i U, H L ( µ ) i U loc fo soe >. If the aoiate taget sace TV ( see Sectio 5) eists at a give oit U, the TV is a classical taget lae fo stµ i the sese that ist( ytv, ) li suy B( ) st 0 0 µ Poof Fo sufficietly sall R (with B R U ), 7.7,7.8 (with 0 ) evietly ily () µ ( B ()),, ω 0< < R B stµ Moe ecise, sice H L ( µ ), we choose R, Γ> 0 such that B R U a µ,0 B ( ) st B R loc H µ Γ. The fo ay < < R, H µ H µ Γ B B R a by vitue of 7.7, 7.8, 7.9(), we have ( ) B ω µ Γ,, thus µ ( B ) ω if 9
14 Lectues o Vaifols Leo Sio Zhag Zui Γ R, this is ossible sice we ca fist fi soe Γ fo soe R 0, the let R0> R 0 with Γ uchage. Usig this we ae goig to ove that if α 0, a ( 0R, ), the () ( B { yist ; ( ytv, ) }) µ < ε < ωα {;, } B stµ yist ytv < ε α µ ε α {;, } Iee if B ( ) st yist( ytv) ( ) {;, ε} the B () B ( ) yist( ytv) α < a hece the hyothesis of () ilies µ Bα() ωα ha, () ilies µ Bα() ωα, so we have a. O the othe cotaictio. Thus () is ove, a () evietly leas ieiately to the equie esult. Moe ecise, by (5) i the Poof of Theoe.8, we ve fo, ay ε 0,, ( B X (, ) ) µ π ε li 0 ω 0 [This is coe coitio] whee π ( P). Thus we ca tae sall eough such that 0
15 Lectues o Vaifols Leo Sio Zhag Zui ( B { yist( ytv ) < }) µ ;, ε ε < ω [This is cylie coitio, you ay tae a ictue to see it clealy.] Hece ist ytv µ ε ε ε, y B ( ) st < ( ) 4
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS
ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)
Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.
Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Differential Equations (Mathematics)
H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
PhysicsAndMathsTutor.com
PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
physicsandmathstutor.com
physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
1 3D Helmholtz Equation
Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
Identities of Generalized Fibonacci-Like Sequence
Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES
A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of
CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar
CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Fundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Existence and Nonexistence of Weak Positive Solution for Classes of 3 3 P-Laplacian Elliptic Systems
Intenational Jounal of Patial Diffeential Euations Alications 03 Vol. No. 3-7 Aailable online at htt://ubs.scieub.co/ijdea///3 Science Education Publishing DOI:0.69/ijdea---3 Existence Nonexistence of
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Perturbation Series in Light-Cone Diagrams of Green Function of String Field
Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have: