IV и. е ые и Си АДИ, ы 5 (51),

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "IV и. е ые и Си АДИ, ы 5 (51),"

Transcript

1 IV «И» Аи PO Кеые : PO ; - И ; - И [] - Веи СиАДИ ы 5 (5) 6 45

2 - - - (ODE) D- - D PO ( - ) - G - И- f R ( f ) с f : X : g f f ε ε ; Y : gε f f ε 46 Веи СиАДИ ы 5 (5) 6 f : gφ f f φ φ s s s ( α ): gα f f cosα snα snα cosα И - - D- - - Д] p q f : D- p q mpq f d; p q Z ; : m f d f : m m ; f m m - f - : f f g F φ s - - m m : J m m - -

3 cos sn sn cos : J ' J : 5 arcg J J J - d J dag J J R J J - J J J - : XY D- C - c : R ; R c c ; a - - ы : A A c A: R R R Д3] GL ;de GL A R A - O GL - O : AR AA A A Id;de A - ρ A ρ ρ R E - - O R : g : a b GL GL dg ; a b d dg : Ag d ; g Id AR - g ep A - : g g GL - : v d Lv v d; L V R () dg v g d - Э Д4]: * * d Lv d Lv v v Lv () ы - X R X - X X ; - ( Id ) Dff X X - - Веи СиАДИ ы 5 (5) 6 47

4 - X R g : X X g - G - : g g g g G - - ODE g ; X v : ; dg d v g g (3) v g X R g ; g ; X - * V v Lv v Lv v d α Lv ; g G v g dg d - : V (4) v v d Lv v d g g g g v - α : v L α Kα (5) : L d a R K L : K e (6) - Э- - [5]: v dα d Dα v α v Dv α (7) Df f ; : v K l l l Д6 7] g n ; n n : σ V n n n v d g (8) Э- σ : σ α ; d d v v k k k K l l d k d K k l k l l l α ; α α α (9) K K - 48 Веи СиАДИ ы 5 (5) 6

5 L K : K e : k l K k l k l e PO (9) : α α α α α α - (9) - - (sсшштчр) PO (pкrтмlо sакrц ШpТЦТгКТШЧ) - α α α (8) - PO - J KОЧЧОНв 995 Д8] - (sакrц) ; : - - ( ) PO (- ε π ) π ( ε ) - θ βπ ; - 4 : σ ; PO: 7 ; : ε ε ( ) ε (; ) (; ) (; -) (-; ) (; ) (; 77) (4; -) (-; -77) (-43; ) (; 77) 84 4 (; 55) (83; -) (-; -55) (-84; ) (; 55) (; 36) (; -) (-; -36) (-; 3) (; 36) (; 8) (56; -) (-; -8) (-54; 3) (; 8) 998 (3; ) (85; -) (-3; ) (-8; 5) (3; ) (; ) (34; ) (; ) (-34; (; ) Веи СиАДИ ы 5 (5) 6 49

6 - : n g n n 34 - : n g n n PO σ - D PO D : PO [9] (- ) : l u l u Mamze f X ; X X X X X (lower) (upper) X PO X X : X V - : f X X - : 3 X V : (a) И - X : P bes X f И X : G bes f X ; (b) : cr bes V V P X cr Gbes X c3 r3 c c c 3 r r r - 3 ; (c) : X X V f X X 4 3 P G - bes bes - - Beg MF e al Compung large deformaon merc mappngs va geodesc flows of dffeomorphsms // Inernaonal ournal of compuer vson // Веи СиАДИ ы 5 (5) 6

7 3 Baker A Mar groups: An nroducon o Le group heor prnger cence & Busness Meda 4 Arnold VI Khesn BA opologcal mehods n hdrodnamcs prnger cence & Busness Meda Holm DD e al Geomerc mechancs and smmer: from fne o nfne dmensons London: Oford Unvers Press 9 6 Mller MI rouve A Younes L Geodesc shoong for compuaonal anaom // Journal of mahemacal magng and vson Bruvers M Holm DD Geomer of mage regsraon: he dffeomorphsm group and momenum maps // Geomer Mechancs and Dnamcs - prnger ew York Kenned J e al warm nellgence Morgan Kaufmann 9 Yang X aure-nspred opmzaon algorhms Elsever 4 APPLICAIO OF PO FOR OLVIG PROB- LEM OF IVARIA COMPARIO OF WO-DIMEIOAL CLOED CURVE DB Abramov O Baranov V Lekher Absrac he problem of esmang he norm of he dsance beween he wo closed smooh curves for paern recognon s consdered Dffeomorphc ransformaon curves based on he model of large deformaons s descrbed For esmang of he norm of he dsance beween wo closed curves s formed he funconal correspondng normalzed dsance beween he wo curves and he equaon of evoluon dffeomorphc ransformaons An algorhm for solvng he equaon of dffeomorphc ransformaon s proposed bul on he bass of PO whch can sgnfcanl reduce he number of compung operaons compared wh graden mehods for solvng he developed algorhms can be used n bonformacs and bomercs ssems classfcaon of mages and obecs machne vson ssems for paern recognon and obec rackng ssems Kewords: nvarance roaon group ranslaon group dffeomorphc ransformaon PO mehod References Beg MF e al Compung large deformaon merc mappngs va geodesc flows of dffeomorphsms // Inernaonal ournal of compuer vson hukanov he Fourer ransform of a funcon of hree-dmensonal mage nvaran o he acon of he roaon group and ransfer Avomera 8 no 3 pp Baker A Mar groups: An nroducon o Le group heor prnger cence & Busness Meda 4 Arnold VI Khesn BA opologcal mehods n hdrodnamcs prnger cence & Busness Meda Holm D D e al Geomerc mechancs and smmer: from fne o nfne dmensons London: Oford Unvers Press 9 6 Mller M I rouve A Younes L Geodesc shoong for compuaonal anaom // Journal of mahemacal magng and vson Bruvers M Holm D D Geomer of mage regsraon: he dffeomorphsm group and momenum maps // Geomer Mechancs and Dnamcs - prnger ew York Kenned J e al warm nellgence Morgan Kaufmann 9 Yang X aure-nspred opmzaon algorhms Elsever 4 ( ) «-» «И» ( О-mal: abramov@kvarksudoru) ( ) «-» «И» ( Оmal: baranov@kvarksudoru) ( ) «-» «И» ( emal: lekher@malru) Abramov Dmr Borsovch (Omsk Russan) posgraduae of he Deparmen "Auomaed sems of Informaon Processng and Managemen" "badi" (6448 Omsk Mra 5 emal: abramov@kvarksudoru) Baranov erge Olegovch (Omsk Russan) posgraduae of he Deparmen "Auomaed sems of Informaon Processng and Managemen" "badi" (6448 Omsk Mra 5 emal: baranov@kvarksudoru) Lekher erge Vladmrovch (Omsk Russan) posgraduae of he Deparmen "Auomaed sems of Informaon Processng and Managemen" "badi" (6448 Omsk Mra 5 emal: lekher@malru) Веи СиАДИ ы 5 (5) 6 5

Super-Resolution Reconstruction for Face Images Based on Particle Filters Method

Super-Resolution Reconstruction for Face Images Based on Particle Filters Method ISSN 1000-9825, CODEN RUUEW E-mal jos@scasaccn Journal of Sofware, Vol17, No12, December 2006, pp2529 2536 hp//wwwjosorgcn DOI 101360/jos172529 Tel/Fax +86-10-62562563 2006 by Journal of Sofware All rghs

Διαβάστε περισσότερα

On homeomorphisms and C 1 maps

On homeomorphisms and C 1 maps arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose

Διαβάστε περισσότερα

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log coupon effecs Fsher Cohen, Kramer and Waugh Ordnary Leas SquaresOLS 3 j τ = a0 a j m a4 log m a5c a6c a7 log C j= τ = a a a [ ] 0 m log m [ a, b] f Pn E f = max f x P x = f P n ( ) ( ) n ( ) a x b n ξ

Διαβάστε περισσότερα

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Probabilistic Image Processing by Extended Gauss-Markov Random Fields Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7] OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,

Διαβάστε περισσότερα

New symmetries of Black-Scholes equation

New symmetries of Black-Scholes equation Proceedngs of he 03 Inernaonal Conference on Appled Mahemacs and Compuaonal Mehods New symmeres of Black-Scholes equaon TSHIDISO MASEBE Tshwane Unversy of Technology Mahs,Scence& Tech Deparmen No Aubrey

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

2002 Journal of Software

2002 Journal of Software 1000-9825/2002/13(02)0239-06 2002 Journal of Sofware Vol13, No2 -,, (, 100084) E-mail: shijing@mailssinghuaeducn; xingcx@singhuaeducn; dcszlz@singhuaeducn hp://dbgroupcssinghuaeducn : 10 12,, I/O -, -,,,

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Power allocation under per-antenna power constraints in multiuser MIMO systems

Power allocation under per-antenna power constraints in multiuser MIMO systems 33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

DOI: /jos Tel/Fax: by Journal of Software. All rights reserved. , )

DOI: /jos Tel/Fax: by Journal of Software. All rights reserved. , ) ISSN 000-9825, ODEN RUXUEW E-mal: os@scasaccn Journal of Sofware, Vol8, No7, July 2007, pp553562 hp://wwwosorgcn DOI: 0360/os8553 Tel/Fax: +86-0-62562563 2007 by Journal of Sofware All rghs reserved Per,2+,

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics

Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics Geomery Inegrably and Qazaon Jne 8-8 7 Fndng Le Symmeres of PDEs wh MTHEMTIC: lcaons o Nonlnear Fber Ocs Vladmr Plov Dearmen of Physcs Techncal Unversy-Varna lgara Ivan Uznov Dearmen of led Physcs Techncal

Διαβάστε περισσότερα

Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity

Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity Amercan Journal of Mahemacs and Sascs (6): 49-56 DOI:.59/.ams.6.8 Nonsaonary Naver-Soes Problem for Incompressble Flud wh Vscosy Taalabe D. Omurov Docor of Physcs and Mahemacs professor of Z. Balasagyn

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Granger FIA JOSEPH. Stock index futures 2005

Granger FIA JOSEPH. Stock index futures 2005 Granger 5 8 9 6 9 8 Fuures Indusry Assocaon FIA /3 4 5 FIA JOSEPH Soc ndex uures 5 oon 974. erec mare 3 4 5 6 7 r 8 9 T mar o mare . F C C F F = C + ( r d)( T ), C = F + ( r d)( T ). r d T C = α + C β

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός

Διαβάστε περισσότερα

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ)

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ) ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ) ΠΑΝΤΕΙΟ-1 BA Α ΟΜΙΛΟΣ ΠΑΝ.ΔΥΤ.ΑΤΤ.-2 ΤΕΙ ΣΤΕΡ.ΕΛΛΑΔ.-1 DE ΕΜΠ-6 LI Β ΟΜΙΛΟΣ ΤΕΙ ΣΤΕΡ.ΕΛΛΑΔ.-2 MD ΠΑΝΤΕΙΟ-3 MC ΠΑΝ.ΔΥΤ.ΑΤΤ.-1 NO ΕΜΠ-4 RU Γ ΟΜΙΛΟΣ ΠΑΝ.ΔΥΤ.ΑΤΤ.-3

Διαβάστε περισσότερα

W ISR i = 5 15 ISR i + 4 15 ISR i 1 + 3 15 ISR i 2 + 2 15 ISR i 3 + 1 15 ISR i 4 W ISR W ISR ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E) E T hreshold = 0.99 e 1 N N i=1 (E i) + 0.01 Ẽ h(t) = H(y )(t)

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

D-Wave D-Wave Systems Inc.

D-Wave D-Wave Systems Inc. D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

«ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΤΕΡΕΟΦΟΡΤΙΟΥ ΣΤΗ ΛΕΚΑΝΗ ΑΠΟΡΡΟΗΣ ΤΟΥ ΝΕΣΤΟΥ, ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΦΡΑΓΜΑΤΩΝ»

«ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΤΕΡΕΟΦΟΡΤΙΟΥ ΣΤΗ ΛΕΚΑΝΗ ΑΠΟΡΡΟΗΣ ΤΟΥ ΝΕΣΤΟΥ, ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΦΡΑΓΜΑΤΩΝ» «ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΤΕΡΕΟΦΟΡΤΙΟΥ ΣΤΗ ΛΕΚΑΝΗ ΑΠΟΡΡΟΗΣ ΤΟΥ ΝΕΣΤΟΥ, ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΦΡΑΓΜΑΤΩΝ» Μανωλία Ανδρεδάκη, MSc Πολιτικός Μηχανικός, Υποψήφια ιδάκτορας Επιβλέπων: Βλ. Χρυσάνθου, Καθηγητής.Π.Θ.

Διαβάστε περισσότερα

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

!  #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $ [ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::

Διαβάστε περισσότερα

Reflection Models. Reflection Models

Reflection Models. Reflection Models Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces

Διαβάστε περισσότερα

!! " # $%&'() * & +(&( 2010

!!  # $%&'() * & +(&( 2010 !!" #$%&'() *& (&( 00 !! VISNIK OF HE VOLODYMYR DAL EAS UKRAINIAN NAIONAL UNIVERSIY 8 (50) 00 8 (50) 00 HE SCIENIFIC JOURNAL " 996 WAS FOUNDED IN 996 " - - " I IS ISSUED WELVE IMES A YEAR "#$% Founder

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,,

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,, 1983 1995 23/83 51/83 39/84 79/86 94/86 135/88 51/89 138/91 67( ) / 92 100( ) / 92 2( ) / 93 70(1)/99 109(1)/99 119(1)/99 16(1)/01 20(1)/01 150(1)/02 102 ( ) /95 33/64 35/75 72/77 59/81.. 79/86... 2/86

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. φ δ δ φ φφ φ 86 δ φ δ An explanation of the taping dimensions can be found

Διαβάστε περισσότερα

www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

Κεφάλαιο 5. Ειδικές Εξισώσεις Περιγραφής Ροής Βασικές αρχές για περιγραφή των περιβαλλοντικών ροών Οι εξισώσεις Navier-Stokes

Κεφάλαιο 5. Ειδικές Εξισώσεις Περιγραφής Ροής Βασικές αρχές για περιγραφή των περιβαλλοντικών ροών Οι εξισώσεις Navier-Stokes Κεφάλαιο 5 Ειδικές Εξισώσεις Περιγραφής Ροής Σύνοψη Περιγράφεται η εξίσωση διατήρησης μάζας και δίνεται η κατάλληλη μορφή της εξίσωσης για προβλήματα επιφανειακών και υπόγειων ροών. Επίσης αναλύεται η

Διαβάστε περισσότερα

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

MATHACHij = γ00 + u0j + rij

MATHACHij = γ00 + u0j + rij Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

G10,O15,E

G10,O15,E G10,O15,E44 1. Email: aiebnia@u.ac.ir 2. Email: bbszareei@yahoo.com 3. Email: hamidyari@u.ac.ir 1. Growh Manship 2. Income Disribuion 3. ProGrowh U U U CK K= C MAX { E[ U ( C )]} = 0 (0,1) γ ε ( ε, ε )

Διαβάστε περισσότερα

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

!!!!# $ # % # & # '##' #!( #)*(+&#!', & - #% '##' #( &2(!%#(345# 6##7 !"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

! #! & 0/! ).#! 71 1&$ -+ # &>  %+# 1 2$ "#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3

Διαβάστε περισσότερα

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing

Διαβάστε περισσότερα

General theorems of Optical Imaging systems

General theorems of Optical Imaging systems Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) = Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε

Διαβάστε περισσότερα

6β1.γ96.96(075.8) MATHEMATICAL MODEL OF MOTION OF A MILITARY TRACKED VEHICLE WITH COMBINED POWER INSTALLATION. V.V.

6β1.γ96.96(075.8) MATHEMATICAL MODEL OF MOTION OF A MILITARY TRACKED VEHICLE WITH COMBINED POWER INSTALLATION. V.V. , :. :., 2009. 108. 7.,.. - - /..,..,....: -, 1981. γ0β. 8.,.. - / -..: -, β006. γγ6. MAHEMAICAL MODEL OF MOION OF A MILIAY ACKED VEHICLE WIH COMBINED POWE INSALLAION V.V. Zakharov Abstract. he article

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment 1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor

Διαβάστε περισσότερα

η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t

Διαβάστε περισσότερα

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN CDF(BIVNORM or CHISQ or DICKEYF or F or NORMAL or T or WTDCHI, DF=CHISQ T, DF1=F, DF2=F, NLAGS= Dickey-Fuller, NOB=, NVAR=, RHO=BIVNORM, EIGVAL=WTDCHI, LOWTAIL or UPTAIL or TWOTAIL, CONSTANT, TREND, TSQ,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.409-46 ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

.,., Klas Eric Soderquist,!., (knowledge transfer). % " $&, " 295 " 72 " marketing 65,, ', (, (.

.,., Klas Eric Soderquist,!., (knowledge transfer). %  $&,  295  72  marketing 65,, ', (, (. ; Klas Eric Soderquist! #$%&'& (knowledge transfer)! # $ () % $& 295 72 marketing 65 ' ( ( ) *: + % % Ελληνική Βιομηχανία: προς την οικονομία της γνώσης ΤΕΕ Αθήνα 3-5 Ιουλίου 2006 Αθήνα 1 (knowledge transfer)

Διαβάστε περισσότερα

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

! #  #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #./-0$23#(&&# ! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <

Διαβάστε περισσότερα

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

9 1. /001/2 27 /8? /89 16 < / B? > DEE F !" #$ %! &!$ % ' $ ($ $ ) #%*!! +!(, % -. /001/2 03 4 /1. / 5 /6 0/078/2 27 91 1:3 /14 10 72 91.1;11 27 < 2 82 27 = 9 /62025 9> / = 9> 0/80 > /8? /89 16 < 3 9 4 24 4 /11 / 89 ;1 @ = 271002 A1? B 602 C

Διαβάστε περισσότερα

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

.. 1,.. 1,.. 2 [1, 2]. - , ( ) [3].,, - . /., - , - «+». ( ) ( ), p T e T e > T 0. G; ;,, ...,.,

.. 1,.. 1,.. 2 [1, 2]. - , ( ) [3].,, - . /., - , - «+». ( ) ( ), p T e T e > T 0. G; ;,, ...,., 536. 59.63 DOI: 0.459/mmh7003........... E-mal: bedeser@yandex.ru -. - -.. -. : ; ; - ;.. [ ]. - - 0 000. 3 (- 50. 3 [3]. -.. - -. -. - [4] /. - - -. -. (. ( 0 - T 0. T e T e > T 0. : G; ; Bulletn of the

Διαβάστε περισσότερα

C F E E E F FF E F B F F A EA C AEC

C F E E E F FF E F B F F A EA C AEC Proceedings of the International Multiconference on Computer Science and Information Technology pp. 767 774 ISBN 978-83-60810-27-9 ISSN 1896-7094 CFEEEFFFEFBFFAEAC AEC EEEDB DACDB DEEE EDBCD BACE FE DD

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm 32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood

Διαβάστε περισσότερα

!"#$!"#$%!"#$ Application Note. Pharmaceutical. Udo Huber. ChemStore C/S! ChemStation Plus!"#$ LC LC/MSD CE GC A/D!"#$%&'()*+,!"#$%!"#$!

!#$!#$%!#$ Application Note. Pharmaceutical. Udo Huber. ChemStore C/S! ChemStation Plus!#$ LC LC/MSD CE GC A/D!#$%&'()*+,!#$%!#$! !"#$!"#$%!"#$ Application Note Pharmaceutical Udo Huber ChemStore C/S! ChemStation Plus!"#$ LCLC/MSDCEGC A/D!"#$%&'()*+,!"#$%!"#$!"#$% ChemStation Plus!"#$%!"#$%&'()*+,-!"#$%&!"#$%&'()!"#$% ChemStation

Διαβάστε περισσότερα

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements 5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration

Διαβάστε περισσότερα

5. Να βρείτε τον ατομικό αριθμό του 2ου μέλους της ομάδας των αλογόνων και να γράψετε την ηλεκτρονιακή δομή του.

5. Να βρείτε τον ατομικό αριθμό του 2ου μέλους της ομάδας των αλογόνων και να γράψετε την ηλεκτρονιακή δομή του. Ερωτήσεις στο 2o κεφάλαιο από τράπεζα θεμάτων 1. α) Ποιος είναι ο μέγιστος αριθμός ηλεκτρονίων που μπορεί να πάρει κάθε μία από τις στιβάδες: K, L, M, N. β) Ποιος είναι ο μέγιστος αριθμός ηλεκτρονίων που

Διαβάστε περισσότερα

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information a David Furman *, a Ronnie Kosloff, a Faina Dubnikova, b Sergey V. Zybin,

Διαβάστε περισσότερα

Quantum annealing inversion and its implementation

Quantum annealing inversion and its implementation 49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Generalized Normal Type-2. Triangular Fuzzy Number

Generalized Normal Type-2. Triangular Fuzzy Number pped Mahemaca Scence, Vo. 7, 203, no. 45, 2239 2252 HIKRI Ld, www.m-hkar.com Generazed orma Type-2 Trangar Fzzy mber bd. Faah Wahab Deparmen of Mahemac, Facy of Scence and Technoogy, Unver Maaya Terenggan,

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107 / 3 ELECσδOWAσσ 10616000 10% I 1960 3 3 400 1220 1073000 2 εogδeah 1974 3 2 1 1 1966 1739/87 / 1 3 1966 I & 3 : 63 20 43 144 30 114 247 122 125 367 177 20 5 24 5 19 79 55 * 55 107 107 30 15 15 62 32 30

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A 7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα