EM 361: Παράλληλοι Υπολογισμοί
|
|
- Ἀκελδαμά Σπανού
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ EM 361: Παράλληλοι Υπολογισμοί Ενότητα #4: Παράλληλοι Αλγόριθμοι Διδάσκων: Χαρμανδάρης Ευάγγελος ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Όχι Παράγωγο Έργο 3.0 Ελλάδα (Attribution Non Commercial Non-derivatives 3.0 Greece) CC BY-NC-ND 3.0 GR [ή επιλογή ενός άλλου από τους έξι συνδυασμούς] [και αντικατάσταση λογότυπου άδειας όπου αυτό έχει μπει (σελ. 1, σελ. 2 και τελευταία)] Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 EM 361: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Χειμερινό Εξάμηνο 2009/10 Κεφάλαιο 4: Παράλληλοι Αλγόριθμοι Ταξινόμηση Παράλληλων Αλγόριθμων. Παράδειγμα: Υπολογισμός του Αριθμού π. Το Κόσκινο του Ερατοσθένη. Σχεδιασμός Παράλληλων Αλγορίθμων. Τύποι Επικοινωνίας Μεταξύ των Επεξεργαστών.
5 Παράλληλοι Αλγόριθμοι Οι παράλληλοι αλγόριθμοι μπορούν να ταξινομηθούν ανάλογα με το πως και που γίνεται ο παραλληλισμός. Κατηγορίες παράλληλων αλγορίθμων: Παραλληλισμός σε επίπεδο bits (Bit-level parallel approach). Παραλληλισμός σε επίπεδο εντολών (Control-parallel approach). Παραλληλισμός σε επίπεδο δεδομένων (Data-parallel approach). ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 5
6 Παραλληλισμός σε Επίπεδο Bits Bit-level parallelism: Παραλληλισμός αυξάνοντας το μέγεθος της πληροφορίας (word size), σε bits, που μπορεί να επεξεργαστεί ένας επεξεργαστής ανά κύκλο λειτουργίας. Αυξάνοντας το word size ελαττώνεται ο αριθμός των πράξεων που πρέπει να εκτελέσει ένας επεξεργαστής για μεταβλητές με μήκος μεγαλύτερο του word size. Παράδειγμα: πρόσθεση 2 16-bit ακεραίων σε 8-bit επεξεργαστή απαιτεί 2 πράξεις ενώ σε 16-bit επεξεργαστή 1. Ιστορικά: Για αρκετά χρόνια ήταν ο συνήθης τρόπος αύξησης της υπολογιστικής ισχύος: από 4-bit σε 8-bit, 16-bit και 32-bit επεξεργαστές. Οι τελευταίοι ήταν οι πιο συνηθισμένοι για περίπου 2 δεκαετίες. Πιο πρόσφατα (~2003) με την x86-64 αρχιτεκτονική 64-bit επεξεργαστές επικρατούν. Μέλλον: 128-bit επεξεργαστές; ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 6
7 Παραλληλισμός σε Επίπεδο Εντολών Control-level parallelism ή Παραλληλισμός Ελέγχου: Εφαρμογή διαφορετικών πράξεων σε διαφορετικά δεδομένα ταυτόχρονα. Γνωστός και ως σωλήνωση (pipelining). Κατάλληλος για MIMD συστήματα. Θεωρούμε ένα πρόβλημα ως σύνολο από διαφορετικές διεργασίες όπου η καθεμία μπορεί να ανατεθεί σε διαφορετικό επεξεργαστή. Παραδείγματα: Προσομοίωση ενός οικοσυστήματος: διαφορετικά είδη ζώων, φυτών, καιρός, κλπ. Κάθε υποσύστημα ανατίθεται σε διαφορετικό επεξεργαστή. Μοντελοποίηση αυτοκινήτου: τα διαφορετικά μέρη (μηχανή, σύστημα ψύξης, σύστημα θέρμανσης, κλπ.) κατανέμονται σε διαφορετικούς επεξεργαστές. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 7
8 Παραλληλισμός σε Επίπεδο Δεδομένων Data-level parallelism: Εφαρμογή ίδιων πράξεων σε διαφορετικά δεδομένα ταυτόχρονα. Η ίδια διαδικασία εκτελείται σε πολλά δεδομένα ταυτόχρονα. Αναφέρεται και ως Κατάτμηση Χωρίου (Domain Decomposition). Κατάλληλος για SIMD και MIMD συστήματα. Διαφορετικές περιοχές του χώρου ανατίθενται σε διαφορετικούς επεξεργαστές. Παραδείγματα: Κατανομή ενός πίνακα σε διαφορετικούς επεξεργαστές. Μοριακή Προσομοίωση: διαφορετικά μέρη του χωρίου κατανέμονται σε διαφορετικούς επεξεργαστές. Αναζήτηση στοιχείων σε μια βάση δεδομένων. πολλά άλλα. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 8
9 Παραλληλισμός σε Επίπεδο Δεδομένων Domain Decomposition : Ο πιο διαδεδομένος τρόπος παραλληλισμού πολύπλοκων επιστημονικών προβλημάτων. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 9
10 Παράδειγμα: Υπολογισμός του Αριθμού π Υπολογισμός του αριθμού π με την ακόλουθη μέθοδο: Περικλείουμε κύκλο με ένα τετράγωνο. Δημιουργούμε m τυχαία σημεία μέσα στο τετράγωνο. Βρίσκουμε τα σημεία που εμπεριέχονται και μέσα στον κύκλο, n. Αν r = n/m, τότε ο αριθμός π προσεγγίζεται ως π 4r. Όσο περισσότερα τα σημεία m τόσο μεγαλύτερη ακρίβεια του υπολογισμού. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 10
11 Σειριακός αλγόριθμος: Υπολογισμός του Αριθμού π npoints = circle_count = 0 do j = 1, npoints generate 2 random numbers between 0 and 1 xcoordinate = random1 ycoordinate = random2 if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 end do PI = 4.0*circle_count/npoints Ο χρόνος υπολογισμού είναι κυρίως ο χρόνος εκτέλεσης της επαναληπτικής διαδικασίας (loop). Αυτό οδηγεί σε (σχεδόν) τέλειο παραλληλισμό (embarrassingly parallelism): Εντατικοί υπολογισμοί. Ελάχιστη επικοινωνία, ελάχιστο Ι/Ο. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 11
12 Υπολογισμός του π: Παραλληλισμός Δεδομένων Ο παραλληλισμός αυτού του αλγόριθμου μπορεί να γίνει σε επίπεδο δεδομένων: αναθέτουμε σε κάθε επεξεργαστή μέρος της επαναληπτικής διαδικασίας. Κάθε επεξεργαστής εκτελεί το δικό του μέρος (task) του loop. Δεν χρειάζεται επικοινωνία μεταξύ των επεξεργαστών κατά τη διάρκεια εκτέλεσης της επαναληπτικής διαδικασίας. Χρησιμοποιούμε το μοντέλο «αφέντη/εργάτη» (master/slave). ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 12
13 Υπολογισμός του π: Παραλληλισμός Δεδομένων Παράλληλος αλγόριθμος (με κόκκινο οι αλλαγές): npoints = circle_count = 0 p = number of tasks num = npoints/p do j = 1, num generate 2 random numbers between 0 and 1 xcoordinate = random1 ycoordinate = random2 if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 end do find out if I am MASTER or WORKER if I am MASTER receive from WORKERS their circle_counts compute PI (use MASTER and WORKER calculations) else if I am WORKER send to MASTER circle_count end if ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 13
14 Παράδειγμα: Το Κόσκινο του Ερατοσθένη Αλγόριθμος εύρεσης πρώτων αριθμών (Sieve of Eratosthenes) Έστω ότι ζητάμε όλους τους πρώτους αριθμούς έως n. Ο αλγόριθμος προχωράει ως εξής: Ξεκινάμε με τον αριθμό 2. Αποκλείουμε-διαγράφουμε όλα τα πολλαπλάσιά του ως n. Ο επόμενος πρώτος μη-διαγραμμένος αριθμός είναι πρώτος. Συνεχίζουμε με τον επόμενο πρώτο μη-διαγραμμένο αριθμό (το 3) και αποκλείουμε όλα τα πολ/σια του. Επαναλαμβάνουμε την διαδικασία ως να φτάσουμε τον αριθμό n. Με τη διαδικασία αυτή βρίσκουμε όλα και λιγότερους αριθμούς προς διαγραφή. Όσοι απομένουν είναι οι πρώτοι αριθμοί. Δεν χρειάζεται να ελέγξουμε ως τον αριθμό n αλλά τον n 1/2. Γιατί; Σειριακή εκτέλεση Βασικά επαναλαμβανόμενα βήματα: (α) Βρίσκουμε τον επόμενο πρώτο. (β) Διαγράφουμε από την λίστα όλα τα πολλαπλάσιά του. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 14
15 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Ελέγχου Sieve of Eratosthenes A control parallel approach Κάθε επεξεργαστής δουλεύει (εκτελεί τα βήματα (α), (β)) σε διαφορετικό πρώτο αριθμό. Προβλήματα: 1. Σε ασύγχρονη επικοινωνία δύο επεξεργαστές μπορεί να δουλεύουν στον ίδιο πρώτο. 2. Μπορεί να εκτελούνται πράξεις που δεν χρειάζονται, π.χ. ο P1 βρίσκει αλλά δεν προλαβαίνει να διαγράψει τα πολ/σια του 2 ενώ ο P2 αφού τελειώνει με τον 3 βρίσκει ως επόμενο μη-διαγραμμένο αριθμό το 4! Χρόνος Υπολογισμού: Έστω ότι ο χρόνος υπολογισμού είναι μόνο ο χρόνος υπολογισμού πολ/σιων και διαγραφής-μαρκαρίσματος κάθε κελιού. Έστω n ακέραιοι αριθμοί με κ πρώτους (π 1, π 2, π κ ). Ο αριθμός των πράξεων (υπολογισμού πολ/σίων) είναι: n+ 1 π 1 n+ 1 π 2 n + 1 π k Nπ = = N1+ N N π π π 1 2 k π k ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 15
16 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Ελέγχου Χρόνος Υπολογισμού Έστω t 0 ο χρόνος μαρκαρίσματος κάθε κελιού. Τότε ο σειριακός χρόνος εκτέλεσης είναι: TS = Nt π 0 Μέγιστη παράλληλη επιτάχυνση: Όταν στέλνουμε όλους τους πρώτους σε διαφορετικούς επεξεργαστές. Τότε ο χρόνος υπολογισμού αντιστοιχεί στους (περισσότερους) υπολογισμούς του αριθμού 2. max n 3 TP lim TP = t P 2 0 Παράδειγμα: Έστω n=1000. Τότε Ν π =1411 και 1411 S max = ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 16
17 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Δεδομένων Sieve of Eratosthenes A data parallel approach Όλοι οι επεξεργαστές δουλεύουν (εκτελούν τα βήματα (α), (β)) στον ίδιο πρώτο αριθμό. Έστω n ακέραιοι και σύστημα με P επεξεργαστές. Αναθέτουμε σε κάθε επεξεργαστή n/p ακέραιους. Θεωρούμε επίσης ότι Ρ<<n 1/2. Για σύστημα με κοινή μνήμη δεν υπάρχει κόστος επικοινωνίας. Για σύστημα με κατανεμημένη μνήμη υπάρχει κόστος επικοινωνίας. Αλγόριθμος: Όλοι οι πρώτοι αριθμοί είναι στον Ρ1. Ο Ρ1 βρίσκει τον επόμενο πρώτο, π κ, και στέλνει την τιμή του στους άλλους επεξεργαστές. Κατόπιν όλοι οι επεξεργαστές βρίσκουν πολλαπλάσια του π κ στο δικό τους υποσύνολο των n αριθμών. Η διαδικασία συνεχίζεται ως ότου ο Ρ1 βρει πρώτο αριθμό > n 1/2. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 17
18 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Δεδομένων Χρόνος Εκτέλεσης: Ο χρόνος εκτέλεσης του αλγόριθμου είναι ο χρόνος υπολογισμού (διαγραφής-μαρκαρίσματος κάθε κελιού) και ο χρόνος επικοινωνίας. Χρόνος Υπολογισμού: Ο χρόνος υπολογισμού, θεωρώντας t 0 το χρόνο μαρκαρίσματος ενός κελιού, είναι: T comp n/ P n/ P n/ P = π π π 1 2 k t 0 Επικοινωνία: ο Ρ1 στέλνει κάθε πρώτο αριθμό σε (Ρ-1) άλλους επεξεργαστές. Αν λ είναι ο χρόνος που χρειάζεται να στείλουμε έναν αριθμό, τότε ο συνολικός χρόνος επικοινωνίας για κ πρώτους αριθμούς είναι: T = kp ( 1) λ comm Προσοχή: ο χρόνος υπολογισμού μειώνεται όσο αυξάνει ο αριθμός των επεξεργαστών ενώ ο χρόνος επικοινωνίας αυξάνει. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 18
19 Σχεδιασμός Παράλληλων Αλγορίθμων Στόχος: ο σχεδιασμός και ο προγραμματισμός του βέλτιστου δυνατού παράλληλου αλγόριθμου. Πρώτο βήμα είναι πάντα η κατανόηση του προβλήματος και του σειριακού κώδικα, αν υπάρχει. Επιθυμητά χαρακτηριστικά: Η ελάχιστη δυνατή επικοινωνία, Επεκτασιμότητα, Τοπικότητα, Επιμεριστικότητα. Γενικές προσεγγίσεις: -- Επιμερισμός εντολών-διεργασιών Παραλληλισμός Ελέγχου -- Επιμερισμός χωρίου Παραλληλισμός Δεδομένων Πρέπει να λάβουμε υπ όψιν: -- Αριθμό διεργασιών αριθμό επεξεργαστών. -- Διεργασίες συγκρίσιμου μεγέθους. -- Πως αλλάζει το μέγεθος και ο αριθμός των διεργασιών με το μέγεθος του προβλήματος. Βασική Ερώτηση: Είναι ο παράλληλος αλγόριθμος μοναδικός; Αν όχι ποιες είναι οι εναλλακτικές λύσεις. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 19
20 Σχεδιασμός Παράλληλων Αλγορίθμων Επικοινωνία μεταξύ των επεξεργαστών: Εκτίμηση του κόστους επικοινωνίας: της αλληλεξάρτησης μεταξύ των διεργασιών. Σχεδιασμός της επικοινωνίας μεταξύ των διεργασιών: Πότε, Πως, Που και Τι θα σταλείληφθεί. Διαγράμματα επικοινωνίας-μεταφοράς δεδομένων. Όγκος των μεταφερόμενων πληροφοριών μεταξύ των επεξεργαστών. Καθορισμός του τρόπου επικοινωνίας: blocking vs. non-blocking. Τύποι επικοινωνίας: -- Τοπικά/Καθολικά. -- Δομημένα/Μη Δομημένα. -- Στατικά/Δυναμικά. -- Συγχρονισμένα/Ασύγχρονα. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 20
21 Τύποι-Σχήματα Επικοινωνίας Τοπική: η επικοινωνία επικεντρώνεται μεταξύ μικρού αριθμού διεργασιών. Καθολική: κάθε διεργασία επικοινωνεί με μεγάλο αριθμό διεργασιών. Δομημένη: η επικοινωνία ακολουθεί κάποια συγκεκριμένη δομή-τοπολογία, π.χ. δομή δέντρου, αστεριού, κλπ. Μη Δομημένη: η επικοινωνία δεν ακολουθεί κάποια συγκεκριμένη δομή-τοπολογία. Στατική: η επικοινωνία είναι σταθερή κατά τη διάρκεια εκτέλεσης του προγράμματος. Δυναμική: η επικοινωνία αλλάζει κατά τη διάρκεια εκτέλεσης του προγράμματος. Συγχρονισμένη: η αποστολή και λήψη των πληροφοριών-δεδομένων γίνεται ταυτόχρονα. Ασύγχρονη: η αποστολή και λήψη των πληροφοριών-δεδομένων είναι ανεξάρτητες μεταξύ τους. ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 21
22 Σχεδίαση Επικοινωνίας Βασικές ερωτήσεις που τίθενται στη σχεδίαση της επικοινωνίας: Εκτελούν όλες οι διεργασίες ίδιας τάξης αριθμό εντολών επικοινωνίας; Υπάρχει διεργασία που επικοινωνεί με πολλές από (ή όλες) τις άλλες διεργασίες; Υπάρχει κίνδυνος συμφόρησης επικοινωνίας (bottleneck); Ποιος είναι ο βαθμός τοπικότητας του σχήματος επικοινωνίας; Είναι δυνατόν οι υπολογισμοί να γίνονται ταυτόχρονα με την επικοινωνία; Μπορούν πολλές διεργασίες να εκτελούνται ταυτόχρονα; ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 22
23 Βιβλιογραφία Parallel Programming, B. Wilkinson, M. Allen, Prentice Hall, 2nd Ed Designing and Building Parallel Programs, Ian Foster, Addison-Wesley Parallel Computing: Theory and Practice, M. J. Quinn, McGraw-Hill, Parallel Scientific Computing in C++ and MPI, G. Karniadakis and R.M. Kirby II, Cambridge, ΕΜ 361: Παράλληλοι Υπολογισμοί 2010/11, Κεφάλαιο 4 23
24 Τέλος Ενότητας
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 4: Παράλληλοι Αλγόριθμοι Ταξινόμηση
EM 361: Παράλληλοι Υπολογισμοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ EM 361: Παράλληλοι Υπολογισμοί Ενότητα #2: Αρχιτεκτονική Διδάσκων: Χαρμανδάρης Ευάγγελος ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 2: Ολοκλήρωση Monte Carlo, γεννήτριες τυχαίων αριθμών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 2: Ολοκλήρωση Monte Carlo, γεννήτριες τυχαίων αριθμών Βαγγέλης Χαρμανδάρης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΜ 361: ΠΑΡΑΛΛΗΛΛΟΙ ΥΠΟΛΟΓΙΣΜΟΙ (PARALLEL COMPUTING) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ: 2η Όνομα Καθηγητή: Χαρμανδάρης Ευάγγελος Τμήμα Εφαρμοσμένων Μαθηματικών ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #3: Εισαγωγή στη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 3: Θεωρία Παράλληλου Προγραμματισμού
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ Ενότητα 7: Η μάθηση στην προσχολική ηλικία: μορφές αποτελεσματική διδασκαλία Διδάσκων: Μανωλίτσης Γεώργιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ
ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #10: ΜΕΤΑΒΑΣΗ ΚΑΙ ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ Διδάσκων: Γουργιώτου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΜ 361: ΠΑΡΑΛΛΗΛΛΟΙ ΥΠΟΛΟΓΙΣΜΟΙ (PARALLEL COMPUTING) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ: 1η Όνομα Καθηγητή: Χαρμανδάρης Ευάγγελος Τμήμα Εφαρμοσμένων Μαθηματικών ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #9: Βασικές αρχές μικροϊστορίας κατά Μ. Χατζηϊωάννου Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων
Εισαγωγή στους Αλγορίθμους Ενότητα η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Β: t test για Ανεξάρτητα Δείγματα Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Γ: κατά Ζεύγη t test Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Εισαγωγή στις Βάσεις Δεδομζνων II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Εισαγωγή στη LibreOffice Base Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 2: Εργαλεία Θετικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 5Α: ΠΑΡΑΜΕΤΡΙΚΟ Χ 2 Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί
Πληροφορική II. Ενότητα 5 : Δομές Δεδομένων και αφηρημένοι. τύποι δεδομένων. Δρ. Γκόγκος Χρήστος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 5 : Δομές Δεδομένων και αφηρημένοι τύποι δεδομένων Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Τμήμα Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΜ 361: ΠΑΡΑΛΛΗΛΛΟΙ ΥΠΟΛΟΓΙΣΜΟΙ (PARALLEL COMPUTING) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ: 3η Όνομα Καθηγητή: Χαρμανδάρης Ευάγγελος Τμήμα Εφαρμοσμένων Μαθηματικών ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #2: Μνημονικές Δομές και Λειτουργίες Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #3: ΕΤΟΙΜΕΣ ΚΟΙΝΟΤΗΤΕΣ Διδάσκων: Γουργιώτου Ευθυμία ΠΑΙΔΑΓΩΓΙΚΟ
Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #8: ΑΞΙΟΛΟΓΗΣΗ ΣΧΕΔΙΟΥ ΜΕΤΑΒΑΣΗΣ ΚΑΙ ΔΙΔΑΚΤΙΚΩΝ ΠΡΑΚΤΙΚΩΝ
Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #5: Συμπέρασμα Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Α: Ανάλυση Συσχέτισης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #4: Αισθητήρια Καταγραφή Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #5: Βραχύχρονη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #4: Προσέγγιση της Ιστορίας Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #8: Θεωρητικά μοντέλα Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης
Πληροφορική ΙΙ Ενότητα 1
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός
Πληροφορική ΙΙ Θεματική Ενότητα 7
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 7 Δομές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Ενότητα: Το Παραπρόγραμμα ή κρυφό Αναλυτικό Πρόγραμμα Διδάσκων: Κατσαρού Ελένη ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ Άδειες
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 4: Εντολές ελέγχου ροής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #10: Αναπαραστάσεις Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 5: Συνολική Ζήτηση και Συνολική Προσφορά (Μέρος Α) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #6: Βασικές αρχές μικροϊστορίας κατά Μ. Φερρό Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 2: Ταξινομικά κριτήρια της Έρευνας Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 7 η : Εντολές Επανάληψης Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης Επιχειρήσεων
Μακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 6: Συνολική Ζήτηση και Συνολική Προσφορά (Μέρος Β) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Αντικειμενοστραφής Προγραμματισμός
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αντικειμενοστραφής Προγραμματισμός Ενότητα 2 : Ελεγχόμενη ροή προγράμματος Ιωάννης Τσούλος 2 Ανοιχτά Ακαδημαϊκά Τμήμα Μηχανικών Πληροφορικής
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #9: Η ΜΕΤΑΒΑΣΗ ΤΩΝ ΠΑΙΔΙΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΟ ΔΗΜΟΤΙΚΟ
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #1: Εισαγωγή: από τη μακροϊστορική στην μικροϊστορική προσέγγιση της παιδείας Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 2: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΔΡΔ: Διαγράμματα Ροής Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΡΔ: Διαγράμματα Ροής Δεδομένων Τεχνολογία Πολιτισμικού Λογισμικού Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΙ Ιονίων
Δομές Δεδομένων Ενότητα 1
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Υπολογιστικά Συστήματα
Υπολογιστικά Συστήματα Ενότητα 4: Visual Basic for Applications (VBA) Δομές Επανάληψης και Επιλογής Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Ενότητα: Παρουσίαση εισαγωγικής παράδοσης Διδάσκων: Κατσαρού Ελένη ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ Άδειες Χρήσης
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #2: Βασικές αρχές μικροϊστορίας κατά G. Iggers Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ(Visual Basic)
ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ(Visual Basic) ΔΙΔΑΣΚΩΝ: ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΚΟΖΑΝΗ) 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Λειτουργικά Συστήματα
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Λειτουργικά Συστήματα Ενότητα 10 : Ιδεατή Μνήμη Αλγόριθμοι Αντικατάστασης Σελίδων Δημήτριος Λιαροκάπης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ
Διδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: Διδακτική της Δομής Επανάληψης Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων
Τεχνικές Προγραμματισμού και Χρήση Λογισμικού Η/Υ στις Κατασκευές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τεχνικές Προγραμματισμού και Χρήση Λογισμικού Η/Υ στις Κατασκευές Ενότητα 3: Διαδικασίες λογικών αποφάσεων και βρόγχων εργασιών Αναστάσιος
Μακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 8: Προσφορά Χρήματος Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
Διδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Διδακτική της έννοιας της μεταβλητής Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 7: Πολυδιάστατοι Πίνακες Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. Κωνσταντίνος Καρατζάς
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Προγραμματισμός Η/Υ. 3 η ενότητα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 3 η ενότητα Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 6: Πίνακες και Δείκτες Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Ενότητα: Διδακτικές μέθοδοι Διδάσκων: Κατσαρού Ελένη ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
Μοντελοποίηση Λογικών Κυκλωμάτων
Μοντελοποίηση Λογικών Κυκλωμάτων Ενότητα 7: Η γλώσσα VHDL, Μοντελοποίηση, διαχείριση χρόνου Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 3: Το Υπόδειγμα IS-LM (Μέρος Α) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων
Διδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Προγραμματισμός Η/Υ. 7 η ενότητα: Αρχεία. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 7 η ενότητα: Αρχεία Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Πίνακες στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Προχωρημένα Θέματα Προγραμματισμού Δικτύων
1 Ελληνική ημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Προχωρημένα Θέματα Προγραμματισμού Δικτύων Ενότητα 9: ΈλεγχοςΡοήςΚλειστούΒρόχου(1) Φώτης Βαρζιώτης 2 Ανοιχτά Τμήμα Μηχανικών Πληροφορικής ΤΕ
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 13: (Μέρος Γ ) Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 3: Εισαγωγή και Εμφάνιση Δεδομένων Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 10 : Κατασκευή ΝΠΑ. Αλέξανδρος Τζάλλας
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 0 : Κατασκευή ΝΠΑ Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής Τ.Ε
ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 5: Εντολές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Ενότητα 3: MPI_Get_count, non blocking send/recv, εμφάνιση και αποφυγή αδιεξόδων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org
ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Ενότητα 3: Συναθροιστική Ζήτηση- Εφαρμόζοντας το Υπόδειγμα IS-LM Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες
ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 6: Αυτοαξιολόγηση των σχολικών μονάδων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 6: Αυτοαξιολόγηση των σχολικών μονάδων Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ
ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,