Kaon physics at KLOE. M.Palutan. Frascati for the KLOE collaboration Moriond-EW 2006
|
|
- Σαπφειρη Βαμβακάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Kaon physics at KLOE M.Palutan Palutan,, INFN/Frascati Frascati for the KLOE collaboration Moriond-EW
2 The DAΦNE e + e collider Collisions at c.m. energy around the φ mass: s ~ MeV Angle between the beams at crossing: α crs 12.5 mrad Residual laboratory momentum of φ: p φ ~ 13 MeV/c Cross section for φ peak: σ φ ~ 3.1 µb Grand total (2001/5): L = 2.5 fb -1 L peak = cm -2 s -1 Results presented in this talk from 2001/2 data: L = 450 pb -1 2 KLOE plots: end 2005
3 K physics at KLOE - tagging The φ decay at rest provides monochromatic and pure beam of kaons pure J PC = 1 state K S, K + φ K L, K BR 1 2 ( K, p K, p K, p K, p ) L S L S φ decay mode K + K 49.1% K S K L 34.1% Tagging: observation of K S,L signals presence of K L,S ; K + signals K K S beam unique!! absolute branching ratio measurement: BR = (N sig /N tag )(1/ε sig ) Kaon momentum is measured with 1 MeV resolution (e.g. p(k L ) = p(φ)- p(k S )) 3 K + K /pb -1 p* = 127 MeV/c λ ± = 95 cm K L K S 10 6 /pb -1 p* = 110 MeV/c λ S = 6 mm; λ L = 3.4 m
4 The KLOE detector Large cylindrical drift chamber 4m, 3.75m length, carbon-fiber He/IsoC4H10 90/10 σp/p = 0.4 % (tracks with θ > 45 ) σxhit = 150 µm (xy), 2 mm (z) σxvertex ~1 mm Lead/scintillating-fiber calorimeter σe/e = 5.7% / E(GeV) σt = 54 ps / E(GeV) 50 ps σl(γγ) ~ 2 cm (π0 from KL π+π π0) Superconducting coil: 0.52 T field 4
5 Outline CPT test in semileptonic K S -K L decays Measurement of K S πeν charge asymmetry A S CP/CPT test from unitarity UL on BR(K S π 0 π 0 π 0 ) A S BR(K L π + π ) preliminary V us and CKM unitarity BR(K S πeν) and form factor slope BR(K L πlν) and τ L K L e3 form factor slopes BR(K ± π 0 l ± ν) and τ ± BR(K + µ + ν) preliminary 5
6 K S πeν: CPT test Sensitivity to CPT violating effects through charge asymmetry _ Γ(K S,L π - e + ν) Γ(K S,L π + e - ν) A S,L = _ Γ(K S,L π - e + ν) + Γ(K S,L π + e - ν) A S = 2(Re ε + Re δ Re y + Re x ) A L = 2(Re ε Re δ Re y Re x ) CP CPT in mixing CPT in decay ΔS ΔQ and CPT A S A L 0 implies CPT δ = 1 2 M 11 M 22 i(γ 11 Γ 22 )/2 m S m L i(γ S Γ L )/2 6 A L = (3.322 ± ± 0.047) 10-3, KTeV 2002
7 K S πeν: BR and A S TOF e/π ID, fit to E miss p miss spectrum Normalize to π + π counts Branching ratio BR(πeν) = (7.046±0.077±0.049 ) 10 4 signal fractional error: 1.3% = 1.1% stat 0.7% syst Charge asymmetry A S = ( 1.5 ± 9.6 ± 2.9 ) 10 3 bkg first measurement δa S ~ with 2.5 fb -1 K Se3 form factor slope λ + = ( 33.9 ± 4.1 ) 10 3 first meas., compatible with K L 7 hep-ex/ , accepted by PLB
8 K S πeν: CPT test 1) Re x : CPT viol. and ΔS ΔQ A S A L = 4 ( Re x + Re δ ) A L KTeV σ= Re δ CPLEAR σ= Re Re x = (( 0.8 ± 2.5) Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, σ= ) 2) Re y: CPT viol. and ΔS=ΔQ A S +A L = 4 (Re ε Re y) Comparable Re Re y = (( ± 2.5) Re ε from PDG not assuming CPT with best result (CPLEAR from unitarity, σ= ) 8
9 CPT test: the Bell-Steinberger relation Measurements of K S K L observables can be used for the CPT test from unitarity : 1 (1 + i tan φ SW ) [Re ε i Im δ] = A*(K S f ) A(K L f ) Σ Γ f S = Σ f α f α kl3 = 2τ S /τ L B(K L l3) [Re ε Re y i( Im δ + Im x + )] = 2τ S /τ L B(K L l3) [(A S +A L )/4 i( Im δ + Im x + )] α + = η + Β(K S π + π ) α 00 = η 00 Β(K S π 0 π 0 ) α + γ = η + Β(K S π + π γ) α + 0 = τ S /τ L η + 0 Β(K L π + π π 0 ) α 000 = τ S /τ L η 000 Β(K L π 0 π 0 π 0 ) 9 (more details from M.Testa)
10 CPT test: result Im δ Im δ Re ε KLOE preliminary: Re ε = (160.2 ± 1.3) 10 5 Im δ =(1.2 ± 1.9) 10 5 CPLEAR: Re ε = (164.9 ± 2.5) 10 5 Im δ =(2.4 ± 5.0) Uncertainty on Imδ is now dominated by φ + and φ 00 - Semileptonic sector contributes by ~ 10%
11 Unitarity test of CKM matrix: V us, V us /V ud Unitarity test from 1 st row: V ud 2 + V us 2 + V ub 2 ~ V ud 2 + V us 2 1 Δ Can test if Δ = 0 at 10-3 level: from super-allowed nuclear β-decays: 2 V ud δv ud = from semileptonic kaon decays: 2 V us δv us = Extract V us from K l3 decays Γ(K πlν(γ)) V us f + (0) 2 I(λ t ) S EW (1 + δ ΕΜ + δ SU(2) ) theory uncertainty: 0.8% on f + (0) Extract V us / V ud from Γ(K ± µν(γ))/γ(π ± µν(γ)) Γ(π µν(γ)) V ud 2 f π αc π Γ(K µν(γ) V us 2 f K αc K theory uncertainty: 1.3% on f K /f π 11 KLOE can measure all experimental inputs: BR, τ, λ
12 BR(K L πlν) and τ L K L πeν, πµν: K L vertex reconstructed in DC Fit to p miss E miss spectrum (7% of the sample) Absolute BR: (N sig /N tag ) 1/ε sig the error on geometric acceptance is dominated by τ L Using the constraint BR(K L ) = 1: min(p miss E miss ) in πµ or µπ hyp. BR(K L πeν) = ± stat ± syst BR(K L πµν) = ± stat ± syst τ L = (50.72 ± 0.17 stat ± 0.33 syst ) ns precision 12 PLB 632 (2006)
13 τ L from K L π 0 π 0 π 0 Excellent lever arm for lifetime measurement (P K = 110 MeV) K L momentum known from tag Uniform reconstruction efficiency with respect to L K 10 2 Events/0.3 ns ns cm 0.37 λ L τ L = ± 0.17 stat ± 0.25 syst ns PLB 626 (2005) σ rel ~ L/βγc (ns) 13 Average with result from K L BR s: τ L = ± 0.23 ns σ rel ~ Vosburg, 72 τ L = ± 0.44 ns
14 K Le3 form factor slopes Momentum transfer t= (p K p π ) 2 is measured Fit to t-spectrum with different hypothesis on t- dependence of the form factor hep-ex/ accepted by PLB Linear: 1 + λ + t λ + = (28.6 ± 0.5 ± 0.4) 10 3 Quadratic: 1 + λ + t/m π+ + 1/2 λ + (t/m π+ ) 2 λ + = (25.5 ± 1.5 ± 1.0) 10 3 λ + = ( 1.4 ± 0.7 ± 0.4) 10 3 ρ(λ +, λ + ) = 0.95 Pole model: M V2 /(M V2 t), Taylor exp. λ + =(m π /M V ) 2, λ + =2 λ 2 + m V = (870 ± 7) MeV Quadratic (*) ISTRA+ m π± /m π0 correction 14 Phase space integral I(λ) depends on the parameterization: I Pole - I Quad KLOE KTeV Pole model
15 K ± lifetime Tag events with K ± µ ± ν decay Identify a kaon decay vertex on the opposite side 1 st method: obtain τ ± from the K decay length Measure the kaon decay length taking into account the energy loss: τ K = i ΔL i /(β i γ i c) Tag(Kµ2) τ ± = ± stat ± syst ns preliminary 2 nd method: obtain τ ± from the K decay time Use only K ± π ± π 0 decays Measure the kaon decay time: τ K = (t γ R γ /c)/γ K, using the π 0 clusters 15
16 BR(K ± π 0 l ± v) K + π 0 l + ν decays are tagged by K µ ν and K π π 0 (and viceversa) K ± π 0 e ± ν and K ± π 0 µ ± ν are separated by fitting the lepton mass spectrum, obtained from TOF: t decay K = t lept -L lept /β(m lept )c = t γ -L γ /c Ev/(14MeV) 2 K ± e3 K ± µ3 K nucl.int. Kππ 0 π 0 Kππ 0 Preliminary results: BR(K ± e3 ) = (5.047 ± stat ± syst-stat ± syst ) 10-2 BR(K ± µ3 ) = (3.310 ± stat ± syst-stat ± syst ) 10-2 σ syst under evaluation 16
17 V us f + (0) from KLOE results BR τ K Le3 K Lµ (15) (15) 50.84(23) ns K Se (91)_ (6) ps K ± e3 K ± µ (46) (40) (24) ns Slopes λ + = (30) λ + = (3) (Pole model: KLOE, KTeV, and NA48 ) λ 0 = (95) (KTeV, Istra+) Unitarity band: V us f + (0) = (22) f + (0)=0.961(8) Leutwyler and Roos 1984 V ud = (27) Marciano and Sirlin CKM unitarity test Δ = 0.001±0.001 χ 2 /dof = 1.9/4
18 BR(K + µ + ν(γ)) Tag from K µ ν Subtraction of π + π 0, π 0 l + ν background Count events in (225,400) MeV window of the momentum distribution in K rest frame BR(K + µ + ν(γ)) = ± stat. ± syst. 18 PLB 632 (2006)
19 The V us V ud plane Using f K /f π =1.198(3)( ) MILC Coll we get V us /V ud = ± V us = ± K l3 KLOE, using f + (0)=0.961(8) V ud = ± Marciano and Sirlin Phys.Rev.Lett ,2006 unitarity Fit of the above results: V us = ± V ud = ± P(χ 2 ) = 0.66 Fit assuming unitarity: V us = ± P(χ 2 ) =
20 Conclusions 1) KLOE impact on kaon decays made a considerable step during 2005: a) we published: UL on BR(K S π 0 π 0 π 0 ), τ L, BR(K L ), BR(K Se3 ) and A S, BR(K + µ2), K Le3 ff b) we have final results on: BR(K L π + π ), Γ(K S π + π )/Γ(K S π 0 π 0 ) c) we have preliminary results on: BR(K ± π 0 l ± ν), τ(k ± ) 2) Results on K Se3 allow to improve the present limits on CPT violation in semileptonic kaon decays 3) We improved the present limit on CPT violation through the Bell-Steinberger relation by a factor of 2.5 4) CKM matrix unitarity is tested through determination of V us from semileptonic kaon decays (5 different channels) V us /V ud from K + leptonic decay 5) KLOE data taking will stop on March 16th: L TOT ~ 2.7 fb 1 20
21 21 Spares slides
22 Tagged K L and K S beams K L crash β= = 0.22 (TOF) K S π + π K L 2π 0 K S π e + ν 22 K L tagged by K S π + π vertex at IP Efficiency ~ 70% (mainly geometrical) K L angular resolution: ~ 1 K L momentum resolution: ~ 1 MeV ~ tagged K L K S tagged by K L interaction in EmC Efficiency ~ 30% (largely geometrical) K S angular resolution: ~ 1 K S momentum resolution: ~ 1 MeV ~ tagged K S
23 K S πeν: CPT test K S πeν amplitudes π + e υ H W K 0 = a + b π e + υ H W K 0 = a * b * π e + υ H W K 0 = c + d π + e υ H W K 0 = c * d * b=d=0 if CPT holds c=d=0 if ΔS=ΔQ holds Sensitivity to CPT violating effects through charge asymmetry A S = 2(Re ε + Re δ Re y + Re x ) A L = 2(Re ε Re δ Re y Re x ) CP CPT in mixing CPT in decay ΔS ΔQ and CPT 23 δ = 1 2 M 11 M 22 i(γ 11 Γ 22 )/2 m S m L i(γ S Γ L )/2 Re y = Re b/a Re x = Re d * /a
24 ΔS ΔQ ΔS = ΔQ CPT holds = Re(c /a) = Re(x + ) = K S πeν: test of ΔS=ΔQ 1 2 Γ(K S πeν) Γ(K L πeν) Γ(K S πeν) + Γ(K L πeν) SM expectation: x ~ , no ΔS ΔQ transitions at first order Re(x + ) + ) = ((-0.5 ± 3.6) Factor 2 improvement w.r.t. current most precise measurement (CPLEAR, σ= ) BR(K Le3 ) BR(K S πeν) KLOE τ(k S ) PDG τ(k L ) KLOE BR(K L πeν) KLOE 0.40 KTeV 04 KLOE 05 from KLOE BR(K S πeν) assuming ΔS = ΔQ 0.39 PDG 04 24
25 Γ(K S π + π (γ))/γ(k S π 0 π 0 ) Statistical abundance allows to perform 17 independent measurements with few per mill accuracy R ππ vs. running period ± stat ± syst-stat ± syst accuracy 3 improvement respect to KLOE 2002 (2.236 ± stat ± statsyst ± syst ) χ 2 /dof = 0.86 [P(χ 2 )=0.62] KLOE average: ± hep-ex/
26 CPT test: inputs Im x + = (0.8 ± 0.7) 10-2 from a combined fit of KLOE-KTeV (A S A L ) and CPLEAR (A δ ) data: accur. 3 Β(K S π + π )/Β(K S π 0 π 0 )=2.2549± Β(K S π + π γ)< Β(K S π + π π 0 )=(3.2±1.2) 10 7 Β(K S π 0 π 0 π 0 )< Β(K L πlν)=0.6705± Β(K L π + π π 0 )=0.1263± Β(K L π + π )=(1.963 ± ) 10 3 Β(K L π + π γ)=(29±1) 10 6 Β(K L π 0 π 0 )=(8.65 ±0.10) 10 4 τ S = ± ns τ L = ± 0.23ns A L =(3.32±0.06) 10 3 A S =(1.5±10.0) 10 3 φ SW = (0.759±0.001) φ + =0.757 ± φ 00 = ± φ 000 = φ + 0 = φ + γ =[0,2π] 26 (KLOE measurements)
27 K S π 0 π 0 π 0 : direct search Observation of K S 3π 0 signals CP violation in mixing and/or in decay: SM prediction: Γ S = Γ L ε +ε 000 2, => BR(K S 3π 0 ) ~ Previous results: BR(K S 3π 0 ) < (direct search, SND, 99) BR(K S 3π 0 ) < (interference, NA48, 04) γ counting kinematic fit in the 2π 0 and 3π 0 hypothesis ζ 2 2π ζ 2 3π PLB 619 (2005) BR( K S 3π 3π 00 )) < % CL η 000 < at 90% CL 27
28 BR(K L π + π ) PID using decay kinematics Normalize to K L πµν events preliminary BR = (1.963±0.012±0.017) 10-3 σ rel : 1.1% = 0.6% stat 0.9% syst in agreement with KTeV 2004 BR = (1.975 ± 0.012) 10 3 it confirms the 4 σ discrepancy with PDG04 = (2.080 ± 0.025) 10-3 we get: η + = (2.216 ± 0.013) 10-3 [ BR(K S ππ) and τ L from KLOE, τ S from PDG04] PDG04: ε = (2.280 ±0.013) E ( ππ ) + 2 miss p miss (MeV)
29 CPT test: accuracy on α i We get the following accuracies on each term of the sum: 10-4 α + = η + Β(K S π + π ) Im 2τ S /τ L B(K L l3) [ (A S +A L )/4 i Im x + ] α 00 = η 00 Β(K S π 0 π 0 ) Re α + 0 = τ S /τ L η + 0 Β(K L π + π π 0 ) α + γ = η + Β(K S π + π γ) α 000 = τ S /τ L η 000 Β(K L π 0 π 0 π 0 ) 29
30 CPT test: m(k)-m(k) GeV GeV CPLEAR KLOE Γ(K)-Γ(K) Γ(K)-Γ(K) m(k)-m(k) m(k)-m(k) GeV GeV δ = 1 2 M 11 M 22 i(γ 11 Γ 22 )/2 m S m L i(γ S Γ L )/2 σ(δm) ~ GeV σ(δγ) ~ GeV 30
31 Dominant K L BR s and τ L K L πeν, πµν, π + π - π 0 : K L vertex reconstructed in DC Fit to p miss E miss spectrum K L π 0 π 0 π 0 : Photon vertex reconstructed by TOF (7% of the sample) Absolute BR: (N sig /N tag ) 1/ε sig ε geo dominated by error on τ L Using the constraint BR(K L ) = 1: min(p miss E miss ) in πµ or µπ hyp. 31 BR(K L πeν) = ± stat ± syst BR(K L πµν) = ± stat ± syst BR(K L 3π 0 ) = ± stat ± syst BR(K L π + π π 0 ) = ± stat ± syst τ L = (50.72 ± 0.17 stat ± 0.33 syst ) ns precision
32 K Le3 form factor slopes: fit Divide data into 20 bins ( 3 < t < +7) N i = N 0 Σ 20 j =1 A ij ε j ρ j (λ +, λ + ) F j FSR A ij ε j ρ j F FSR j Smearing matrix (MC) Reconstruction efficiency Bare K e3 decay density FSR correction λ + Obtained from MC generator, affect mainly at low t Data divided into 14 periods Good stability of results Good agreement for e + π, π e + bare ρ(t) MC K e3 γ λ + = 0.03 λ + = 0 t 32
33 Linear fit: λ K Le3 form factor slopes: result χ 2 /dof e + π 28.7 ± /181 π + e 28.5 ± /181 All 28.6 ± /363 λ + = (28.6 ± 0.5 ± 0.4) 10 3 Quadratic fit: λ λ χ 2 /dof e + π 24.6 ± ± /180 π + e 26.4 ± ± /180 All 25.5 ± ± /362 λ + = (25.5 ± 1.5 ± 1.0) 10 3 λ + = ( 1.4 ± 0.7 ± 0.4) 10 3 Correlation: ρ(λ +, λ + ) = 0.95 Pole model: m V = 870(7) MeV Pole model versus Quadratic parameterization: 0.5 per mil difference in phase space integral, I e. 33 (*) ISTRA+ m π± /m π0 correction
34 K S πµν: first observation Measurement never done before More difficult than K Se3 : 1) Lower BR: expect ) Background events from K S ππ, π µν: same PIDs of the signal Event counting from the fit to E miss (πµ) P miss distribution: 3% stat error Efficiency estimate from K Lµ3 early decays and from MC + data control samples Data K S µ π + ν + ππγ + ππ E miss (πµ) P miss (MeV) 34
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan
1 τ-decays at Belle On Behalf of Belle Collaboration Takayoshi Ohshima Nagoya University, Japan KEKB/ Belle PEP-II/ BaBar 1. τ K s π ν τ study Branching ratio Mass spectrum (vector & scalar FF; mass &
Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration
Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Σύντομο Βιογραφικό Σημείωμα
Σύντομο Βιογραφικό Σημείωμα Πίνακας επιλεγμένων βιογραφικών στοιχείων Όνομα Θέση στο Έργο Θέση στο Ίδρυμα Προπτυχιακοί τίτλοι σπουδών Μεταπτυχιακοί τίτλοι σπουδών Ειδικές γνώσεις στο γνωστικό αντικείμενο
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Study of CP Violation at BABAR
Study of CP Violation at BABAR Roland Waldi, Univ. Rostock Introduction Direct CP Violation in B Decay The Easy Part: β Additional Information: β and α Summary and Outlook März 25 CP Violation = asymmetry
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC
Σ(85) Ξ(5) Production of and measured by ALICE in pp, ppb and PbPb collisions at the LHC for the ALICE Collaboration Pusan National University, OREA Quark Matter 7 in Chicago 7.. QM7 * suppressed, no suppression
Physics of CP Violation (III)
Physics of CP Violation (III) Special Lecture at Tsinghua Univiersity, Beijing, China 21-25 March 2011 Tatsuya Nakada École Polytechnique Fédéale de Lausanne (EPFL) Experimental observation of CP violation
Precise measurement of hadronic tau-decays
Precise measurement of hadronic tau-decays with eta mesons at Belle 2008.9.23 Tau08 Yoko Usuki Nagoya Univ. K. Inami and Belle collaboration Belle 1 Introduction Belle detector has collected the τ-pair
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.
Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel
Presentation Structure
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens
Repeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
Light Hadrons and New Enhancements in J/ψ Decays at BESII
Light Hadrons and New Enhancements in J/ψ Decays at BESII Guofa XU Representing BES Collaboration Institute of High Energy Physics Chinese Academy of Sciences Beijing, China xugf@ihep.ac.cn Outline Introduction
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Nuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu
Current Status of PF SAXS beamlines 07/23/2014 Nobutaka Shimizu BL-6A Detector SAXS:PILATUS3 1M WAXD:PILATUS 100K Wavelength 1.5Å (Fix) Camera Length 0.25, 0.5, 1.0, 2.0, 2.5 m +WAXD Chamber:0.75, 1.0,
Probing Anomalous Top-Gluon Couplings at Colliders
Probing Anomalous Top-Gluon Couplings at Colliders LCWS10 26th-30th March, 2010 Beijing Pratishruti Saha Department of Physics and Astrophysics University of Delhi Higher Dimensional Operators: SM : g
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Αναζητώντας παράξενα σωµατίδια στο ALICE
Αναζητώντας παράξενα σωµατίδια στο ALICE K 0 s π+ π - Λ π - p Ξ - π - Λ π - p π - 7.7.018 Δέσποινα Χατζηφωτιάδου 1 παράξενα σωµατίδια µεσόνιο βαριόνιο s K 0 s ds, ds Λ uds αδρόνια που περιέχουν τουλάχιστον
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Impact of ozone cross-section choice on (WF)DOAS total ozone retrieval
Impact of ozone cross-section choice on (WF)DOAS total ozone retrieval M. Weber, W. Chehade, A. Serdyuchenko, J. P. Burrows Universität Bremen FB1, Institut für Umweltphysik (iup) weber@uni-bremen.de http://www.iup.uni-bremen.de/uvsat
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report
LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes
Tunable Diode Lasers Turning Laser Diodes into Diode Lasers Laser diodes Mode selection FP diodes high power at low cost AR diodes for best performance Compact and robust Littrow setup Highest power from
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e
LEPTONS e J = 1 2 Mass m = (548.5799110 ± 0.0000012) 10 6 u Mass m = 0.510998902 ± 0.000000021 MeV me + m e /m < 8 10 9, CL = 90% qe + + q / e e < 4 10 8 Magnetic moment µ =1.001159652187 ± 0.000000000004
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Creative TEchnology Provider
1 Oil pplication Capacitors are intended for the improvement of Power Factor in low voltage power networks. Used advanced technology consists of metallized PP film with extremely low loss factor and dielectric
e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005
e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005 OUTLINE Introduction Oldies but goodies τ mass measurement and R scan ψ(2s) scan and radiative
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
; +302 ; +313; +320,.
1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Electronic Supplementary Information:
Electronic Supplementary Information: 2 6 5 7 2 N S 3 9 6 7 5 2 S N 3 9 Scheme S. Atom numbering for thione and thiol tautomers of thioacetamide 3 0.6 0. absorbance 0.2 0.0 0.5 0.0 0.05 0.00 N 2 Ar km/mol
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2007.. 38.. 5 ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ œ Š.. Š ± ²,.. Œ μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 1163 ˆ ˆ ˆ Œ œ Š 1166 Š ˆŒ œ Re (ɛ /ɛ) Š Š - ˆŒ NA48 ˆ KTeV 1172 Š ˆŒ NA48 1178 ˆ Œ ˆ Re(ɛ /ɛ) Š ˆŒ KTeV