Sampling Basics (1B) Young Won Lim 9/21/13
|
|
- Παναγιωτάκης Μητσοτάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Sampling Basics (1B)
2 Copyright (c) Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.
3 Measuring Rotation Rate Angular Speed (Frequency) RPM = 2 T = 2 f rpm = revolutions / minute 1 rpm = 2 rad / 1 min = 2 rad / 60 sec = 30 rad / sec 0 rad / 1 sec 0 rad / 1 sec 0 rad / sec 0 rad / sec Negative Angles 1B Sampling Basics 3
4 Complex Exponential I I R R t t e + j ω 0t = cos (ω 0 t) + j sin (ω 0 t) e j ω t = cos (ω 0 t) j sin (ω 0 t) e + jt = cos (t) + j sin (t) (ω 0 = 1) e jt = cos (t) j sin (t) (ω 0 = 1) 1B Sampling Basics 4
5 Cos(ω 0 t) Spectrum e + jt = cos (t) + j sin (t) (e + jt + e j t ) = 2cos (t) e jt = cos (t) j sin (t) I R t + A 2 e jω 0 t A 2 A 2 + A 2 e+ jω 0 t x(t) = A cos (ω 0 t) = A 2 e+ j ω 0t + A 2 e j ω 0t ω 0 +ω 0 spectrum 1B Sampling Basics 5
6 Sin(ω 0 t) Spectrum e + jt = cos (t) + j sin (t) (e + jt e j t ) = 2 j sin (t) I e j t = cos (t) + j sin (t ) R t ω 0 + A 2 +ω 0 + A 2 e+ jω 0 t x(t) = A sin (ω 0 t) = A 2 j e+ j ω 0 t A 2 j e j ω 0 t A 2 e jω 0 t A 2 spectrum 1B Sampling Basics 6
7 Angular Frequency and Sinusoid Time Domain Frequency Domain x(t) t ω 0 +ω 0 + T 0 ω 0 = 2π T 0 For 1 second For 1 second x(t) = A cos (ω 0 t) = A 2 e j ω 0t + A 2 e j ω 0t 0 rad / sec 0 rad / sec 1B Sampling Basics 7
8 Co-terminal Angles +ω 0 (rad / sec) 2 0 rad / sec 3 0 rad / sec 4 0 rad / sec +5 ω 0 (rad / sec) +2π/3 Negative Angles +4 π/3 +2 π +8 π/3 +10 π/3 Co-terminal Angles 0 rad / sec 2 0 rad / sec 3 0 rad / sec 4 0 rad / sec 5 ω 0 (rad / sec) 2π/3 4 π/3 2 π 8 π/3 10 π/3 π π 5ω 0 4 ω 0 3 ω 0 2ω 0 ω 0 +ω 0 +2ω 0 +3 ω 0 +4 ω 0 +5ω 0 + 1B Sampling Basics 8
9 Angular Speed and Frequency = 2 T = 2 f 1 T = f T (sec) 0.01 sec 0.1 sec 1 sec 10 sec 100 sec f (Hz) 100 Hz 10 Hz 1 Hz 0.1 Hz 0.01 Hz Frequency rad / sec 200 rad / sec 20 rad / sec 2 rad / sec 0.2 rad / sec 0.02 rad / sec Angular Speed / Radian Frequency (rad / sec) = 628 = 62.8 = 6.28 = = B Sampling Basics 9
10 Sampling Continuous Time Signal continuous-time signals x(t) = A cos (ω 0 t) Sampling Time T s (= τ) T 0 0.5sec 1sec t Sequence Time Length T = N T s 0.125sec Sampling Frequency T s (= τ) f s = 1 T s (samples / sec) For 1 second 1 T 0 (cycles / sec) For 1 second 1 T s (samples / sec) Signal's Frequency For 1 cycle For 1 sample f 0 = 1 T 0 (cycles / sec) 1 (cycles) / T 0 (sec) 1 (samples) / T s (sec) 1B Sampling Basics 10
11 Discrete Time Sequence continuous-time signals x(t) = A cos (ω 0 t) Sampling Time T s (= τ) T 0 1sec 2 cycles t Sequence Time Length T = N T s Sampling Frequency T s (= τ) f s = 1 T s (samples/sec) discrete-time sequence x [0 ] x [4] x [1] x [2] x [3 ] x [5] x [6 ] x [7 ] x [8] Signal's Frequency f 0 = 1 T 0 (cycles/sec) 1sec 8 samples 1B Sampling Basics 11
12 Angular Frequencies in Sampling For 1 second For 1 revolution ω 0 = 2π f 0 (rad / sec) 2 π (rad ) / T 0 (sec) continuous-time signals x(t) = A cos (ω 0 t) 4 π 2 cycles, 2 revolutions 0.5sec T 0 0.5sec 1 revolution t 1sec sampling sequence For 1 second For 1 revolution ω s = 2π f s (rad /sec) 2 π (rad ) / T s (sec) 0.125sec T s (= τ) 1 revolution 16π 8 cycles, 8 revolutions, 8 samples 0.125sec 1B Sampling Basics 12
13 Dimensionless Sequence x [n], x [0], x [1 ], x [2], x [3], x [4], x [5], x [6 ], x [7 ], x [8 ], x [0 ] x [1] x [2] x [3 ] x [4] x [5] x [6 ] x [7 ] x [8] x [0 ] x [2] x [4] x [6 ] x [8] x [1] x [3 ] x [5] x [7 ] 0.5sec 1sec 0.25 cycle / sample the same normalized frequency the same sequence 0.5sec 0.25 cycle / sample Infinite number of continuous time signals Sampling The same discrete-time sequence 1B Sampling Basics 13
14 Sampling of Sinusoid Functions x t = A cos t t n T s x [n ] = x n T s = A cos n T s = A cos T s n = A cos n ω = ω T s = ω 1/T s ω = ω f s = 2π f f s Normalized to f s x t 0.25 cycle / sample Normalized Radian Frequency 0.125sec T s 0.5sec 1sec t 1B Sampling Basics 14
15 Normalized Radian Frequency continuous-time signals x t Sampling t n T s discrete-time sequence x [n ] = x nt s Angular Frequency ω (rad / sec) Sampling T s Normalized Radian Frequency ω = ω T s (rad / sample) Angular Speed X Sampling Time Normalized Radian Frequency can be viewed as the angular displacement of a signal during the period of its sample time T s Negative Angles folding Co-terminal Angles periodic 1B Sampling Basics 15
16 Normalized Radian Frequency Example x(t) = A cos (ω 0 t) 0.5sec 1sec t ω 0 = 2 π f 0 f 0 = 1 T 0 T 0 T s (= τ) 0.125sec sampling sequence continuous-time signals For 1 sample For T s second ω s = 2 π f s f s = 1 T s ω = ω T s 2 π (rad ) / T s (sec) 0.125sec ω = ω 0 T s (rad /sample) π 2 (rad ) 0.25 cycle / sample ω = ω f s Signal's relative angle position after each of T s second 1B Sampling Basics 16
17 Normalized Frequency Normalized Radian Frequency 2 π (rad) (cycle) f 0 f s (cycle/ sec) (sample /sec) ω 0 f s (rad / sample) ω = ω f s = 2π f f s ω = ω T s = ω 1/T s Normalized Frequency f 0 f s (cycle / sec) (sample / sec) f 0 f s (cycle / sample) 1B Sampling Basics 17
18 Normalized Radian Frequency (4) Consider f f s 2, + f s 2 f f s 1 2, +1 2 ω π, +π Linear Frequency f ( Hz) f s f s 2 + f s + ω = +π (rad /sample) Normalized Radian Frequency ω (rad / sample) ω = π (rad /sample) π 0 +π 1B Sampling Basics 18
19 Negative Angular Speed Example ω s = 2 π f s (rad / sec) A cos (ω 1 t) = A cos (+ ω s 2 t ) A cos (+π n) ω 1 = +π (rad ) 2 π (rad ) / T s (sec) ω i = ω i T s (rad /sample) Negative Angles A cos (ω 2 t) = A cos ( ω s 2 t) A cos ( π n) A cos (ω 3 t) = A cos (+ ω s 4 t ) A cos (+ π 2 n) A cos (ω 4 t) = A cos ( 3ω s 4 t) A cos ( 3 π 2 n) ω 2 = π (rad ) ω 3 = + π 2 (rad ) ω 4 = 3π 4 (rad ) ω 1 = +π (rad ) ω 4 = 3π 4 (rad ) ω 3 = + π 2 (rad ) ω 2 = π (rad ) 1B Sampling Basics 19
20 Co-terminal Angular Speed Example ω s = 2 π f s (rad / sec) A cos (ω 1 t) = A cos (+ ω s 2 t ) A cos (+π n) ω 1 = +π (rad ) 2 π (rad ) / T s (sec) ω i = ω i T s (rad /sample) Co-terminal Angles A cos (ω 2 t) = A cos (+ 3ω s 2 t) A cos (+π n) A cos (ω 3 t) = A cos (+ ω s 4 t ) A cos (+ π 2 n) A cos (ω 4 t) = A cos (+ 5ω s 4 t) A cos (+ π 2 n) ω 2 = +π (rad ) ω 3 = + π 2 (rad ) ω 4 = + π 2 (rad ) +π (rad ) +3π (rad ) + 3ω s 2 = + ω s 2 + ω s + 5ω s 4 = + ω s 4 + ω s + π 2 (rad ) + 5π 2 (rad ) 1B Sampling Basics 20
21 Co-terminal Angles (1) For 1 sample For T s second 2 π (rad ) / T s (sec) ω = ω T s (rad / sample) ω = ω T s (rad / sample) = ω / f s (rad / sample) f 0 f 0 + f s f 0 +2 f s ω 0 = 2 π f 0 ω 1 = 2 π( f 0 + f s ) ω 2 = 2 π( f 0 +2 f s ) ω 0 (rad / sample) ω 0 +2π (rad / sample) ω 0 +4 π (rad / sample) cos(ω 0 t) cos(ω 1 t ) cos(ω 2 t) ω (rad / sec) 3 ω s 2ω s ω s +ω s +2ω s +3 ω s + cos( ω 0 n) = cos( ω 1 n) = cos( ω 2 n) ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π 1B Sampling Basics 21
22 Co-terminal Angles (2) For 1 sample For T s second 2 π (rad ) / T s (sec) ω = ω T s (rad / sample) ω = ω T s (rad / sample) = ω / f s (rad / sample) f 0 f 0 + f s f 0 +2 f s ω 0 = 2 π f 0 ω 1 = 2 π( f 0 + f s ) ω 2 = 2 π( f 0 +2 f s ) ω 0 (rad / sample) ω 0 +2π (rad / sample) ω 0 +4 π (rad / sample) Co-terminal Angles The same angular positions after each sample time. 1B Sampling Basics 22
23 Positive & Negative Angles (1) + Positive Normalized Rad Freq ω p ω n ω p ω n = 2 π ω p = 2 π + ω n + Negative Normalized Rad Freq ω n = ω p 2 π + f s 2 < f 1 < f s Normalized Radian Frequency Positive Angle +π < ω 1 < 2 π ω 1 2 π ω (rad / sample) ω 1 Negative Angle π < ω 1 2π < 0 π 0 +π +2 π ω 1 1B Sampling Basics 23
24 Positive & Negative Angles (2) Positive Normalized Rad Freq + ω n ω p ω p ω n = 2 π ω p = 2 π + ω n + Negative Normalized Rad Freq ω n = ω p 2 π + f s < f 2 < f s 2 Normalized Radian Frequency ω 2 Negative Angle 2π < ω 2 < π ω 2 ω 2 +2 π ω (rad / sample) Positive Angle 0 < 2π + ω 2 < π π 0 +π +2 π 1B Sampling Basics 24
25 Periodic and Folding Co-terminal Angles Periodic ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π ω (rad / sample) 5π 3 π π +π +3 π +5π +7 π Negative Angles Folding ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π 1B Sampling Basics 25
26 1B Sampling Basics 26
27 1B Sampling Basics 27
28 References [1] [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003 [3] A graphical interpretation of the DFT and FFT, by Steve Mann
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
Διαβάστε περισσότεραDigital Signal Octave Codes (0B)
Digital Signal Aliasing and Folding Frequencies Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
Διαβάστε περισσότεραCORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Διαβάστε περισσότεραTrigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Διαβάστε περισσότεραCORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Διαβάστε περισσότεραTrigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Διαβάστε περισσότεραBandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
Διαβάστε περισσότεραCT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
Διαβάστε περισσότεραAnti-aliasing Prefilter (6B) Young Won Lim 6/8/12
ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published
Διαβάστε περισσότεραLTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
Διαβάστε περισσότεραMain source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
Διαβάστε περισσότεραAssignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Διαβάστε περισσότεραis like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Διαβάστε περισσότερα10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Διαβάστε περισσότεραΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous
Διαβάστε περισσότεραΕγχειρίδιο Ψαριού i. Εγχειρίδιο Ψαριού
i Ψαριού ii Copyright 2002, 2003 Sun Microsystems Copyright 2000 Telsa Gwynne Σας παρέχεται άδεια να αντιγράψετε, διανείμετε ή/και να τροποποιήσετε το υπάρχον κείμενο υπό τους όρους της άδειας GNU Free
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραChapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότερα6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Διαβάστε περισσότεραLinear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials
Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραΣήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραIntroduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
Διαβάστε περισσότεραLecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 1: Εισαγωγή Διάλεξη 1: Εισαγωγή Σήματα διακριτού χρόνου Γενικές πληροφορίες Διδάσκων: Γεώργιος Μήτσης Γραφείο: 41 Πράσινο Άλσος Ώρες γραφείου:
Διαβάστε περισσότεραECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Διαβάστε περισσότεραMathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότεραUniversity of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal
Διαβάστε περισσότεραΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Διαβάστε περισσότεραDiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Διαβάστε περισσότεραNotations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Διαβάστε περισσότεραΕπεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09
Επεξερασία εικόνας Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #9 Επεξεργασία ήχου Βασικό ανάγνωσµα: Οι ενότητες 3. και 3.2 από το ϐιβλίο των Van Loan και Fan. Επεξεργασία ήχου Μ. ρακόπουλος
Διαβάστε περισσότεραΜεταπτυχιακό Μάθημα: Ποιότητα Ισχύος. Μεταπτυχιακό Μάθημα Ποιότητα Ισχύος
Μεταπτυχιακό Μάθημα Ποιότητα Ισχύος Μετρήσεις και Εποπτεία Ποιότητας Ισχύος Ποιότητα Ισχύος Μετρητικές συσκευές Φορητές συσκευές Μονίμως εγκατεστημένα συστήματα Προδιαγραφές Μετρήσεις - Παραδείγματα Ποιότητα
Διαβάστε περισσότεραD Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραX-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION
X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation
Διαβάστε περισσότεραHigh Frequency Chip Inductor / CF TYPE
High Frequency Chip Inductor / CF TYPE.Features: 1.Closed magnetic circuit avoids crosstalk. 2.S.M.T. type. 3.Excellent solderability and heat resistance. 4.High realiability. 5.The products contain no
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραPower Inductor LVS Series
RoHS Compliant Halogen Free REACH Compliant Part Numbering LVS 6645 L - 1R M - AU Series Name Dimensions Code Inductance Internal Code (mm) (uh) Tolerance 4412 4.x4.x1.2 L Low DCR R47.47 M ±% 4418 4.x4.x1.8
Διαβάστε περισσότεραSection 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραDesign Method of Ball Mill by Discrete Element Method
Design Method of Ball Mill by Discrete Element Method Sumitomo Chemical Co., Ltd. Process & Production Technology Center Makio KIMURA Masayuki NARUMI Tomonari KOBAYASHI The grinding rate of gibbsite in
Διαβάστε περισσότεραLifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραPg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Διαβάστε περισσότεραΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS
ΟΜΗΡΟΥ ΙΛΙΑΔΑ ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS www.scooltime.gr [- 2 -] The Project Gutenberg EBook of Iliad, by Homer This ebook is for the use of anyone anywhere at no cost and with almost no restrictions
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Διαβάστε περισσότεραReview Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Διαβάστε περισσότεραOutline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραWritten Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Διαβάστε περισσότεραΣήματα και Συστήματα στο Πεδίο της Συχνότητας
Σήματα και Συστήματα στο Πεδίο της Συχνότητας Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ 3 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Ανάλυση & Σύνθεση Συχνοτήτων Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ
Διαβάστε περισσότεραHIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)
FEATURE High Self Resonant Frequency Superior temperature stability Monolithic structure for high reliability Applications: RF circuit in telecommunication PART NUMBERING SYSTEM HIS 160808 - R12 (1) (2)
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραFundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
Διαβάστε περισσότεραΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραΚάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author
Διαβάστε περισσότερα6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραNMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
Διαβάστε περισσότεραDERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραNavigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότερα± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.
RL15 RL16, RL17, RL18 MINIINDUCTORS CONFORMALLY COATED MARKING The nominal inductance is marked by a color code as listed in the table below. Color Black Brown Red Orange Yellow Green Blue Purple Grey
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραMock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Διαβάστε περισσότεραΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ
Διαβάστε περισσότεραSurface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότεραΠαρουσίαση 5 η : Εισαγωγή στα σήματα
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση 5 η : Εισαγωγή στα σήματα Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραChilisin Electronics Singapore Pte Ltd
hilisin Electronics ingapore Pte Ltd High urrent hip Beads, PBY eries Feature: Our MD High urrent hips Beads is specially designed to with tand large urrents while providing a means of EMI/RFI attenuation
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραPartial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Διαβάστε περισσότερα1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT
Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραThin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
Διαβάστε περισσότεραFrom the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Διαβάστε περισσότερα38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS
DCS Input/Output Relay Card Series STANDARD RACK MODEL 38BXCS MODEL & SUFFIX CODE SELECTION 38BXCS MODEL CONNECTOR Y1 :Yokogawa KS2 cable use Y2 :Yokogawa KS9 cable use Y6 :Yokogawa FA-M3/F3XD32-3N use
Διαβάστε περισσότεραΣήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 2: Μετασχηματισμός Fourier Διακριτού Χρόνου (DTFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος
Διαβάστε περισσότεραExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Διαβάστε περισσότεραCurrent Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu
Current Status of PF SAXS beamlines 07/23/2014 Nobutaka Shimizu BL-6A Detector SAXS:PILATUS3 1M WAXD:PILATUS 100K Wavelength 1.5Å (Fix) Camera Length 0.25, 0.5, 1.0, 2.0, 2.5 m +WAXD Chamber:0.75, 1.0,
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραYJM-L Series Chip Varistor
Features 1. RoHS & Halogen Free (HF) compliant 2. EIA size: 0402 ~ 2220 3. Operating voltage: 5.5Vdc ~ 85Vdc 4. High surge suppress capability 5. Bidirectional and symmetrical V/I characteristics 6. Multilayer
Διαβάστε περισσότερα