Sampling Basics (1B) Young Won Lim 9/21/13

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sampling Basics (1B) Young Won Lim 9/21/13"

Transcript

1 Sampling Basics (1B)

2 Copyright (c) Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

3 Measuring Rotation Rate Angular Speed (Frequency) RPM = 2 T = 2 f rpm = revolutions / minute 1 rpm = 2 rad / 1 min = 2 rad / 60 sec = 30 rad / sec 0 rad / 1 sec 0 rad / 1 sec 0 rad / sec 0 rad / sec Negative Angles 1B Sampling Basics 3

4 Complex Exponential I I R R t t e + j ω 0t = cos (ω 0 t) + j sin (ω 0 t) e j ω t = cos (ω 0 t) j sin (ω 0 t) e + jt = cos (t) + j sin (t) (ω 0 = 1) e jt = cos (t) j sin (t) (ω 0 = 1) 1B Sampling Basics 4

5 Cos(ω 0 t) Spectrum e + jt = cos (t) + j sin (t) (e + jt + e j t ) = 2cos (t) e jt = cos (t) j sin (t) I R t + A 2 e jω 0 t A 2 A 2 + A 2 e+ jω 0 t x(t) = A cos (ω 0 t) = A 2 e+ j ω 0t + A 2 e j ω 0t ω 0 +ω 0 spectrum 1B Sampling Basics 5

6 Sin(ω 0 t) Spectrum e + jt = cos (t) + j sin (t) (e + jt e j t ) = 2 j sin (t) I e j t = cos (t) + j sin (t ) R t ω 0 + A 2 +ω 0 + A 2 e+ jω 0 t x(t) = A sin (ω 0 t) = A 2 j e+ j ω 0 t A 2 j e j ω 0 t A 2 e jω 0 t A 2 spectrum 1B Sampling Basics 6

7 Angular Frequency and Sinusoid Time Domain Frequency Domain x(t) t ω 0 +ω 0 + T 0 ω 0 = 2π T 0 For 1 second For 1 second x(t) = A cos (ω 0 t) = A 2 e j ω 0t + A 2 e j ω 0t 0 rad / sec 0 rad / sec 1B Sampling Basics 7

8 Co-terminal Angles +ω 0 (rad / sec) 2 0 rad / sec 3 0 rad / sec 4 0 rad / sec +5 ω 0 (rad / sec) +2π/3 Negative Angles +4 π/3 +2 π +8 π/3 +10 π/3 Co-terminal Angles 0 rad / sec 2 0 rad / sec 3 0 rad / sec 4 0 rad / sec 5 ω 0 (rad / sec) 2π/3 4 π/3 2 π 8 π/3 10 π/3 π π 5ω 0 4 ω 0 3 ω 0 2ω 0 ω 0 +ω 0 +2ω 0 +3 ω 0 +4 ω 0 +5ω 0 + 1B Sampling Basics 8

9 Angular Speed and Frequency = 2 T = 2 f 1 T = f T (sec) 0.01 sec 0.1 sec 1 sec 10 sec 100 sec f (Hz) 100 Hz 10 Hz 1 Hz 0.1 Hz 0.01 Hz Frequency rad / sec 200 rad / sec 20 rad / sec 2 rad / sec 0.2 rad / sec 0.02 rad / sec Angular Speed / Radian Frequency (rad / sec) = 628 = 62.8 = 6.28 = = B Sampling Basics 9

10 Sampling Continuous Time Signal continuous-time signals x(t) = A cos (ω 0 t) Sampling Time T s (= τ) T 0 0.5sec 1sec t Sequence Time Length T = N T s 0.125sec Sampling Frequency T s (= τ) f s = 1 T s (samples / sec) For 1 second 1 T 0 (cycles / sec) For 1 second 1 T s (samples / sec) Signal's Frequency For 1 cycle For 1 sample f 0 = 1 T 0 (cycles / sec) 1 (cycles) / T 0 (sec) 1 (samples) / T s (sec) 1B Sampling Basics 10

11 Discrete Time Sequence continuous-time signals x(t) = A cos (ω 0 t) Sampling Time T s (= τ) T 0 1sec 2 cycles t Sequence Time Length T = N T s Sampling Frequency T s (= τ) f s = 1 T s (samples/sec) discrete-time sequence x [0 ] x [4] x [1] x [2] x [3 ] x [5] x [6 ] x [7 ] x [8] Signal's Frequency f 0 = 1 T 0 (cycles/sec) 1sec 8 samples 1B Sampling Basics 11

12 Angular Frequencies in Sampling For 1 second For 1 revolution ω 0 = 2π f 0 (rad / sec) 2 π (rad ) / T 0 (sec) continuous-time signals x(t) = A cos (ω 0 t) 4 π 2 cycles, 2 revolutions 0.5sec T 0 0.5sec 1 revolution t 1sec sampling sequence For 1 second For 1 revolution ω s = 2π f s (rad /sec) 2 π (rad ) / T s (sec) 0.125sec T s (= τ) 1 revolution 16π 8 cycles, 8 revolutions, 8 samples 0.125sec 1B Sampling Basics 12

13 Dimensionless Sequence x [n], x [0], x [1 ], x [2], x [3], x [4], x [5], x [6 ], x [7 ], x [8 ], x [0 ] x [1] x [2] x [3 ] x [4] x [5] x [6 ] x [7 ] x [8] x [0 ] x [2] x [4] x [6 ] x [8] x [1] x [3 ] x [5] x [7 ] 0.5sec 1sec 0.25 cycle / sample the same normalized frequency the same sequence 0.5sec 0.25 cycle / sample Infinite number of continuous time signals Sampling The same discrete-time sequence 1B Sampling Basics 13

14 Sampling of Sinusoid Functions x t = A cos t t n T s x [n ] = x n T s = A cos n T s = A cos T s n = A cos n ω = ω T s = ω 1/T s ω = ω f s = 2π f f s Normalized to f s x t 0.25 cycle / sample Normalized Radian Frequency 0.125sec T s 0.5sec 1sec t 1B Sampling Basics 14

15 Normalized Radian Frequency continuous-time signals x t Sampling t n T s discrete-time sequence x [n ] = x nt s Angular Frequency ω (rad / sec) Sampling T s Normalized Radian Frequency ω = ω T s (rad / sample) Angular Speed X Sampling Time Normalized Radian Frequency can be viewed as the angular displacement of a signal during the period of its sample time T s Negative Angles folding Co-terminal Angles periodic 1B Sampling Basics 15

16 Normalized Radian Frequency Example x(t) = A cos (ω 0 t) 0.5sec 1sec t ω 0 = 2 π f 0 f 0 = 1 T 0 T 0 T s (= τ) 0.125sec sampling sequence continuous-time signals For 1 sample For T s second ω s = 2 π f s f s = 1 T s ω = ω T s 2 π (rad ) / T s (sec) 0.125sec ω = ω 0 T s (rad /sample) π 2 (rad ) 0.25 cycle / sample ω = ω f s Signal's relative angle position after each of T s second 1B Sampling Basics 16

17 Normalized Frequency Normalized Radian Frequency 2 π (rad) (cycle) f 0 f s (cycle/ sec) (sample /sec) ω 0 f s (rad / sample) ω = ω f s = 2π f f s ω = ω T s = ω 1/T s Normalized Frequency f 0 f s (cycle / sec) (sample / sec) f 0 f s (cycle / sample) 1B Sampling Basics 17

18 Normalized Radian Frequency (4) Consider f f s 2, + f s 2 f f s 1 2, +1 2 ω π, +π Linear Frequency f ( Hz) f s f s 2 + f s + ω = +π (rad /sample) Normalized Radian Frequency ω (rad / sample) ω = π (rad /sample) π 0 +π 1B Sampling Basics 18

19 Negative Angular Speed Example ω s = 2 π f s (rad / sec) A cos (ω 1 t) = A cos (+ ω s 2 t ) A cos (+π n) ω 1 = +π (rad ) 2 π (rad ) / T s (sec) ω i = ω i T s (rad /sample) Negative Angles A cos (ω 2 t) = A cos ( ω s 2 t) A cos ( π n) A cos (ω 3 t) = A cos (+ ω s 4 t ) A cos (+ π 2 n) A cos (ω 4 t) = A cos ( 3ω s 4 t) A cos ( 3 π 2 n) ω 2 = π (rad ) ω 3 = + π 2 (rad ) ω 4 = 3π 4 (rad ) ω 1 = +π (rad ) ω 4 = 3π 4 (rad ) ω 3 = + π 2 (rad ) ω 2 = π (rad ) 1B Sampling Basics 19

20 Co-terminal Angular Speed Example ω s = 2 π f s (rad / sec) A cos (ω 1 t) = A cos (+ ω s 2 t ) A cos (+π n) ω 1 = +π (rad ) 2 π (rad ) / T s (sec) ω i = ω i T s (rad /sample) Co-terminal Angles A cos (ω 2 t) = A cos (+ 3ω s 2 t) A cos (+π n) A cos (ω 3 t) = A cos (+ ω s 4 t ) A cos (+ π 2 n) A cos (ω 4 t) = A cos (+ 5ω s 4 t) A cos (+ π 2 n) ω 2 = +π (rad ) ω 3 = + π 2 (rad ) ω 4 = + π 2 (rad ) +π (rad ) +3π (rad ) + 3ω s 2 = + ω s 2 + ω s + 5ω s 4 = + ω s 4 + ω s + π 2 (rad ) + 5π 2 (rad ) 1B Sampling Basics 20

21 Co-terminal Angles (1) For 1 sample For T s second 2 π (rad ) / T s (sec) ω = ω T s (rad / sample) ω = ω T s (rad / sample) = ω / f s (rad / sample) f 0 f 0 + f s f 0 +2 f s ω 0 = 2 π f 0 ω 1 = 2 π( f 0 + f s ) ω 2 = 2 π( f 0 +2 f s ) ω 0 (rad / sample) ω 0 +2π (rad / sample) ω 0 +4 π (rad / sample) cos(ω 0 t) cos(ω 1 t ) cos(ω 2 t) ω (rad / sec) 3 ω s 2ω s ω s +ω s +2ω s +3 ω s + cos( ω 0 n) = cos( ω 1 n) = cos( ω 2 n) ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π 1B Sampling Basics 21

22 Co-terminal Angles (2) For 1 sample For T s second 2 π (rad ) / T s (sec) ω = ω T s (rad / sample) ω = ω T s (rad / sample) = ω / f s (rad / sample) f 0 f 0 + f s f 0 +2 f s ω 0 = 2 π f 0 ω 1 = 2 π( f 0 + f s ) ω 2 = 2 π( f 0 +2 f s ) ω 0 (rad / sample) ω 0 +2π (rad / sample) ω 0 +4 π (rad / sample) Co-terminal Angles The same angular positions after each sample time. 1B Sampling Basics 22

23 Positive & Negative Angles (1) + Positive Normalized Rad Freq ω p ω n ω p ω n = 2 π ω p = 2 π + ω n + Negative Normalized Rad Freq ω n = ω p 2 π + f s 2 < f 1 < f s Normalized Radian Frequency Positive Angle +π < ω 1 < 2 π ω 1 2 π ω (rad / sample) ω 1 Negative Angle π < ω 1 2π < 0 π 0 +π +2 π ω 1 1B Sampling Basics 23

24 Positive & Negative Angles (2) Positive Normalized Rad Freq + ω n ω p ω p ω n = 2 π ω p = 2 π + ω n + Negative Normalized Rad Freq ω n = ω p 2 π + f s < f 2 < f s 2 Normalized Radian Frequency ω 2 Negative Angle 2π < ω 2 < π ω 2 ω 2 +2 π ω (rad / sample) Positive Angle 0 < 2π + ω 2 < π π 0 +π +2 π 1B Sampling Basics 24

25 Periodic and Folding Co-terminal Angles Periodic ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π ω (rad / sample) 5π 3 π π +π +3 π +5π +7 π Negative Angles Folding ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π 1B Sampling Basics 25

26 1B Sampling Basics 26

27 1B Sampling Basics 27

28 References [1] [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003 [3] A graphical interpretation of the DFT and FFT, by Steve Mann

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

Digital Signal Octave Codes (0B)

Digital Signal Octave Codes (0B) Digital Signal Aliasing and Folding Frequencies Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15 Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B) Young Won Lim 7/24/14 Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

BandPass (4A) Young Won Lim 1/11/14

BandPass (4A) Young Won Lim 1/11/14 BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version

Διαβάστε περισσότερα

CT Correlation (2B) Young Won Lim 8/15/14

CT Correlation (2B) Young Won Lim 8/15/14 CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any

Διαβάστε περισσότερα

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12 ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published

Διαβάστε περισσότερα

LTI Systems (1A) Young Won Lim 3/21/15

LTI Systems (1A) Young Won Lim 3/21/15 LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous

Διαβάστε περισσότερα

Εγχειρίδιο Ψαριού i. Εγχειρίδιο Ψαριού

Εγχειρίδιο Ψαριού i. Εγχειρίδιο Ψαριού i Ψαριού ii Copyright 2002, 2003 Sun Microsystems Copyright 2000 Telsa Gwynne Σας παρέχεται άδεια να αντιγράψετε, διανείμετε ή/και να τροποποιήσετε το υπάρχον κείμενο υπό τους όρους της άδειας GNU Free

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 1: Εισαγωγή Διάλεξη 1: Εισαγωγή Σήματα διακριτού χρόνου Γενικές πληροφορίες Διδάσκων: Γεώργιος Μήτσης Γραφείο: 41 Πράσινο Άλσος Ώρες γραφείου:

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα

Επεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09

Επεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09 Επεξερασία εικόνας Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #9 Επεξεργασία ήχου Βασικό ανάγνωσµα: Οι ενότητες 3. και 3.2 από το ϐιβλίο των Van Loan και Fan. Επεξεργασία ήχου Μ. ρακόπουλος

Διαβάστε περισσότερα

Μεταπτυχιακό Μάθημα: Ποιότητα Ισχύος. Μεταπτυχιακό Μάθημα Ποιότητα Ισχύος

Μεταπτυχιακό Μάθημα: Ποιότητα Ισχύος. Μεταπτυχιακό Μάθημα Ποιότητα Ισχύος Μεταπτυχιακό Μάθημα Ποιότητα Ισχύος Μετρήσεις και Εποπτεία Ποιότητας Ισχύος Ποιότητα Ισχύος Μετρητικές συσκευές Φορητές συσκευές Μονίμως εγκατεστημένα συστήματα Προδιαγραφές Μετρήσεις - Παραδείγματα Ποιότητα

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation

Διαβάστε περισσότερα

High Frequency Chip Inductor / CF TYPE

High Frequency Chip Inductor / CF TYPE High Frequency Chip Inductor / CF TYPE.Features: 1.Closed magnetic circuit avoids crosstalk. 2.S.M.T. type. 3.Excellent solderability and heat resistance. 4.High realiability. 5.The products contain no

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Power Inductor LVS Series

Power Inductor LVS Series RoHS Compliant Halogen Free REACH Compliant Part Numbering LVS 6645 L - 1R M - AU Series Name Dimensions Code Inductance Internal Code (mm) (uh) Tolerance 4412 4.x4.x1.2 L Low DCR R47.47 M ±% 4418 4.x4.x1.8

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Design Method of Ball Mill by Discrete Element Method

Design Method of Ball Mill by Discrete Element Method Design Method of Ball Mill by Discrete Element Method Sumitomo Chemical Co., Ltd. Process & Production Technology Center Makio KIMURA Masayuki NARUMI Tomonari KOBAYASHI The grinding rate of gibbsite in

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS ΟΜΗΡΟΥ ΙΛΙΑΔΑ ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS www.scooltime.gr [- 2 -] The Project Gutenberg EBook of Iliad, by Homer This ebook is for the use of anyone anywhere at no cost and with almost no restrictions

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

Σήματα και Συστήματα στο Πεδίο της Συχνότητας Σήματα και Συστήματα στο Πεδίο της Συχνότητας Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ 3 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Ανάλυση & Σύνθεση Συχνοτήτων Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4) FEATURE High Self Resonant Frequency Superior temperature stability Monolithic structure for high reliability Applications: RF circuit in telecommunication PART NUMBERING SYSTEM HIS 160808 - R12 (1) (2)

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

NMBTC.COM /

NMBTC.COM / Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC. RL15 RL16, RL17, RL18 MINIINDUCTORS CONFORMALLY COATED MARKING The nominal inductance is marked by a color code as listed in the table below. Color Black Brown Red Orange Yellow Green Blue Purple Grey

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Παρουσίαση 5 η : Εισαγωγή στα σήματα

Παρουσίαση 5 η : Εισαγωγή στα σήματα Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση 5 η : Εισαγωγή στα σήματα Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Chilisin Electronics Singapore Pte Ltd

Chilisin Electronics Singapore Pte Ltd hilisin Electronics ingapore Pte Ltd High urrent hip Beads, PBY eries Feature: Our MD High urrent hips Beads is specially designed to with tand large urrents while providing a means of EMI/RFI attenuation

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS DCS Input/Output Relay Card Series STANDARD RACK MODEL 38BXCS MODEL & SUFFIX CODE SELECTION 38BXCS MODEL CONNECTOR Y1 :Yokogawa KS2 cable use Y2 :Yokogawa KS9 cable use Y6 :Yokogawa FA-M3/F3XD32-3N use

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 2: Μετασχηματισμός Fourier Διακριτού Χρόνου (DTFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu Current Status of PF SAXS beamlines 07/23/2014 Nobutaka Shimizu BL-6A Detector SAXS:PILATUS3 1M WAXD:PILATUS 100K Wavelength 1.5Å (Fix) Camera Length 0.25, 0.5, 1.0, 2.0, 2.5 m +WAXD Chamber:0.75, 1.0,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

YJM-L Series Chip Varistor

YJM-L Series Chip Varistor Features 1. RoHS & Halogen Free (HF) compliant 2. EIA size: 0402 ~ 2220 3. Operating voltage: 5.5Vdc ~ 85Vdc 4. High surge suppress capability 5. Bidirectional and symmetrical V/I characteristics 6. Multilayer

Διαβάστε περισσότερα