Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
|
|
- Αλθαία Ελευθερόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Δυτικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας Ο σκοπός του εν λόγω μαθήματος είναι να κατανοήσουν οι φοιτητές του Τμήματος Λογιστικής και Χρηματοοικονομικής τις γνωστικές περιοχές της Επιχειρησιακής έρευνας καθώς και των Ποσοτικών Μεθόδων. 4
5 1.Περιεχόμενα ενότητας Κατηγορίες των μαθηματικών μοντέλων. Αρχές του Γραμμικού Προγραμματισμού. Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. 5
6 1.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς τις μεθόδους επίλυσης. 1 ο Αναλυτικά μοντέλα. Η λύση του προβλήματος προκύπτει από την εφαρμογή μαθηματικών τύπων που καθορίζουν την τιμή των μεταβλητών του μοντέλου με βάση τις τιμές των παραμέτρων του. Για παράδειγμα, ο προσδιορισμός του βέλτιστου ύψους αποθεμάτων και του σημείου παραγγελίας στα προβλήματα προγραμματισμού και ελέγχου αποθεμάτων. 6
7 2.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς τις μεθόδους επίλυσης. 2 ο Αλγοριθμικά μοντέλα. Η λύση προκύπτει από την εφαρμογή ενός αλγορίθμου, δηλαδή μιας σειράς μαθηματικών πράξεων και μετασχηματισμών η οποία εκτελείται με συγκεκριμένους κανόνες που περιλαμβάνουν διακλαδώσεις ή επαναλήψεις βημάτων. Παράδειγμα, ο γραμμικός προγραμματισμός. 3 ο Ευρετικές μέθοδοι. Αποτελούν ειδική κατηγορία αλγορίθμων που χρησιμοποιούνται όταν η ακριβής επίλυση ενός προβλήματος είναι είτε αδύνατη λόγω πολυπλοκότητας του μοντέλου είτε πρακτικά πολύ δύσκολη λόγω του μεγέθους του. 7
8 3.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς τις μεθόδους επίλυσης. 4 ο Προσομοίωση. Είναι μια γενική μέθοδος ανάλυσης σύνθετων και πολύπλοκων προβλημάτων των οποίων ο προσδιορισμός της βέλτιστης λύσης μέσω ενός μαθηματικού μοντέλου δεν είναι δυνατή είτε λόγω πολυπλοκότητας είτε διότι οι τιμές των παραμέτρων τους παρουσιάζουν τυχαίες διακυμάνσεις. Στην τελευταία περίπτωση χρησιμοποιείται ο υπολογιστής για να εξετάσει τον τρόπο λειτουργίας του υπό ανάλυση συστήματος όταν οι παράμετροι του μοντέλου λαμβάνουν διαφορετικές τυχαίες τιμές ανάλογα με τη διακύμανση που παρουσιάζουν. 8
9 4.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς τις μεθόδους επίλυσης. 5ο Πολυκριτήριες μέθοδοι. Αποτελούν μια ειδική οικογένεια μεθόδων και τεχνικών ανάλυσης προβλημάτων στα οποία τα κριτήρια βελτιστοποίησης ή αποφάσεων είναι περισσότερά από ένα και χαρακτηρίζονται από τον όρο πολυκριτήριας ανάλυσης αποφάσεων. Παραδείγματα, Θεωρία Πολυκριτήριας Χρησιμότητας, οι Μέθοδοι Υπεροχής και η Ανάλυση Προτιμήσεων. 9
10 5.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς το στόχο. 1 ο Μοντέλα βελτιστοποίησης. Στόχος είναι η μεγιστοποίηση ή ελαχιστοποίηση μιας μεταβλητής ή της τιμής μια συνάρτησης γενικότερα η οποία εκφράζει τον επιθυμητό επιχειρησιακό στόχο. Αυτό μπορεί να επιτευχθεί μέσω αναλυτικών, αλγοριθμικών ή ευρετικών μεθόδων επίλυσης. Το αποτέλεσμα είναι οι τιμές των μεταβλητών που καθορίζουν τη βέλτιστη τιμή του στόχου. 10
11 6.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς το στόχο. 2 ο Περιγραφικά Μοντέλα. Σε αυτή την περίπτωση ενδιαφέρει η αναζήτηση και η ποσοτικοποίηση σχέσεων μεταξύ των διαφορετικών μεταβλητών του μοντέλου έτσι ώστε να προσδιοριστούν οι αλλαγές που θα προκύψουν σε ένα μέγεθος όταν σε ένα άλλο ή άλλα μεγέθη που το επηρεάζουν μεταβάλλονται. Το αποτέλεσμα συνήθως απεικονίζεται γραφική παράσταση των εξεταζόμενων μεγεθών. 11
12 7.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς το στόχο. 3 ο Μοντέλα Πρόβλεψης. Είναι κυρίως στατιστικά μοντέλα ανάλυσης ιστορικών στοιχείων σε μορφή χρονοσειρών με σκοπό τον προσδιορισμό μιας μαθηματικής σχέσης μεταξύ μιας εξαρτημένης μεταβλητής (π.χ. πωλήσεις) και ενός ή περισσοτέρων ανεξάρτητων μεταβλητών που μπορεί να την επηρεάζουν (π.χ. διαφήμιση, πληθυσμός, χρόνος κ.α.) έτσι ώστε με βάση μελλοντικές τιμές των ανεξάρτητων μεταβλητών, να είναι δυνατή η πρόβλεψη μελλοντικών τιμών της εξαρτημένης μεταβλητής. 12
13 8.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι κατηγορίες των μαθηματικών μοντέλων; Κατηγοριοποίηση ως προς τη διαχείριση της αβεβαιότητας. 1ο Προσδιοριστικά-Ντετερμινιστικά. Όταν οι τιμές των παραμέτρων του προβλήματος που επηρεάζουν τη λύση του θεωρούνται σταθερές, με την έννοια ότι δεν χαρακτηρίζονται από συνεχείς τυχαίες αλλαγές. 2ο Πιθανολογικά-Στοχαστικά. Όταν οι παράμετροι του προβλήματος αντιπροσωπεύουν μεγέθη που από τη φύση τους υπόκεινται σε τυχαίες μεταβολές. 13
14 9.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Τι είναι γραμμικός προγραμματισμός και πότε ένα σύστημα είναι γραμμικό; Ποιες οι πιθανές τιμές και οι λύσεις του; Γραμμικός Προγραμματισμός (ΓΠ) είναι το όνομα της μεθοδολογίας που χρησιμοποιείται για τη λύση προβλημάτων που έχουν σκοπό τη μεγιστοποίηση ή την ελαχιστοποίηση μιας γραμμικής συνάρτησης που υπόκεινται σε γραμμικούς περιορισμούς υπό τη μορφή γραμμικών ανισοτήτων. Από οικονομική άποψη ο ΓΠ ασχολείται με το πρόβλημα της κατανομής των περιορισμένων πόρων ενός συστήματος σε ανταγωνιζόμενες δραστηριότητες κατά τον καλύτερο δυνατό τρόπο. Ο όρος «προγραμματισμός» δεν έχει την έννοια του προγραμματισμού Η/Υ αλλά του «σχεδιασμού». Τέλος, ένα σύστημα ονομάζεται γραμμικό όταν οι μεταβλητές δεν είναι υψωμένες σε καμία δύναμη πέραν της μονάδας και δεν υπάρχουν γινόμενα μεταξύ των μεταβλητών. 14
15 10.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Πηγή: Διδάσκων. 15
16 11.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Ποιες είναι οι αρχές του Γραμμικού Προγραμματισμού; Για τα υποδείγματα του Γ.Π. ισχύουν οι παρακάτω αρχές: α. Διαιρετότητα: Σύμφωνα με αυτή οι μεταβλητές μπορούν να πάρουν κάθε τιμή στο σύνολο των πραγματικών θετικών αριθμών. β. Σταθερών αναλογιών: Σύμφωνα με αυτή την αρχή ο πολλαπλασιασμός της ποσότητας ενός μεγέθους λ>0 προϋποθέτει τον πολλαπλασιασμό επί λ των ποσοτήτων όλων των συντελεστών παραγωγής του. γ. Προσθετικότητα: Σύμφωνα με αυτή η χρησιμοποίηση περισσοτέρων της μιας παραγωγικών δραστηριοτήτων προϋποθέτει την πρόσθεση των αντίστοιχων ποσοτήτων των συντελεστών παραγωγής αυτών. 16
17 12.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Τα βήματα για τη διαδικασία επίλυσης ενός προβλήματος είναι: 1 ο Αναγνώριση και καθορισμός του προβλήματος. 2 ο Συλλογή των δεδομένων. 3 ο Καθορισμός των κριτηρίων επιλογής. 4 ο Εύρεση του συνόλου των εφικτών λύσεων (με χρήση διαγράμματος) 5 ο Αξιολόγηση των εφικτών λύσεων με βάση τα κριτήρια και επίλυση του μοντέλου. 17
18 13.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Τα βήματα για τη διαδικασία επίλυσης ενός προβλήματος είναι (συνέχεια): 6 ο Επιλογή της βέλτιστης λύσης (λήψη απόφασης). 7 ο Εφαρμογή της βέλτιστης λύσης στο σύστημα. 8 ο Αξιολόγηση των αποτελεσμάτων και ανατροφοδότηση. 18
19 14.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex. Όταν υπάρχουν μέχρι πέντε κλάδοι παραγωγής και μέχρι πέντε συντελεστές σε περιορισμένες ποσότητες, τότε η εύρεση του άριστου σχεδίου παραγωγής γίνεται με τη μέθοδο Simplex. Η μέθοδος αυτή είναι μία επαναληπτική διαδικασία (αλγόριθμος) που στηρίζεται στην εξής αρχή. Το σύνολο Ε των δυνατών λύσεων (x 1, x 2,... x n ) είναι κυρτό στο χώρο των n διαστάσεων. Το κυρτό αυτό σύνολο Ε είναι ένα κυρτό πολύεδρο που κάθε κορυφή του είναι μία βασική λύση. 19
20 15.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Άρα η μεγιστοποίηση της αντικειμενικής συνάρτησης είναι δυνατόν να επιτευχθεί μόνο στα ακραία σημεία της περιοχής των εφικτών λύσεων. Η μέθοδος Simplex εξετάζει την τιμή της αντικειμενικής συνάρτησης μόνο στα ακραία σημεία της περιοχής των εφικτών λύσεων με ένα συστηματικό αλγεβρικό τρόπο. Η διαδοχική εξέταση των ακραίων σημείων γίνεται με ένα επαναληπτικό τρόπο δηλ. με το να επαναλαμβάνεται το ίδιο σύνολο των διαδικασιών και αλγεβρικών πράξεων σε διαδοχικά βήματα έως όπου επιτυγχάνουμε να εντοπίσουμε τη βέλτιστη λύση. 20
21 16.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Κάθε βήμα της μεθόδου Simplex αντιστοιχεί στην επιλογή ενός ακραίου σημείου της περιοχής των εφικτών λύσεων. Σε κάθε βήμα το επόμενο ακραίο σημείο της περιοχής των εφικτών λύσεων επιλέγεται με τέτοιο τρόπο ώστε η τιμή της αντικειμενικής συνάρτησης να αυξάνεται και επομένως σταδιακά πλησιάζουμε προς τη βέλτιστη λύση. 21
22 17.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Έτσι ορίζοντας μία αρχική λύση βάσης μεταβαίνουμε στην επόμενη λύση βάσης αυξάνοντας την τιμή της οικονομικής συνάρτησης της οποίας ζητείται το μέγιστο. Αυτή η διαδικασία επαναλαμβάνεται μέχρι που η αύξηση της οικονομικής συνάρτησης να μην είναι πλέον δυνατή. Τότε έχει βρεθεί η άριστη λύση βάσης. Αφού λοιπόν ο αριθμός των κορυφών του κυρτού πολυέδρου είναι ένας πεπερασμένος αριθμός, η άριστη λύση βάσης, αν υπάρχει, προκύπτει μετά από ένα πεπερασμένο αριθμό επαναλήψεων του αλγορίθμου. 22
23 18.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Η μέθοδος Simplex εκτός από τον προσδιορισμό της βέλτιστης λύσης, δηλ. τις τιμές των μεταβλητών και το αντίστοιχο βέλτιστο κέρδος, μας παρέχει επίσης πλήθος άλλων πληροφοριών οικονομικής φύσης τις οποίες δεν είναι δυνατόν να παράγουμε με άλλο τρόπο. Η μέθοδος Simplex μπορεί να χρησιμοποιηθεί όχι μόνο σε προβλήματα Γραμμικού Προγραμματισμού, αλλά και σε προβλήματα Παραμετρικού, Ακέραιου, Μικτού Ακέραιου, Τετραγωνικού κλπ. 23
24 19.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Αδρανείς Μεταβλητές: o Κατά την εφαρμογή της μεθόδου Simplex στο Γραμμικό Προγραμματισμό σε πρόβλημα μεγιστοποίησης, απαιτείται η μετατροπή του συστήματος των περιορισμών από σύστημα ανισώσεων σε σύστημα εξισώσεων. Για το λόγο αυτό πρέπει να χρησιμοποιηθούν νέες βοηθητικές μεταβλητές που στην περίπτωση των προβλημάτων μεγιστοποίησης ονομάζονται αδρανείς μεταβλητές. Οι αδρανείς μεταβλητές αντιπροσωπεύουν αχρησιμοποίητους πόρους στη διαδικασία μεγιστοποίησης του κέρδους. 24
25 20.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Ύπαρξη μοναδιαίου πίνακα. o Μετά τη μετατροπή των ανισώσεων σε εξισώσεις, το επόμενο βήμα για την εφαρμογή της μεθόδου Simplex στο Γραμμικό Προγραμματισμό σε πρόβλημα μεγιστοποίησης, είναι η ύπαρξη μοναδιαίου πίνακα στον πίνακα των συντελεστών όλων των μεταβλητών, αρχικών και βοηθητικών, του συστήματος των περιορισμών. 25
26 21.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Εμφάνιση αδρανών μεταβλητών στην αντικειμενική συνάρτηση. Μετά τη μετατροπή του συστήματος των περιορισμών σε σύστημα εξισώσεων και μετά τη δημιουργία του μοναδιαίου πίνακα στον πίνακα των συντελεστών των αρχικών και βοηθητικών μεταβλητών, πρέπει να εμφανιστούν οι βοηθητικές μεταβλητές στην οικονομική συνάρτηση. Λοιπόν, οι αδρανείς μεταβλητές εμφανίζονται στην αντικειμενική συνάρτηση με συντελεστή μηδέν. 26
27 22.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Κριτήριο αριστοποίησης σε προβλήματα μεγιστοποίησης Όταν όλες οι διαφορές Z i -C i γίνουν θετικές ή μηδέν τότε η αντίστοιχη βασική λύση είναι η άριστη. Θετικές τιμές Z i -C i δηλώνουν ότι στην περίπτωση που η τιμή όλες αντίστοιχης μεταβλητής αυξηθεί, θα υπάρχει μείωση του κέρδους. Αντίθετα αρνητικές τιμές Z i -C i δηλώνουν ότι μπορεί να υπάρξει βελτίωση του κέρδους αν αυξηθεί η τιμή όλες συγκεκριμένης μεταβλητής με αρνητικό Z i -C i. 27
28 23.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Όταν συμβαίνει αυτό τότε το κριτήριο για την εκλογή όλες μεταβλητής που θα γίνει βασική είναι: Κριτήριο εισόδου σε προβλήματα μεγιστοποίησης Από όλες αρνητικές διαφορές Z i -C i εκείνη που έχει τη μεγαλύτερη απόλυτη τιμή δίνει τη μεταβλητή που θα μπεί στη βάση. Η στήλη όλες μεταβλητής που μπαίνει στη βάση λέγεται οδηγός στήλη. 28
29 24.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Ο πίνακας Simplex 2 κατασκευάζεται ως εξής: Αρχικά γίνεται αντικατάσταση στη βάση όλες οδηγού σειράς από την οδηγό στήλη. Δηλαδή θα αντικατασταθεί η S 2 από την x 1. Στη συνέχεια τα στοιχεία όλες σειράς όλες μεταβλητής που έγινε βασική θα προκύψουν από τη διαίρεση των στοιχείων όλες οδηγού σειράς με το οδηγό στοιχείο του πίνακα Simplex 1. Τα στοιχεία όλες στήλης όλες μεταβλητής που έγινε βασική θα είναι όλα μηδέν, εκτός όλες τιμής 1 που θα υπάρχει στη θέση του οδηγού στοιχείου του πίνακα. 29
30 25.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Ο πίνακας Simplex 2 κατασκευάζεται ως εξής: Όλα τα υπόλοιπα στοιχεία του πίνακα Simplex 2 (εκτός από τα R j και λ j ) υπολογίζονται από τον πρώτο πίνακα ως εξής: Η νέα τιμή όλες στοιχείου θα είναι ίση με την παλιά τιμή του μείον το γινόμενο του αντίστοιχου στοιχείου όλες οδηγού σειράς του προηγούμενου πίνακα με το αντίστοιχο λ j. Ο κανόνας όλες ισχύει για όλα τα στοιχεία, ακόμη και για τα στοιχεία όλες Bottom row, που όλες μπορούν να υπολογιστούν και από τα Z i και C i. 30
31 26.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Ο πίνακας Simplex 2 κατασκευάζεται ως εξής: Ο δεύτερος τρόπος είναι προτιμότερος μια και αποφεύγουμε το χάσιμο μονάδων από όλες συνεχείς στρογγυλοποιήσεις των δεκαδικών. 31
32 27.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Ο πίνακας Simplex 2 κατασκευάζεται ως εξής: Θα πρέπει να παρατηρήσουμε ότι ο όλες πίνακας Simplex έχει και όλες δύο μοναδιαίες στήλες που αντιστοιχούν όλες βασικές μεταβλητές S 1 (η στήλη ) και x 1 (η στήλη ). Βασικά, οι αλγεβρικές πράξεις που εκτελέσαμε για να πάρουμε όλες νέες τιμές του πίνακα Simplex είχαν ακριβώς αυτό σαν σκοπό. Το να μετατρέψουμε δηλ. την στήλη που αντιστοιχεί στην νέα βασική μεταβλητή x 1 σε μοναδιαία στήλη. 32
33 28.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Ο πίνακας Simplex 2 κατασκευάζεται ως εξής: Η διαίρεση με το οδηγό στοιχείο έδωσε την τιμή 1 στη θέση όλες τομής όλες σειράς x 1 με τη στήλη x 1. Ο πολλαπλασιασμός των νέων τιμών όλες οδηγού σειράς με το 4 και η αφαίρεση του γινομένου από τη σειρά S 1 είχε σαν αποτέλεσμα να μηδενίσουμε τα υπόλοιπα στοιχεία όλες στήλης x 1. 33
34 29.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Οι συντελεστές του πίνακα Simplex στον τελικό πίνακα. Πόσες μονάδες από κάθε μία από τις βασικές μεταβλητές πρέπει να δοθούν για να αποκτήσουμε μία μονάδα από τη συγκεκριμένη μη βασική μεταβλητή; Μη βασική μεταβλητή είναι η S 2. Η S 2 συμβολίζει τις μη χρησιμοποιηθείσες ώρες εργασίας. 34
35 30.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Πηγή: Διδάσκων 35
36 31.ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση. Μέθοδος Simplex (συνέχεια). Σύμφωνα με τον τελικό πίνακα από την διαφάνεια 35 και έστω ότι είχαμε προχωρήσει σε λύση του προβλήματος με τη μέθοδο Simplex τότε μπορούμε να πούμε ότι: Για να αυξηθεί η S 2 κατά 1 μονάδα θα πρέπει να μειωθεί η x 1 κατά 0,25 και να αυξηθεί η S 1 κατά 0,25. Αύξηση της S 2 κατά μία μονάδα σημαίνει μία περισσότερο μη χρησιμοποιημένη ώρα εργασίας ή αλλιώς μία ώρα εργασίας λιγότερο. 36
37 Τέλος Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου
Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 20: Ανάπτυξη Κώδικα σε Matlab για τη δημιουργία τυχαίων βέλτιστων Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 8: Συστήματα γραμμικών αλγεβρικών εξισώσεων Εργαλεία Excel minverse & mmult Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2014-2015 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2014 Δρ. Χρήστος Γενιτσαρόπουλος
ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες
είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές
Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 3: Εισαγωγή στο Γραμμικό Προγραμματισμό (3 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Θεωρία Μεθόδου Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Θεωρία Μεθόδου Simplex Άδεια Χρήσης
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 3: «ΑΝΑΛΥΣΗ ΝΕΚΡΟΥ ΣΗΜΕΙΟΥ» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος
Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 5: Θεωρία της Παραγωγής Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Τα βασικότερα εργαλεία της Οικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 4: Εισαγωγή στο Γραμμικό Προγραμματισμό (4 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Οικονομετρία Ι. Ενότητα 1: Εισαγωγή. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 1: Εισαγωγή Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Προσέγγιση και Ομοιότητα Σημάτων Επιμέλεια: Πέτρος Π. Γρουμπός Καθηγητής Γεώργιος Α. Βασκαντήρας Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 8: Επίλυση με τη μέθοδο Simplex (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #10: Μοντέρνες Μέθοδοι Αναλογικού Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα # 2: Συναρτήσεις Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στην πληροφορική
Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για