Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments"

Transcript

1 Avilble online t J. Nonliner Sci. Appl. 9 (206), Reserch Article Oscilltion criteri for third-order nonliner neutrl differentil equtions with distributed deviting rguments Cuimei Jing, Tongxing Li b,c, Qingdo Technologicl University, Feixin, Shndong , P. R. Chin. b LinD Institute of Shndong Provincil Key Lbortory of Network Bsed Intelligent Computing, Linyi University, Linyi, Shndong , P. R. Chin. c School of Informtics, Linyi University, Linyi, Shndong , P. R. Chin. Communicted by X. Z. Liu Abstrct The im of this pper is to investigte the oscilltion nd symptotic behvior of clss of thirdorder nonliner neutrl differentil equtions with distributed deviting rguments. By mens of Riccti trnsformtion technique nd some inequlities, we estblish severl sufficient conditions which ensure tht every solution of the studied eqution is either oscilltory or converges to zero. Two exmples re provided to illustrte the min results. c 206 All rights reserved. Keywords: Oscilltion, symptotic behvior, third-order neutrl differentil eqution, distributed deviting rgument. 200 MSC: 34K.. Introduction During the pst few decdes, n incresing interest in obtining sufficient conditions for oscilltory nd nonoscilltory behvior of different clsses of differentil equtions hs been stimulted due to their pplictions in nturl sciences nd engineering (see Hle 9 nd Wong 24). This resulted in publiction of severl monogrphs,, numerous reserch ppers 2 6, 8, 0, 2 23, 25, 26, nd the references cited Corresponding uthor Emil ddresses: jingcuimei2004@63.com (Cuimei Jing), litongx2007@63.com (Tongxing Li) Received

2 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), therein. Anlysis of qulittive properties of neutrl differentil equtions is importnt not only for the ske of further development of the oscilltion theory, but for prcticl resons too. In fct, neutrl differentil equtions re used in modeling of networks contining lossless trnsmission lines (see, for instnce, the pper by Driver 7). In wht follows, let us present some bckground detils which motivte our study. Assuming tht the oscilltion of second-order neutrl differentil eqution 0 p(t) p 0 <, (.) r(t)(x(t) + p(t)xτ(t)) + q(t)f(x(σ(t))) = 0, nd its prticulr cses were investigted by Bculíková nd Džurin 4, 5, Fišnrová nd Mřík 8, Li nd Rogovchenko 4, 5, Li et l. 6, nd Xing et l. 25. For the oscilltion of second-order neutrl differentil equtions with distributed deviting rguments, Li et l. 2 nd Li nd Thndpni 7 estblished severl oscilltion criteri for (r(t) z (t) α z (t)) + q(t, ξ) xg(t, ξ) α xg(t, ξ)dσ(ξ) = 0, where z(t) := x(t) + p(t)xτ(t). Compred with second-order neutrl differentil equtions, there re few oscilltion results for third-order neutrl differentil equtions. Bculíková nd Džurin 2, 3, Jing nd Li 0, nd Li et l. 8 exmined n eqution of the form under the ssumption tht (r(t)((x(t) + p(t)x(τ(t))) ) γ ) + q(t)x γ (σ(t)) = 0, (.2) 0 p(t) p 0 <, wheres Li nd Rogovchenko 4, Thndpni nd Li 20, nd Xing et l. 25 deduced oscilltion of (.2) ssuming tht condition (.) is stisfied. On the bsis of the ides exploited by Li et l. 2, 8, the objective of this pper is to estblish severl oscilltion criteri for (r(t) z (t) α z (t)) + q(t, ξ) xg(t, ξ) α xg(t, ξ)dσ(ξ) = 0, (.3) where t t 0 > 0, α > 0 is constnt, nd z(t) := x(t) + p(t)xτ(t). As usul, solution x of (.3) is clled oscilltory, if the set of its zeros is unbounded from bove, otherwise, it is sid to be nonoscilltory. In order to ccomplish these tsks, it is necessry to mke the following ssumptions hold throughout this pper: (A ) r C (t 0, ), (0, )) nd p C(t 0, ), 0, )); (A 2 ) q C(t 0, ), b, 0, )) nd q(t, ξ) is not eventully zero on ny t µ, ), b, t µ t 0, ); (A 3 ) g C(t 0, ), b, R) is nondecresing function for ξ stisfying lim inf t g(t, ξ) = for ξ, b; (A 4 ) τ C (t 0, ), R), τ (t) > 0, lim t τ(t) =, nd g(τ(t), ξ) = τg(t, ξ); (A 5 ) σ C(, b, R) is nondecresing nd the integrl of (.3) is tken in the sense of Riemnn Stieltijes. Min results in this pper re orgnized into two prts in ccordnce with different ssumptions on the coefficient r. In Section 2, oscilltion results for (.3) re estblished in the cse where t 0 r /α (t)dt =. (.4)

3 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), By ssuming tht t 0 r /α (t)dt <, (.5) oscilltion criteri for (.3) re obtined in Section 3. To illustrte the results reported in Sections 2 nd 3, we give two exmples in Section 4. In the sequel, we use the following nottions for compct presenttion of our results: Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)}, R(t) := mx{r(t), rτ(t)}, ρ +(t) := mx{0, ρ (t)}, ϑ(t) := ζ(t) r /α (s)ds, where ρ nd ζ will be explined lter, nd ll functionl inequlities re tcitly ssumed to hold for ll t lrge enough, unless mentioned otherwise. 2. Oscilltion criteri for the cse (.4) In this section, we consider two cses g(t, ) τ(t) nd g(t, ) τ(t). Let us strt with the first cse. Theorem 2.. Let conditions (A )-(A 5 ), (.), (.4), nd α be stisfied. Suppose tht g(t, ) C (t 0, ), R), g (t, ) > 0, g(t, ) t, nd g(t, ) τ(t) for t t 0. If there exists function ρ C (t 0, ), (0, )) such tht, for ll sufficiently lrge t 0 nd for some >, ( ) 2 α ρ(t)g (t) Q(t, ξ)dσ(ξ) (α + ) α+ + pα 0 rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α dt = (2.) nd where u R(u) G (t) := u ( g(t,) s g(t,) Q(s, ξ)dσ(ξ)ds /α du =, (2.2) then every solution x of (.3) is either oscilltory or stisfies lim t x(t) = 0. ) α r /α (u)duds, (2.3) r /α (u)du Proof. Assume tht (.3) hs nonoscilltory solution x. Without loss of generlity, we my suppose tht there exists t 0 such tht x(t) > 0, xτ(t) > 0 for t, nd xg(t, ξ) > 0 for (t, ξ), ), b. Then we hve z > 0. It follows from (.3) tht nd (r(t) z (t) α z (t)) + (r(t) z (t) α z (t)) 0, (2.4) q(t, ξ)x α g(t, ξ)dσ(ξ) + pα 0 τ (t) (rτ(t) z τ(t) α z τ(t)) + By virtue of (2.4) nd τ (t) > 0, we obtin (r(t) z (t) α z (t)) + + q(t, ξ)x α g(t, ξ)dσ(ξ) p α 0 q(τ(t), ξ)x α g(τ(t), ξ)dσ(ξ) = 0. p α 0 q(τ(t), ξ)x α g(τ(t), ξ)dσ(ξ) + pα 0 (rτ(t) z τ(t) α z τ(t)) 0.

4 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), By using the ltter inequlity nd condition g(τ(t), ξ) = τg(t, ξ), we hve (r(t) z (t) α z (t)) + pα 0 (rτ(t) z τ(t) α z τ(t)) In view of 0 p(t) p 0 < nd the inequlity (see 5, Lemm ) (q(t, ξ)x α g(t, ξ) + p α 0 q(τ(t), ξ)x α g(τ(t), ξ)) dσ(ξ) Q(t, ξ) (x α g(t, ξ) + p α 0 x α τ(g(t, ξ))) dσ(ξ). (2.5) A α + B α 2 α (A + B)α for A 0, B 0, nd α, we rrive t x α g(t, ξ) + p α 0 x α τ(g(t, ξ)) (xg(t, ξ) + p 0xτ(g(t, ξ))) α 2 α zα g(t, ξ) 2 α. (2.6) By combining (2.5) nd (2.6), we conclude tht (r(t) z (t) α z (t)) + pα 0 (rτ(t) z τ(t) α z τ(t)) 2 α Bsed on condition (.4), z stisfies two possible cses: (I) z > 0, z > 0, z > 0, nd (r z α z ) 0; (II) z > 0, z < 0, z > 0, nd (r z α z ) 0. Q(t, ξ)z α g(t, ξ)dσ(ξ). (2.7) Assume first tht cse (I) holds. By using z > 0, z > 0, nd the fct tht g(t, ξ) is nondecresing function for ξ, b, we hve by (2.7) tht (r(t)(z (t)) α ) + pα 0 (rτ(t)(z τ(t)) α ) zα g(t, ) 2 α Define Riccti trnsformtion ω by Clerly, ω > 0 nd Q(t, ξ)dσ(ξ). (2.8) ω(t) := ρ(t) r(t)(z (t)) α (z g(t, )) α, t. (2.9) ω (t) = ρ (t) ρ(t) ω(t) + ρ(t)(r(t)(z (t)) α ) (z g(t, )) α αr(t)ρ(t)g (t, ) (z (t)) α z g(t, ) (z g(t, )) α+. Applying the monotonicity of r z α z nd g(t, ) t implies tht z g(t, ) ( ) r(t) /α z (t). rg(t, ) Then, combining the ltter inequlity nd (2.9), we conclude tht ω (t) ρ +(t) ρ(t) ω(t) + ρ(t)(r(t)(z (t)) α ) (z g(t, )) α αg (t, ) (ρ(t)rg(t, )) /α ω(α+)/α (t). (2.0) Furthermore, we define nother function ν by ν(t) := ρ(t) rτ(t)(z τ(t)) α (z g(t, )) α, t. (2.)

5 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), Thus, we hve ν > 0 nd ν (t) = ρ (t) ρ(t) ν(t) + ρ(t)(rτ(t)(z τ(t)) α ) (z g(t, )) α αρ(t)g (t, )rτ(t) (z τ(t)) α z g(t, ) (z g(t, )) α+. We derive from the monotonicity of r z α z nd g(t, ) τ(t) tht z g(t, ) By using the ltter inequlity nd (2.), we deduce tht ( ) rτ(t) /α z τ(t). rg(t, ) ν (t) ρ +(t) ρ(t) ν(t) + τ(t)) α ) αg (t, ) ρ(t)(rτ(t)(z (z g(t, )) α (ρ(t)rg(t, )) /α ν(α+)/α (t). (2.2) It follows from (2.0) nd (2.2) tht ω (t) + pα 0 (r(t)(z ν (t)) α ) (t) ρ(t) (z g(t, )) α + pα 0 (rτ(t)(z τ(t)) α ) (z g(t, )) α + ρ +(t) ρ(t) ω(t) αg (t, ) (ρ(t)rg(t, )) /α ω(α+)/α (t) + pα 0 ρ + (t) ρ(t) ν(t) αg (t, ) (ρ(t)rg(t, )) /α ν(α+)/α (t). Let By using the inequlity (see 3) C := ρ +(t) ρ(t) nd D := αg (t, ) (ρ(t)rg(t, )) /α. Cu Du (α+)/α α α C α+ (α + ) α+, D > 0, (2.3) Dα we conclude tht nd ρ +(t) ρ(t) ω(t) αg (t, ) (ρ(t)rg(t, )) /α ω(α+)/α (t) ρ +(t) ρ(t) ν(t) αg (t, ) (ρ(t)rg(t, )) /α ν(α+)/α (t) By combining the ltter inequlities nd (2.8), we obtin rg(t, )(ρ +(t)) α+ (α + ) α+ (ρ(t)g (t, )) α rg(t, )(ρ +(t)) α+ (α + ) α+ (ρ(t)g (t, )) α. ω (t) + pα 0 ν (t) ρ(t) ( zg(t, ) 2 α z g(t, ) + (α + ) α+ ( + pα 0 ) α Q(t, ξ)dσ(ξ) ) rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α. (2.4) By virtue of (r(z ) α ) 0, z (t) = z ( ) + z (s)ds = z (r(s)(z (s)) α ) ( ) + r /α (s) /α ds r /α (t)z (t) r /α (s)ds.

6 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), Hence, we get which implies tht, for t >, ( ) z (t) 0, r /α (s)ds nd so Then, we hve z(t) = z( ) + z (t) r /α (u)du z (s)ds = z( ) + s z(t) z (t) r /α (u)duds, s z (s) s r /α (u)du s r /α (u)duds r /α (u)duds. (2.5) r /α (u)du ( ) zg(t, ) α z G (t), g(t, ) where G is defined by (2.3). Substitution of this inequlity into (2.4) yields t 3 ω (t) + pα 0 ν (t) 2 α ρ(t)g (t) + (α + ) α+ ( + pα 0 Q(t, ξ)dσ(ξ) ) rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α. Integrting the ltter inequlity from t 3 (t 3 > ) to t, we conclude tht ρ(s)g (s) b 2 α Q(s, ξ)dσ(ξ) + pα 0 / rg(s, )(ρ +(s)) α+ (α + ) α+ (ρ(s)g (s, )) α ds ω(t 3 ) + pα 0 ν(t 3 ), which contrdicts (2.). Assume now tht cse (II) holds. On the bsis of the monotonicities of z nd g(t, ξ), we hve zg(t, ξ) zg(t, b). By tking into ccount tht z > 0, inequlity (2.7) becomes (r(t)(z (t)) α ) + pα 0 (rτ(t)(z τ(t)) α ) zα g(t, b) 2 α Q(t, ξ)dσ(ξ). By using similr proof of 4, Theorem 5, we cn obtin lim t x(t) = 0 when using (2.2). completes the proof. This Now, we turn our ttention to the cse when g(t, ) τ(t). Theorem 2.2. Let conditions (A )-(A 5 ), (.), (.4), (2.2), nd α be stisfied. Suppose tht τ(t) t nd g(t, ) τ(t) for t t 0. If there exists function ρ C (t 0, ), (0, )) such tht for ll sufficiently lrge t 0 nd for some >, where 2 α ρ(t)g 2 (t) Q(t, ξ)dσ(ξ) G 2 (t) := ( (α + ) α+ + pα 0 ( τ(t) s then the conclusion of Theorem 2. remins intct. ) rτ(t)(ρ + (t)) α+ ( ρ(t)) α dt =, (2.6) ) α r /α (u)duds τ(t), (2.7) r /α (u)du

7 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), Proof. Assume tht (.3) hs nonoscilltory solution x. Without loss of generlity, we my suppose tht there exists t 0 such tht x(t) > 0, xτ(t) > 0 for t, nd xg(t, ξ) > 0 for (t, ξ), ), b. As in the proof of Theorem 2., we hve (2.4), (2.7), nd two possible cses (I) nd (II) (s those in the proof of Theorem 2.) for z. Assume first tht cse (I) holds. It follows from g(t, ξ) g(t, ) τ(t), z > 0, nd z > 0 tht Define Riccti trnsformtion ω by (r(t)(z (t)) α ) + pα 0 (rτ(t)(z τ(t)) α ) zα τ(t) 2 α Then ω > 0. Applying (2.4) nd τ(t) t yields By differentiting (2.9), we conclude tht Q(t, ξ)dσ(ξ). (2.8) ω(t) := ρ(t) r(t)(z (t)) α (z τ(t)) α, t. (2.9) z τ(t) ( ) r(t) /α z (t). rτ(t) ω (t) = ρ (t) ρ(t) ω(t) + (t)) α ) ρ(t)(r(t)(z (z τ(t)) α αr(t)ρ(t)τ (t) (z (t)) α z τ(t) (z τ(t)) α+ ρ +(t) ρ(t) ω(t) + ρ(t)(r(t)(z (t)) α ) (z τ(t)) α αρ(t)τ (t) r(α+)/α (t) r /α τ(t) ( z (t) z τ(t) ) α+ = ρ +(t) ρ(t) ω(t) + (t)) α ) ατ (t) ρ(t)(r(t)(z (z τ(t)) α (ρ(t)rτ(t)) /α ω(α+)/α (t). (2.20) Similrly, define nother Riccti trnsformtion ν by Clerly, ν > 0 nd ν(t) := ρ(t) rτ(t)(z τ(t)) α (z τ(t)) α, t. ν (t) = ρ (t) ρ(t) ν(t) + τ(t)) α ) ( z ρ(t)(rτ(t)(z (z τ(t)) α αρ(t)τ ) τ(t) α+ (t)rτ(t) z τ(t) ρ +(t) ρ(t) ν(t) + τ(t)) α ) ατ (t) ρ(t)(rτ(t)(z (z τ(t)) α (ρ(t)rτ(t)) /α ν(α+)/α (t). (2.2) In view of (2.20) nd (2.2), we get ω (t) + pα 0 (r(t)(z ν (t)) α ) (t) ρ(t) (z τ(t)) α + pα 0 (rτ(t)(z τ(t)) α ) (z τ(t)) α + ρ +(t) ρ(t) ω(t) + pα 0 ρ + (t) ρ(t) ν(t) ατ (t) (ρ(t)rτ(t)) /α ω(α+)/α (t) ατ (t) (ρ(t)rτ(t)) /α ν(α+)/α (t). Set C := ρ +(t) ρ(t) nd D := ατ (t) (ρ(t)rτ(t)) /α.

8 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), By virtue of (2.3) nd (2.8), we hve ω (t) + pα 0 ν (t) ρ(t) ( ) zτ(t) α ( ) 2 α z Q(t, ξ)dσ(ξ) + τ(t) (α + ) α+ + pα 0 rτ(t)(ρ + (t)) α+ (ρ(t)τ (t)) α. Similrly, s in the proof of Theorem 2., we obtin (2.5), nd hence ( ) zτ(t) α z G 2 (t), τ(t) where G 2 is defined s in (2.7). Therefore, ω (t) + pα 0 ν (t) ρ(t)g 2(t) 2 α t 3 Q(t, ξ)dσ(ξ) + ( ) (α + ) α+ + pα 0 rτ(t)(ρ + (t)) α+ ( ρ(t)) α. By integrting the ltter inequlity from t 3 (t 3 > ) to t, we hve ρ(s)g2 (s) b 2 α Q(s, ξ)dσ(ξ) + pα 0 / rτ(s)(ρ +(s)) α+ (α + ) α+ ( ρ(s)) α ds ω(t 3 ) + pα 0 ν(t 3 ), which contrdicts (2.6). Assume now tht cse (II) holds. As in the proof of Cse (II) in Theorem 2., we rrive t the desired conclusion. The proof is complete. 3. Oscilltion criteri for the cse (.5) In this section, we estblish some oscilltion criteri for (.3) under the ssumption tht (.5) holds. Similrly, s in Section 2, we begin with the cse when g(t, ) τ(t) holds. Theorem 3.. Let conditions (A )-(A 5 ), (.), (.5), (2.2), nd α be stisfied. Suppose tht g(t, ) C (t 0, ), R), g (t, ) > 0, nd g(t, ) τ(t) t for t t 0. Assume further tht there exists function ρ C (t 0, ), (0, )) such tht (2.) holds for ll sufficiently lrge t 0 nd for some >. If there exists function ζ C (t 0, ), R) such tht, ζ(t) t, ζ(t) g(t, ), ζ (t) > 0 for t t 0, nd for ll sufficiently lrge t 0, where 2 α ϑ α (t)g 3 (t) ( ) α α+ ( ) Q(t, ξ)dσ(ξ) + pα 0 ζ (t) α + ϑ(t)r /α dt =, (3.) ζ(t) G 3 (t) := (g(t, ) ) α, (3.2) then every solution x of (.3) is either oscilltory or stisfies lim t x(t) = 0. Proof. Assume tht (.3) hs nonoscilltory solution x. Without loss of generlity, we my suppose tht there exists t 0 such tht x(t) > 0, xτ(t) > 0 for t, nd xg(t, ξ) > 0 for (t, ξ), ), b. Then we hve z > 0. Bsed on condition (.5), there exist three possible cses (I), (II) (s those in the proof of Theorem 2.), nd (III) z > 0, z > 0, z < 0, nd (r z α z ) 0. Assume tht cse (I) nd cse (II) hold. By using the proof of Theorem 2., we get the conclusion of Theorem 3.. Assume now tht cse (III) holds. In view of g(t, ξ) g(t, ), z > 0, nd z < 0, inequlity (2.7) reduces to ( r(t)( z (t)) α ) + pα 0 ( rτ(t)( z τ(t)) α ) zα g(t, ) b 2 α Q(t, ξ)dσ(ξ). (3.3)

9 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), From (r z α z ) 0, we hve (r( z ) α ) 0, which shows tht r( z ) α is nondecresing. Thus, we obtin z (s) r/α (t) r /α (s) z (t), s t. An integrtion from ζ(t) to l yields By pssing to the limit s l, we get tht is, Define function ϕ by Clerly, ϕ < 0 nd Similrly, we define nother function φ by l z (l) z ζ(t) + r /α (t)z (t) r /α (s)ds. ζ(t) 0 z ζ(t) + r /α (t)z (t)ϑ(t), ϑ(t) r/α (t)z (t) z ζ(t). ϕ(t) := r(t)( z (t)) α (z ζ(t)) α, t. (3.4) ϑ α (t)ϕ(t). (3.5) φ(t) := rτ(t)( z τ(t)) α (z ζ(t)) α, t. (3.6) Then φ < 0. From the monotonicity of r( z ) α nd τ(t) t, we obtin rτ(t)( z τ(t)) α r(t)( z (t)) α. Hence, 0 < φ(t) < ϕ(t). By virtue of (3.5), we hve Now, by differentiting (3.4), we rrive t ϑ α (t)φ(t). (3.7) ϕ (t) = ( r(t)( z (t)) α ) (z ζ(t)) α + αr(t)ζ (t)( z (t)) α z ζ(t) (z ζ(t)) α+. By virtue of ζ(t) t nd the fct tht r( z ) α is nondecresing, we get nd so Similrly, by differentiting (3.6), we hve z ζ(t) r/α (t) r /α ζ(t) z (t), ϕ (t) ( r(t)( z (t)) α ) (z ζ(t)) α αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α. (3.8) φ (t) = ( rτ(t)( z τ(t)) α ) (z ζ(t)) α + αζ (t)rτ(t)( z τ(t)) α z ζ(t) (z ζ(t)) α+.

10 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), By tking into ccount tht r( z ) α is nondecresing nd ζ(t) τ(t), we conclude tht nd hence It follows from (3.3), (3.8), nd (3.9) tht z ζ(t) r/α τ(t) r /α ζ(t) z τ(t), φ (t) ( rτ(t)( z τ(t)) α ) (z ζ(t)) α αζ (t) r /α ζ(t) ( φ(t))(α+)/α. (3.9) ϕ (t) + pα 0 φ (t) ( r(t)( z (t)) α ) (z ζ(t)) α + pα 0 ( rτ(t)( z τ(t)) α ) (z ζ(t)) α Applying z > 0 nd z < 0 implies tht Hence, we hve where G 3 is s in (3.2). Then, we hve αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α pα 0 αζ (t) r /α ζ(t) ( φ(t))(α+)/α ( ) zg(t, ) α 2 α z Q(t, ξ)dσ(ξ) ζ(t) αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α pα 0 αζ (t) r /α ζ(t) ( φ(t))(α+)/α. z(t) = z( ) + ( ) zg(t, ) α ( zg(t, ) z = ζ(t) z g(t, ) ϕ (t) + pα 0 φ (t) 2 α G 3 (t) αpα 0 z (s)ds (t )z (t). z ) g(t, ) α z G 3 (t), ζ(t) Q(t, ξ)dσ(ξ) ζ (t) r /α ζ(t) ( φ(t))(α+)/α. αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α By multiplying the ltter inequlity by ϑ α (t) nd integrting the resulting inequlity from ( > ) to t, we get ϑ ϑ α (t)ϕ(t) ϑ α α (s)ζ (s) ( )ϕ( ) + α r /α ϕ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( ϕ(s))(α+)/α ds + pα 0 (ϑ α (t)φ(t) ϑ α ( )φ( )) + αpα 0 ϑ α (s)ζ (s) r /α φ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( φ(s))(α+)/α ds Set + A := 2 α ϑ α (s)g 3 (s) Q(s, ξ)dσ(ξ)ds 0. ϑ α (s)ζ (s) α/(α+) r /α ϕ(s) nd B := ζ(s) By using the inequlity (see 2) α α + ϑ α (s)ζ (s) r /α ζ(s) ϑ α (s)ζ (s) α/(α+) α r /α. ζ(s) α + α AB/α A (α+)/α α B(α+)/α, for A 0 nd B 0, (3.0)

11 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), we obtin On the other hnd, define A := ϑ α (s)ζ (s) r /α ϕ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( ϕ(s))(α+)/α ( ) α α+ ζ (s) α α + ϑ(s)r /α ζ(s). ϑ α (s)ζ (s) α/(α+) r /α φ(s) nd B := ζ(s) α α + ϑ α (s)ζ (s) r /α ζ(s) ϑ α (s)ζ (s) α/(α+) α r /α. ζ(s) By virtue of (3.0), we hve ϑ α (s)ζ (s) r /α φ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( φ(s))(α+)/α ( ) α α+ ζ (s) α α + ϑ(s)r /α ζ(s). By using (3.5) nd (3.7), we conclude tht 2 α ϑ α (s)g 3 (s) ( ) α α+ ( ) Q(s, ξ)dσ(ξ) + pα 0 α + ϑ α ( )ϕ( ) + pα ϑ α ( )φ( ) + + pα 0, which contrdicts (3.). This completes the proof. ζ (s) ϑ(s)r /α ds ζ(s) With proof similr to the proof of Theorems 2.2 nd 3., we cn obtin the following criterion for (.3) ssuming tht g(t, ) τ(t). Theorem 3.2. Let conditions (A )-(A 5 ), (.), (.5), (2.2), nd α be stisfied. Suppose tht τ(t) t nd g(t, ) τ(t) for t t 0. Assume lso tht there exists function ρ C (t 0, ), (0, )) such tht (2.6) holds for ll sufficiently lrge t 0 nd for some >. If there exists function ζ C (t 0, ), R) such tht ζ(t) t, ζ(t) g(t, ), ζ (t) > 0 for t t 0, nd (3.) holds for ll sufficiently lrge t 0, then the conclusion of Theorem 3. remins intct. 4. Exmples Similr results cn be obtined under the ssumption tht 0 < α. In this cse, utilizing 5, Lemm 2, one hs to replce Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)} with Q(t, ξ) := 2 α min{q(t, ξ), q(τ(t), ξ)} nd proceed s bove. In this section, we illustrte possible pplictions with two exmples. Exmple 4.. For t, consider third-order neutrl differentil eqution x(t) + x(t 2π) + π 4π xt + ξdξ = 0. (4.) Let α =, = 4π, b = π, r(t) =, p(t) = p 0 =, τ(t) = t 2π, q(t, ξ) =, g(t, ξ) = t + ξ, nd σ(ξ) = ξ. Note tht Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} =, g (t, ) = > 0, g(t, ) = t 4π < t, nd g(t, ) < τ(t). Moreover, let = nd ρ(t) =, then nd G (t) = 4π 4π 2 α ρ(t)g (t) s r /α (u)duds r /α (u)du = t2 /2 (4π + )t + β, β = 8π 2 t2 2 t (4π + ) 2 + 4π +, Q(t, ξ)dσ(ξ) ( (α + ) α+ + pα 0 ) rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α dt

12 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), = 5π G (t)dt = 5π 2 2(4π + )t + 2β dt =. t (4π + ) Hence, by Theorem 2., every solution x of (4.) is either oscilltory or stisfies lim t x(t) = 0. As mtter of fct, x(t) = sin t is n oscilltory solution to (4.). Exmple 4.2. For t, consider third-order neutrl differentil eqution (x(t) + p(t)x(t γ)) + (ξ + )xt + ξdξ = 0, (4.2) where 0 < p(t) p 0, p 0 nd γ re positive constnts. Let α =, = 0, b =, r(t) =, τ(t) = t γ, q(t, ξ) = ξ+, g(t, ξ) = t+ξ, nd σ(ξ) = ξ. Note tht Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} = ξ+, τ(t) = t γ t, nd g(t, ) = t τ(t). Moreover, let =, ρ(t) =, nd ζ(t) = t +, then we hve ϑ(t) = /(t + ), 0 G 2 (t) = γ γ s r /α (u)duds r /α (u)du = γ γ s u 2 duds u 2 du = (t γ)2 + ( ln )(t γ) (t γ)ln(t γ) t γ, nd nd thus 2 α ρ(t)g 2 (t) = 3 2 G 2 (t)dt = 3 2 G 3 (t) = (g(t, ) ) α = t, ( ) Q(t, ξ)dσ(ξ) (α + ) α+ + pα 0 rτ(t)(ρ + (t)) α+ ( ρ(t)) α dt (t γ) 2 + ( ln )(t γ) (t γ)ln(t γ) dt =, t γ nd 2 α ϑ α (t)g 3 (t) = ( α Q(t, ξ)dσ(ξ) 3(t t ) 2(t + ) + p 0 4(t + ) α + dt =. ) α+ ( ) + pα 0 ζ (t) ϑ(t)r /α dt ζ(t) Therefore, by Theorem 3.2, every solution x of (4.2) is either oscilltory or stisfies lim t x(t) = 0. Acknowledgment This reserch is supported by NNSF of P. R. Chin (Grnt Nos nd ), CPSF (Grnt No. 205M58209), nd NSF of Shndong Province (Grnt Nos. ZR206JL02 nd ZR202FL06), DSRF of Linyi University (Grnt No. LYDX205BS00), nd the AMEP of Linyi University, P. R. Chin. References R. P. Agrwl, M. Bohner, W.-T. Li, Nonoscilltion nd oscilltion: theory for functionl differentil equtions, Monogrphs nd Textbooks in Pure nd Applied Mthemtics, Mrcel Dekker, Inc., New York, (2004). 2 B. Bculíková, J. Džurin, On the symptotic behvior of clss of third order nonliner neutrl differentil equtions, Cent. Eur. J. Mth., 8 (200), , 3 B. Bculíková, J. Džurin, Oscilltion of third-order neutrl differentil equtions, Mth. Comput. Modelling, 52 (200), B. Bculíková, J. Džurin, Oscilltion theorems for second order neutrl differentil equtions, Comput. Mth. Appl., 6 (20), B. Bculíková, J. Džurin, Oscilltion theorems for second-order nonliner neutrl differentil equtions, Comput. Mth. Appl., 62 (20), , 2, 4

13 C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), T. Cndn, Oscilltion criteri nd symptotic properties of solutions of third-order nonliner neutrl differentil equtions, Mth. Methods Appl. Sci., 38 (205), R. D. Driver, A mixed neutrl system, Nonliner Anl., 8 (984), S. Fišnrová, R. Mřík, Oscilltion criteri for neutrl second-order hlf-liner differentil equtions with pplictions to Euler type equtions, Bound. Vlue Probl., 204 (204), 4 pges., 9 J. Hle, Theory of functionl differentil equtions, Second edition, Applied Mthemticl Sciences, Springer- Verlg, New York-Heidelberg, (977). 0 Y. Jing, T.-X. Li, Asymptotic behvior of third-order nonliner neutrl dely differentil eqution, J. Inequl. Appl., 204 (204), 7 pges., G. S. Ldde, V. Lkshmiknthm, B. G. Zhng, Oscilltion theory of differentil equtions with deviting rguments, Monogrphs nd Textbooks in Pure nd Applied Mthemtics, Mrcel Dekker, Inc., New York, (987). 2 T.-X. Li, B. Bculíková, J. Džurin, Oscilltory behvior of second-order nonliner neutrl differentil equtions with distributed deviting rguments, Bound. Vlue Probl., 204 (204), 5 pges.,,, 3 3 T.-X. Li, Yu. V. Rogovchenko, Asymptotic behvior of n odd-order dely differentil eqution, Bound. Vlue Probl., 204 (204), 0 pges. 2 4 T.-X. Li, Yu. V. Rogovchenko, Asymptotic behvior of higher-order qusiliner neutrl differentil equtions, Abstr. Appl. Anl., 204 (204), pges.,, 2 5 T.-X. Li, Yu. V. Rogovchenko, Oscilltion of second-order neutrl differentil equtions, Mth. Nchr., 288 (205), T.-X. Li, Yu. V. Rogovchenko, C.-H. Zhng, Oscilltion of second-order neutrl differentil equtions, Funkcil. Ekvc., 56 (203), T.-X. Li, E. Thndpni, Oscilltion of second-order qusi-liner neutrl functionl dynmic equtions with distributed deviting rguments, J. Nonliner Sci. Appl., 4 (20), T.-X. Li, C.-H. Zhng, G.-J. Xing, Oscilltion of third-order neutrl dely differentil equtions, Abstr. Appl. Anl., 202 (202), pges., 9 M. T. Şenel, N. Utku, Oscilltion criteri for third-order neutrl dynmic equtions with continuously distributed dely, Adv. Difference Equ., 204 (204), 5 pges. 20 E. Thndpni, T.-X. Li, On the oscilltion of third-order qusi-liner neutrl functionl differentil equtions, Arch. Mth. (Brno), 47 (20), A. Tiryki, Oscilltion criteri for certin second-order nonliner differentil equtions with deviting rguments, Electron. J. Qul. Theory Differ. Equ., 2009 (2009), pges. 22 P.-G. Wng, Oscilltion criteri for second-order neutrl equtions with distributed deviting rguments, Comput. Mth. Appl., 47 (2004), P.-G. Wng, H. Ci, Oscilltory criteri for higher order functionl differentil equtions with dmping, J. Funct. Spces Appl., 203 (203), 5 pges. 24 J. S. W. Wong, Necessry nd sufficient conditions for oscilltion of second order neutrl differentil equtions, J. Mth. Anl. Appl., 252 (2000), G.-J. Xing, T.-X. Li, C.-H. Zhng, Oscilltion of higher-order qusi-liner neutrl differentil equtions, Adv. Difference Equ., 20 (20), 0 pges.,, 26 Q.-X. Zhng, L. Go, Y.-H. Yu, Oscilltion criteri for third-order neutrl differentil equtions with continuously distributed dely, Appl. Mth. Lett., 25 (202),

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Oscillation of nonlinear second-order neutral delay differential equations

Oscillation of nonlinear second-order neutral delay differential equations Available online at wwwisr-publicationscom/jnsa J Nonlinear Sci Appl, 0 07, 77 734 Research Article Journal Homepage: wwwtjnsacom - wwwisr-publicationscom/jnsa Oscillation of nonlinear second-order neutral

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

New Oscillation Criteria for Second-Order Neutral Delay Dynamic Equations

New Oscillation Criteria for Second-Order Neutral Delay Dynamic Equations International Journal of Mathematical Analysis Vol. 11, 2017, no. 19, 945-954 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.79127 New Oscillation Criteria for Second-Order Neutral Delay

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS Irnin Journl of Fuzzy Systems Vol. 14, No. 6, 2017 pp. 87-102 87 ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS B. M. UZZAL AFSAN Abstrct. The min purpose of this pper is to estblish different types

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Notes on Tobin s. Liquidity Preference as Behavior toward Risk otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

The behavior of solutions of second order delay differential equations

The behavior of solutions of second order delay differential equations J. Math. Anal. Appl. 332 27) 1278 129 www.elsevier.com/locate/jmaa The behavior of solutions of second order delay differential equations Ali Fuat Yeniçerioğlu Department of Mathematics, The Faculty of

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

Spherical quadrangles with three equal sides and rational angles

Spherical quadrangles with three equal sides and rational angles Also vilble t http://mc-journl.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 1 (017) 415 44 Sphericl qudrngles with three equl sides nd rtionl ngles Abstrct

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ Επίδραση άρδευσης και διαφυλλικής λίπανσης με απενεργοποιημένους ζυμομύκητες

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα