Palatiniversus metricformalism inhigher-curvaturegravity

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Palatiniversus metricformalism inhigher-curvaturegravity"

Transcript

1 Palatiniversus metricformalism inhigher-curvaturegravity Bert Janssen Universidad de Granada & CAFPE In collaboration with: M. Borunda and M. Bastero-Gil (UGR) References: JCAP 0811(2008) 008, arxiv: [hep-th. B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 1/29

2 Outlook 1. The Levi-Civita connection: what and why? B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

3 Outlook 1. The Levi-Civita connection: what and why? 2. Palatini formalism for Einstein-Hilbert B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

4 Outlook 1. The Levi-Civita connection: what and why? 2. Palatini formalism for Einstein-Hilbert 3. Higher-curvature corrections and Lovelock gravity B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

5 Outlook 1. The Levi-Civita connection: what and why? 2. Palatini formalism for Einstein-Hilbert 3. Higher-curvature corrections and Lovelock gravity 4. Palatini versus metric formalism for quadratic curvature gravity B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

6 Outlook 1. The Levi-Civita connection: what and why? 2. Palatini formalism for Einstein-Hilbert 3. Higher-curvature corrections and Lovelock gravity 4. Palatini versus metric formalism for quadratic curvature gravity 5. Palatini versus metric formalism for general Lagrangians B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

7 Outlook 1. The Levi-Civita connection: what and why? 2. Palatini formalism for Einstein-Hilbert 3. Higher-curvature corrections and Lovelock gravity 4. Palatini versus metric formalism for quadratic curvature gravity 5. Palatini versus metric formalism for general Lagrangians 6. Explicit example B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

8 Outlook 1. The Levi-Civita connection: what and why? 2. Palatini formalism for Einstein-Hilbert 3. Higher-curvature corrections and Lovelock gravity 4. Palatini versus metric formalism for quadratic curvature gravity 5. Palatini versus metric formalism for general Lagrangians 6. Explicit example 7. Conclusions B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 2/29

9 1 The Levi-Civita connection: what and why? Main lessons of General Relativity: Gravitational interaction is related to curvature of spacetime, determined by the energy and field content Spacetime is dynamical quantity, with physical degrees of freedom B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 3/29

10 1 The Levi-Civita connection: what and why? Main lessons of General Relativity: Gravitational interaction is related to curvature of spacetime, determined by the energy and field content Spacetime is dynamical quantity, with physical degrees of freedom Spacetime = D-dimLorentzian manifold with metric g µν and connection Γ ρ µν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 3/29

11 1 The Levi-Civita connection: what and why? Main lessons of General Relativity: Gravitational interaction is related to curvature of spacetime, determined by the energy and field content Spacetime is dynamical quantity, with physical degrees of freedom Spacetime = D-dimLorentzian manifold with metric g µν and connection Γ ρ µν Differential geometry: Metric: measures distances in manifold and angles in tangent space Connection: map between tangent spaces that defines parallel transport B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 3/29

12 1 The Levi-Civita connection: what and why? Main lessons of General Relativity: Gravitational interaction is related to curvature of spacetime, determined by the energy and field content Spacetime is dynamical quantity, with physical degrees of freedom Spacetime = D-dimLorentzian manifold with metric g µν and connection Γ ρ µν Differential geometry: Metric: measures distances in manifold and angles in tangent space Connection: map between tangent spaces that defines parallel transport Mathematically metric and connection are independent quantities B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 3/29

13 However if Γ ρ µν satisfies the properties symmetric: Γ ρ µν = Γ ρ νµ ( T ρ µν = 0) metric compatible: µ g νρ = 0 then Γ ρ µν isuniquely determined by the metric Γ ρ µν = 1 2 gρ ( µ g ν + µ g µ g µν ) (Levi-Civita connection) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 4/29

14 However if Γ ρ µν satisfies the properties symmetric: Γ ρ µν = Γ ρ νµ ( T ρ µν = 0) metric compatible: µ g νρ = 0 then Γ ρ µν isuniquely determined by the metric Γ ρ µν = 1 2 gρ ( µ g ν + µ g µ g µν ) (Levi-Civita connection) One usually (tacitly) assumes that Levi-Civita describes correctly physics: uniqueness: see above simplicity: tensor identities simplify physical grounds: Equivalence principle & geodesics B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 4/29

15 Simplicity: many curvature tensor identities simplify for Levi-Civita Bianchi identity: 0 = R µνρ + R νρµ + R ρµν µ Tνρ ν Tρµ ρ Tµν + TµνT σ ρσ + TνρT σ µσ + TρµT σ νσ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 5/29

16 Simplicity: many curvature tensor identities simplify for Levi-Civita Bianchi identity: 0 = R µνρ + R νρµ + R ρµν µ Tνρ ν Tρµ ρ Tµν + TµνT σ ρσ + TνρT σ µσ + TρµT σ νσ Symmetry of Ricci tensor: R [µν = 1 2 R µν 1 2 T µν [µ T ν T ρ µνt ρ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 5/29

17 Simplicity: many curvature tensor identities simplify for Levi-Civita Bianchi identity: 0 = R µνρ + R νρµ + R ρµν µ Tνρ ν Tρµ ρ Tµν + TµνT σ ρσ + TνρT σ µσ + TρµT σ νσ Symmetry of Ricci tensor: R [µν = 1 2 R µν 1 2 T µν [µ T ν T ρ µνt ρ Divergence of Einstein tensor: [ µ G µ ν = TµνR ρ µ ρ 1T 2 µρr µρ ν ρg µ δµr ρ ν + δνr ρ ρ µ + R µν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 5/29

18 Simplicity: many curvature tensor identities simplify for Levi-Civita Bianchi identity: 0 = R µνρ + R νρµ + R ρµν µ Tνρ ν Tρµ ρ Tµν + TµνT σ ρσ + TνρT σ µσ + TρµT σ νσ Symmetry of Ricci tensor: R [µν = 1 2 R µν 1 2 T µν [µ T ν T ρ µνt ρ Divergence of Einstein tensor: [ µ G µ ν = TµνR ρ µ ρ 1T 2 µρr µρ ν ρg µ δµr ρ ν + δνr ρ ρ µ + R µν Partial integration: S = d D x g µ A ν B µν = d D x [ g µ B µν A ν +... ( 1 2 gστ µ g στ + Tµσ )A σ ν B µν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 5/29

19 Physical grounds: Equivalence Principle: gravitational force can locally be gauged away by an appropriate choice of coordinates B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 6/29

20 Physical grounds: Equivalence Principle: gravitational force can locally be gauged away by an appropriate choice of coordinates Mathematically: connection components can locally be set to zero if torsionless (NB: torsion is tensor) Γ ρ µν(p) = 0 T ρ µν = 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 6/29

21 Physical grounds: Equivalence Principle: gravitational force can locally be gauged away by an appropriate choice of coordinates Mathematically: connection components can locally be set to zero if torsionless (NB: torsion is tensor) Γ ρ µν(p) = 0 T ρ µν = 0 Affine and metric geodesics: metric geodesic = shortest curve between two points = curve obtained via Action Principle B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 6/29

22 Physical grounds: Equivalence Principle: gravitational force can locally be gauged away by an appropriate choice of coordinates Mathematically: connection components can locally be set to zero if torsionless (NB: torsion is tensor) Γ ρ µν(p) = 0 T ρ µν = 0 Affine and metric geodesics: metric geodesic = shortest curve between two points = curve obtained via Action Principle affine geodesic = curve with covariantly constant tangent vector = unaccelerated trajectory B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 6/29

23 Physical grounds: Equivalence Principle: gravitational force can locally be gauged away by an appropriate choice of coordinates Mathematically: connection components can locally be set to zero if torsionless (NB: torsion is tensor) Γ ρ µν(p) = 0 T ρ µν = 0 Affine and metric geodesics: metric geodesic = shortest curve between two points = curve obtained via Action Principle affine geodesic = curve with covariantly constant tangent vector = unaccelerated trajectory Affine geodesics and metric geodesics do not coincide, unless for Levi-Civita B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 6/29

24 However if Γ ρ µν satisfies the properties symmetric: Γ ρ µν = Γ ρ νµ ( T ρ µν = 0) metric compatible: µ g νρ = 0 then Γ ρ µν isuniquely determined by the metric Γ ρ µν = 1 2 gρ ( µ g ν + µ g µ g µν ) (Levi-Civita connection) One usually (tacitly) assumes that Levi-Civita describes correctly physics: uniqueness: see above simplicity: tensor identities simplify physical grounds: Equivalence principle & geodesics B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 7/29

25 However if Γ ρ µν satisfies the properties symmetric: Γ ρ µν = Γ ρ νµ ( T ρ µν = 0) metric compatible: µ g νρ = 0 then Γ ρ µν isuniquely determined by the metric Γ ρ µν = 1 2 gρ ( µ g ν + µ g µ g µν ) (Levi-Civita connection) One usually (tacitly) assumes that Levi-Civita describes correctly physics: uniqueness: see above simplicity: tensor identities simplify physical grounds: Equivalence principle & geodesics mathematically more rigorous reason? Palatini formalism! B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 7/29

26 2 Palatini formalism for Einstein-Hilbert 2.1 Metric formalism where S(g) = d D x g g µν R µν (g) R µν = µ Γ ν Γ µν + Γ µσγ σ ν Γ σ µνγ σ Γ ρ µν ( ) = 1 2 gρ µ g ν + µ g µ g µν S(g)non-linear andsecond orderin g µν expect fourth-order diff eqns B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 8/29

27 2 Palatini formalism for Einstein-Hilbert 2.1 Metric formalism where S(g) = d D x g g µν R µν (g) R µν = µ Γ ν Γ µν + Γ µσγ σ ν Γ σ µνγ σ Γ ρ µν ( ) = 1 2 gρ µ g ν + µ g µ g µν S(g)non-linear andsecond orderin g µν expect fourth-order diff eqns explicit calculation: only g g µν contributes to δs(g) R µν (g) 1 2 g µνr(g) = 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 8/29

28 2.2 Palatini formalism Consider metric and connection as independent: S(g, Γ) = d D x g g µν R µν (Γ) where R µν = µ Γ ν Γ µν + Γ µσγ σ ν Γ σ µνγ σ µ g νρ 0 and/or Γ ρ µν Γ ρ νµ δs δg µν R µν (Γ) 1 2 g µνr(γ) = 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 9/29

29 2.2 Palatini formalism Consider metric and connection as independent: S(g, Γ) = d D x g g µν R µν (Γ) where R µν = µ Γ ν Γ µν + Γ µσγ σ ν Γ σ µνγ σ µ g νρ 0 and/or Γ ρ µν Γ ρ νµ δs δg µν R µν (Γ) 1 2 g µνr(γ) = 0 Palatini identity: δr µνρ = µ (δγ νρ) ν (δγ µρ) + T σ µν(δγ σρ) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 9/29

30 2.2 Palatini formalism Consider metric and connection as independent: S(g, Γ) = d D x g g µν R µν (Γ) where R µν = µ Γ ν Γ µν + Γ µσγ σ ν Γ σ µνγ σ µ g νρ 0 and/or Γ ρ µν Γ ρ νµ δs δg µν R µν (Γ) 1 2 g µνr(γ) = 0 Palatini identity: δr µνρ = µ (δγ νρ) ν (δγ µρ) + Tµν(δΓ σ σρ) 0 δs(g, Γ) = d D x [ ( ) g (δγ µν) g µν gστ g στ + Tσ σ ρ g ρν δ µ (1 2 gστ ρ g στ + T σ ρσ g µν ) g ρν δ µ + gρν T µ ρ Γ µν = Levi Civita B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 9/29

31 Advantages of Palatini formalism: δs Practical: Einstein eqn δg µν S = d D x g easy tocalculate if R µνρ = R µνρ (Γ) [ g µν R µν (Γ) + L(φ, g µν ) R µν (Γ) 1 2 g µνr(γ) = T µν Γ µν = Levi Civita if matter isminimally coupled in L(φ, g µν ) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 10/29

32 Advantages of Palatini formalism: δs Practical: Einstein eqn δg µν S = d D x g easy tocalculate if R µνρ = R µνρ (Γ) [ g µν R µν (Γ) + L(φ, g µν ) R µν (Γ) 1 2 g µνr(γ) = T µν Γ µν = Levi Civita if matter isminimally coupled in L(φ, g µν ) Philosophical: Levi-Civita is not just a convenient choice, it is a minimum ofthe action, asolutionof theequations ofmotion Any other connection would not(necessarily) have this property. B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 10/29

33 Advantages of Palatini formalism: δs Practical: Einstein eqn δg µν S = d D x g easy tocalculate if R µνρ = R µνρ (Γ) [ g µν R µν (Γ) + L(φ, g µν ) R µν (Γ) 1 2 g µνr(γ) = T µν Γ µν = Levi Civita if matter isminimally coupled in L(φ, g µν ) Philosophical: Levi-Civita is not just a convenient choice, it is a minimum ofthe action, asolutionof theequations ofmotion Any other connection would not(necessarily) have this property. Question: how much remains valid in presence of curvature corrections? B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 10/29

34 3 Higher-curvature corrections& Lovelock gravity In D = 4, Einstein-Hilbert is most natural choice, but there is no reason to exclude higher-order corrections for D > 4. B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 11/29

35 3 Higher-curvature corrections& Lovelock gravity In D = 4, Einstein-Hilbert is most natural choice, but there is no reason to exclude higher-order corrections for D > 4. Lanczos (1938): S = d 5 x g [R 2 4R µν R µν + R µνρ R µνρ H µν = 2RR µν + 4R ρµν R ρ + 2R µρσ R ρσ ρ ν 4R µρ R ν 1g 2 µν [R 2 4R ρ R ρ + R ρστ R ρστ second order, divergence-free modified Einstein eqns B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 11/29

36 3 Higher-curvature corrections& Lovelock gravity In D = 4, Einstein-Hilbert is most natural choice, but there is no reason to exclude higher-order corrections for D > 4. Lanczos (1938): S = d 5 x g [R 2 4R µν R µν + R µνρ R µνρ H µν = 2RR µν + 4R ρµν R ρ + 2R µρσ R ρσ ρ ν 4R µρ R ν 1g 2 µν [R 2 4R ρ R ρ + R ρστ R ρστ second order, divergence-free modified Einstein eqns NB: R 2 4R µν R µν + R µνρ R µνρ topological invariant in D = 4 identically zeroin D < 4 dynamical in D > 4 isgauss-bonnet term B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 11/29

37 Lovelock (1970): generalise Lanczos to arbitrary D second order, divergence-free Einstein eqns for S = d D x g [Λ + R + L GB L [D/2 where L n = det g µ 1ν 1... g µ 2nν g µ 1ν 2n... g µ 2nν 2n R µ1 µ 2 ν 1 ν 2...R µ2n 1 µ 2n ν 2n 1 ν 2n B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 12/29

38 Lovelock (1970): generalise Lanczos to arbitrary D second order, divergence-free Einstein eqns for S = d D x g [Λ + R + L GB L [D/2 where L n = det g µ 1ν 1... g µ 2nν g µ 1ν 2n... g µ 2nν 2n R µ1 µ 2 ν 1 ν 2...R µ2n 1 µ 2n ν 2n 1 ν 2n String theory: higher-curvature terms appear as correction to sugra [Candelas, Horowitz, Strominger, Witten B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 12/29

39 Lovelock (1970): generalise Lanczos to arbitrary D second order, divergence-free Einstein eqns for S = d D x g [Λ + R + L GB L [D/2 where L n = det g µ 1ν 1... g µ 2nν g µ 1ν 2n... g µ 2nν 2n R µ1 µ 2 ν 1 ν 2...R µ2n 1 µ 2n ν 2n 1 ν 2n String theory: higher-curvature terms appear as correction to sugra [Candelas, Horowitz, Strominger, Witten In general ghosts appear due to higher-derivative terms, unless corrections areof the Lovelock type L n [Zwiebach[Zumino B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 12/29

40 Lovelock (1970): generalise Lanczos to arbitrary D second order, divergence-free Einstein eqns for S = d D x g [Λ + R + L GB L [D/2 where L n = det g µ 1ν 1... g µ 2nν g µ 1ν 2n... g µ 2nν 2n R µ1 µ 2 ν 1 ν 2...R µ2n 1 µ 2n ν 2n 1 ν 2n String theory: higher-curvature terms appear as correction to sugra [Candelas, Horowitz, Strominger, Witten In general ghosts appear due to higher-derivative terms, unless corrections areof the Lovelock type L n [Zwiebach[Zumino L n iseuler character in D = 2n identically zeroin D < 2n topological invariant in D = 2n dynamical in D > 2n B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 12/29

41 absence of ghosts make Lovelock gravities natural extensions to Einstein-Hilbert for D > 4 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 13/29

42 absence of ghosts make Lovelock gravities natural extensions to Einstein-Hilbert for D > 4 Not all stringy corrections are Lovelock, but dilaton might cure the problem. B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 13/29

43 absence of ghosts make Lovelock gravities natural extensions to Einstein-Hilbert for D > 4 Not all stringy corrections are Lovelock, but dilaton might cure the problem. Higher-curvature terms are popular in cosmology modify FRW dynamics that mimic dark matter/energy or cause late time acceleration? increasingly more difficult to derive eqns of motion Palatini come to help? B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 13/29

44 absence of ghosts make Lovelock gravities natural extensions to Einstein-Hilbert for D > 4 Not all stringy corrections are Lovelock, but dilaton might cure the problem. Higher-curvature terms are popular in cosmology modify FRW dynamics that mimic dark matter/energy or cause late time acceleration? increasingly more difficult to derive eqns of motion Palatini come to help? Palatini formalism has been studied in various contexts, though not systematically [Exirifard, Sheikh-Jabbari state that Palatini and metric are equivalent for Lovelock gravity B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 13/29

45 absence of ghosts make Lovelock gravities natural extensions to Einstein-Hilbert for D > 4 Not all stringy corrections are Lovelock, but dilaton might cure the problem. Higher-curvature terms are popular in cosmology modify FRW dynamics that mimic dark matter/energy or cause late time acceleration? increasingly more difficult to derive eqns of motion Palatini come to help? Palatini formalism has been studied in various contexts, though not systematically [Exirifard, Sheikh-Jabbari state that Palatini and metric are equivalent for Lovelock gravity We will demonstrate that metric includes Palatini, but not vice versa B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 13/29

46 4 Palatinivsmetricformalism for(riem) 2 gravity 4.1 Metric formalism S = d D x g [αr 2 + 4βR µν R µν + γr µνρ R µνρ = d D x g [α g µρ g σα δ νδ τβ + 4β g µσ g ρα δ νδ τβ + γ g µσ g ντ g ρα g β R µνρ R στα β Gravitational tensor via chain rule H µν 1 g δs(g) δg µν = 1 g δs(g) δg µν expl + 1 δs(g) g δr δ αβγ δr αβγ δ δγ σ ρ δγ σ ρ δg µν where δr µνρ = µ (δγ νρ) ν (δγ µρ), δγ ρ µν = [ 1 2 gρ µ (δg ν ) + ν (δg µ ) (δg µν ) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 14/29

47 H µν = α [2 µ ν R 2g µν 2 R + 2R µν R 12 g µνr 2 + 4β [ µ ν R 2 R µν 12 g µν 2 R 2R µνρ R ρ 12 g µνr ρ R ρ [ + γ 2 µ ν R 4 2 R µν 4R µρ R ρ ν 4R ρµν R ρ +2R µρσ R ν ρσ 1 2 g µνr ρστ R ρστ. B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 15/29

48 H µν = α [2 µ ν R 2g µν 2 R + 2R µν R 12 g µνr 2 + 4β [ µ ν R 2 R µν 12 g µν 2 R 2R µνρ R ρ 12 g µνr ρ R ρ [ + γ 2 µ ν R 4 2 R µν 4R µρ R ρ ν 4R ρµν R ρ +2R µρσ R ν ρσ 1 2 g µνr ρστ R ρστ. 2 (Riem) terms cancel for (α, β, γ) = (1, 1, 1) Gauss-Bonnet is2ndlovelock term L 2 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 15/29

49 H µν = α [2 µ ν R 2g µν 2 R + 2R µν R 12 g µνr 2 + 4β [ µ ν R 2 R µν 12 g µν 2 R 2R µνρ R ρ 12 g µνr ρ R ρ [ + γ 2 µ ν R 4 2 R µν 4R µρ R ρ ν 4R ρµν R ρ +2R µρσ R ν ρσ 1 2 g µνr ρστ R ρστ. 2 (Riem) terms cancel for (α, β, γ) = (1, 1, 1) Gauss-Bonnet is2ndlovelock term L 2 µ H µν = 0 for arbitrary (α, β, γ) energy conservation generally valid B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 15/29

50 H µν = α [2 µ ν R 2g µν 2 R + 2R µν R 12 g µνr 2 + 4β [ µ ν R 2 R µν 12 g µν 2 R 2R µνρ R ρ 12 g µνr ρ R ρ [ + γ 2 µ ν R 4 2 R µν 4R µρ R ρ ν 4R ρµν R ρ +2R µρσ R ν ρσ 1 2 g µνr ρστ R ρστ. 2 (Riem) terms cancel for (α, β, γ) = (1, 1, 1) Gauss-Bonnet is2ndlovelock term L 2 µ H µν = 0 for arbitrary (α, β, γ) energy conservation generally valid Compare H µν = T µν tocorresponding eqns ofpalatini formalism B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 15/29

51 4.2 Palatini formalism S(g, Γ) = d D x g [ αr 2 + β 1 R µν R νµ + 2β 2 R µν Rνµ + β 3 Rµν Rνµ + β 4 R µν R µν + 2β 5 R µν Rµν + β 6 Rµν Rµν + γ 1 R µνρ R ρµν + γ 2 R µνρ R µνρ + γ 3 R µνρ R µνρ with R µρ R µρ Rµ g νρ R µνρ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 16/29

52 4.2 Palatini formalism S(g, Γ) = d D x g [ αr 2 + β 1 R µν R νµ + 2β 2 R µν Rνµ + β 3 Rµν Rνµ + β 4 R µν R µν + 2β 5 R µν Rµν + β 6 Rµν Rµν + γ 1 R µνρ R ρµν + γ 2 R µνρ R µνρ + γ 3 R µνρ R µνρ with R µρ R µρ Rµ g νρ R µνρ Gravitational tensor: Hµν 1 δs(g,γ) g δg µν H µν = 2αR µν R + β 1 (R µ R ν + R µ R ν ) β 2 (2R (ν σ µ) R σ + R µr ν + R νr µ ) + 2β 3 R (ν ρ µ) R ρ + β 4 (R µ R ν + R µ R ν) β 5 (2R (ν σ µ) R σ + R µr ν + R νr µ ) + 2β 6 R (ν ρ µ) R ρ + γ 1 (R ρσµ R ν σρ + R ρµσ R σρ ν) + 2γ 3 R µρσ R ν ρσ + γ 2 (R ρσµ R ρσ ν + 2R µσρ R ν σρ R ρµσ R ρ ν σ ) 1 2 g µνl B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 16/29

53 Connection tensor: K µν 1 g δs(g, Γ) δγ µν [ = 2α g µν R δν µ R 2β 2 [ R νµ + δ ν σ R σµ + g µν σ R σ µ R ν +2β 4 [ R µν δ ν σ R µσ +2β 6 [ g µν σ Rσ + µ R ν + 4γ 3 σ R νσµ + O( g µν ) + O(T µν) + 2β 1 [ R νµ δ ν σ R σµ + 2β 3 [ µ R ν g µν σ R σ 2β 5 [ Rµν + δ ν σ Rµσ + g µν σ R σ µ R ν + 2γ 1 σ [R µνσ R µσν + 4γ 2 σ R νσ µ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 17/29

54 Connection tensor: K µν 1 g δs(g, Γ) δγ µν [ = 2α g µν R δν µ R 2β 2 [ R νµ + δ ν σ R σµ + g µν σ R σ µ R ν +2β 4 [ R µν δ ν σ R µσ +2β 6 [ g µν σ Rσ + µ R ν + 4γ 3 σ R νσµ + O( g µν ) + O(T µν) + 2β 1 [ R νµ δ ν σ R σµ + 2β 3 [ µ R ν g µν σ R σ 2β 5 [ Rµν + δ ν σ Rµσ + g µν σ R σ µ R ν + 2γ 1 σ [R µνσ R µσν + 4γ 2 σ R νσ µ H µν hasno 2 (Riem) terms, even forarbitrary (α, β, γ) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 17/29

55 Connection tensor: K µν 1 g δs(g, Γ) δγ µν [ = 2α g µν R δν µ R 2β 2 [ R νµ + δ ν σ R σµ + g µν σ R σ µ R ν +2β 4 [ R µν δ ν σ R µσ +2β 6 [ g µν σ Rσ + µ R ν + 4γ 3 σ R νσµ + O( g µν ) + O(T µν) + 2β 1 [ R νµ δ ν σ R σµ + 2β 3 [ µ R ν g µν σ R σ 2β 5 [ Rµν + δ ν σ Rµσ + g µν σ R σ µ R ν + 2γ 1 σ [R µνσ R µσν + 4γ 2 σ R νσ µ H µν hasno 2 (Riem) terms, even forarbitrary (α, β, γ) µ Hµν 0 inconsistency with H µν = T µν? B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 17/29

56 Comparison: takelevi-civita asansatz andsubstitute in H µν and K µν = R µν R µν R νµ R µν = H µν = H Levi Civita µν Kµν Kµν Levi Civita B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 18/29

57 Comparison: takelevi-civita asansatz andsubstitute in H µν and K µν = R µν R µν R νµ R µν = H µν = H Levi Civita µν Kµν Kµν Levi Civita H µν ) = 2αR µν R + 4β (R µρ R ρ ν + R µρν R ρ 1 2 g µν + 2γR µρσ R ν ρσ [αr 2 βr ρ R ρ + γr ρστ R ρστ K µν = 2(α + β)g µν R + 4(β + γ) R µν 2(α + β)δ ν µ R 4(β + γ) µ R ν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 18/29

58 Compare: H µν = α [2 µ ν R 2g µν 2 R + 2R µν R 12 g µνr 2 +β [ µ ν R 2 R µν 12 g µν 2 R 2R µνρ R ρ 12 g µνr ρ R ρ +γ [2 µ ν R 4 2 R µν 4R µρ R ρ ν 4R ρµν R ρ + 2R µρσ R ρσ ν 12 g µνr ρστ R ρστ ) H µν = 2αR µν R + 4β (R µρ R ρ ν + R µρν R ρ ρσ + 2γR µρσ R ν 1g 2 µν [αr 2 βr ρ R ρ + γr ρστ R ρστ K µν = 2(α + β)g µν R + 4(β + γ) R µν 2(α + β)δ ν µ R 4(β + γ) µ R ν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 19/29

59 Compare: H µν = α [2 µ ν R 2g µν 2 R + 2R µν R 12 g µνr 2 +β [ µ ν R 2 R µν 12 g µν 2 R 2R µνρ R ρ 12 g µνr ρ R ρ +γ [2 µ ν R 4 2 R µν 4R µρ R ρ ν 4R ρµν R ρ + 2R µρσ R ρσ ν 12 g µνr ρστ R ρστ ) H µν = 2αR µν R + 4β (R µρ R ρ ν + R µρν R ρ ρσ + 2γR µρσ R ν 1g 2 µν [αr 2 βr ρ R ρ + γr ρστ R ρστ K µν = 2(α + β)g µν R + 4(β + γ) R µν 2(α + β)δ ν µ R 4(β + γ) µ R ν H µν = H µν 1 2 K (µν) g µ ρ K ρν g ν ρ K ρν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 19/29

60 K µν = 2(α + β)g µν R + 4(β + γ) R µν 2(α +β)δ ν µ R 4(β +γ) µ R ν 0 for (α, β, γ) = (1, 1, 1) equivalence for Gauss-Bonnet (= Lovelock) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 20/29

61 K µν = 2(α + β)g µν R + 4(β + γ) R µν 2(α +β)δ ν µ R 4(β +γ) µ R ν 0 for (α, β, γ) = (1, 1, 1) equivalence for Gauss-Bonnet (= Lovelock) All Lagrangianswith (α, β, γ) = (1, 1, 1)reduce togauss-bonnet, but notallhave K µν 0: K µν = 2(α β 2 + β 3 β 5 + β 6 )g µν R + 4(β 1 β 2 + β 4 β 5 + γ) R µν 2(α + β 1 β 2 + β 4 β 5 )δ ν µ R 4( β 2 + β 3 β 5 + β 6 + γ) µ R ν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 20/29

62 K µν = 2(α + β)g µν R + 4(β + γ) R µν 2(α +β)δ ν µ R 4(β +γ) µ R ν 0 for (α, β, γ) = (1, 1, 1) equivalence for Gauss-Bonnet (= Lovelock) All Lagrangianswith (α, β, γ) = (1, 1, 1)reduce togauss-bonnet, but notallhave K µν 0: K µν = 2(α β 2 + β 3 β 5 + β 6 )g µν R + 4(β 1 β 2 + β 4 β 5 + γ) R µν 2(α + β 1 β 2 + β 4 β 5 )δ ν µ R 4( β 2 + β 3 β 5 + β 6 + γ) µ R ν Conditions for K µν 0: α = γ 0, β 1 + β 4 = β 3 + β 6, α + β 1 + β 4 β 2 β 5 = 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 20/29

63 Lagrangiangswith K 0are S 1 (g, Γ) = d D x g [R 2 R µν R νµ 2R Rνµ µν R Rνµ µν + R µνρ R ρµν S 2 (g, Γ) = d D x g [R 2 R µν R νµ R µν R νµ + R µνρ R ρµν S 3 (g, Γ) = d D x g [R 2 2R Rνµ µν + R µνρ R ρµν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 21/29

64 Lagrangiangswith K 0are S 1 (g, Γ) = d D x g [R 2 R µν R νµ 2R Rνµ µν R Rνµ µν + R µνρ R ρµν S 2 (g, Γ) = d D x g [R 2 R µν R νµ R µν R νµ + R µνρ R ρµν S 3 (g, Γ) = d D x g [R 2 2R Rνµ µν + R µνρ R ρµν Lagrangians mustmimicthe symmetries of R µνρ inmetric formalism Determinant definition of Lovelock is too restrictive More (Palatini) inequivalent Lagrangians give Lovelock conditions H µν = H µν (g, g, g ) µ H µν = 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 21/29

65 5 More general Lagrangians S = d D x g L(g µν, R µνρ ) with L functional of (Riem), but not of (Riem) H µν = δl ( δl ) ( δg 1g µν 2 µνl + 1[ 2 α, β g δr ρ(µ δν) 1 2 ρ α αβρ ( δl ) ( ρ β g δr α(µ δν) α αβρ δl δr αβρ ) g β(µ g ν)ρ 1 2 β ( δl δr αβρ δl δr αβρ ) g β(µ δ ν) ) g α(µ g ν)ρ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 22/29

66 5 More general Lagrangians S = d D x g L(g µν, R µνρ ) with L functional of (Riem), but not of (Riem) H µν = δl ( δl ) ( δg 1g µν 2 µνl + 1[ 2 α, β g δr ρ(µ δν) 1 2 ρ α αβρ ( δl ) ( ρ β g δr α(µ δν) α αβρ δl δr αβρ ) g β(µ g ν)ρ 1 2 β ( δl δr αβρ δl δr αβρ ) g β(µ δ ν) ) g α(µ g ν)ρ H µν = δl δg µν K µρ = ν [( 1 2 g µνl δl δr ρνµ ) ( δl δr νρµ ) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 22/29

67 5 More general Lagrangians S = d D x g L(g µν, R µνρ ) with L functional of (Riem), but not of (Riem) H µν = δl ( δl ) ( δg 1g µν 2 µνl + 1[ 2 α, β g δr ρ(µ δν) 1 2 ρ α αβρ ( δl ) ( ρ β g δr α(µ δν) α αβρ δl δr αβρ ) g β(µ g ν)ρ 1 2 β ( δl δr αβρ δl δr αβρ ) g β(µ δ ν) ) g α(µ g ν)ρ H µν = δl δg µν K µρ = ν [( 1 2 g µνl δl δr ρνµ ) ( δl δr νρµ ) H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 22/29

68 Palatini formalism: H µν = T µν, K µν = 0 Metric formalism: H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) = T µν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 23/29

69 Palatini formalism: H µν = T µν, K µν = 0 Metric formalism: H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) = T µν µ H µν = 0 if Γ ρ µν is on-shell B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 23/29

70 Palatini formalism: H µν = T µν, K µν = 0 Metric formalism: H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) = T µν µ H µν = 0 if Γ ρ µν is on-shell Any solution ofpalatini issolutionof metric In general solutions of metric will not be solutions of Palatini Palatini is non-trivial subset of metric B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 23/29

71 Palatini formalism: H µν = T µν, K µν = 0 Metric formalism: H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) = T µν µ H µν = 0 if Γ ρ µν is on-shell Any solution ofpalatini issolutionof metric In general solutions of metric will not be solutions of Palatini Palatini is non-trivial subset of metric Solutions of metric are solution of Palatini K µρ ν B νµρ = 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 23/29

72 Palatini formalism: H µν = T µν, K µν = 0 Metric formalism: H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) = T µν µ H µν = 0 if Γ ρ µν is on-shell Any solution ofpalatini issolutionof metric In general solutions of metric will not be solutions of Palatini Palatini is non-trivial subset of metric Solutions of metric are solution of Palatini K µρ ν B νµρ = 0 B νµρ isconserved current B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 23/29

73 Palatini formalism: H µν = T µν, K µν = 0 Metric formalism: H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) = T µν µ H µν = 0 if Γ ρ µν is on-shell Any solution ofpalatini issolutionof metric In general solutions of metric will not be solutions of Palatini Palatini is non-trivial subset of metric Solutions of metric are solution of Palatini K µρ ν B νµρ = 0 B νµρ isconserved current g µν satisfies certain symmetry requirements B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 23/29

74 Einstein-Hilbert, L = R: K µρ = ν [ g µν δ ρ gρµ δ ν 0 no extra conditions! B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 24/29

75 Einstein-Hilbert, L = R: K µρ = ν [ g µν δ ρ gρµ δ ν 0 no extra conditions! L = R 2 : K µρ = 2 ν [ δ ρ gµν R δg ν µρ R = 0 E.g.: R = Λ (AdS m S n,...) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 24/29

76 Einstein-Hilbert, L = R: K µρ = ν [ g µν δ ρ gρµ δ ν 0 no extra conditions! L = R 2 : K µρ = 2 ν [ δ ρ gµν R δg ν µρ R = 0 E.g.: R = Λ (AdS m S n,...) L = R µν R µν + 2R Rµν µν + R Rµν µν : [ = 4 ν δr ν ρµ + g ρµ R ν δ ρ Rµν g µν R ρ K µρ = 0 E.g.: R µν = Λg µν (Einstein spaces) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 24/29

77 L = R µνρ R µνρ : K µρ = 4 νr µνρ = 0 E.g.: R µνρ = Λ(g µρ g ν g νρ g µ ) (max. symmetric spaces) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 25/29

78 L = R µνρ R µνρ : K µρ = 4 νr µνρ = 0 E.g.: R µνρ = Λ(g µρ g ν g νρ g µ ) (max. symmetric spaces) L = L(g µν, R µνρ l ): K µρ = ν [( δl ) δr ρνµ ( δl δr νρµ ) E.g.: δl δr µνρ = Λ (g µρ δ ν gνρ δ µ ) (diff eqn for g µν for given L) B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 25/29

79 6 Explicit example: FRW in Gauss-Bonnet gravity S = d D x g [R 2 4R µν R µν + R µνρ R µνρ NB: β 4 = 1, β 1 = β 3 = β 6 = 0 = NotPalatini-Lovelock! K µρ = 4 G µρ + 2 µ G ρ + 2 ρ G µ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 26/29

80 6 Explicit example: FRW in Gauss-Bonnet gravity S = d D x g [R 2 4R µν R µν + R µνρ R µνρ NB: β 4 = 1, β 1 = β 3 = β 6 = 0 = NotPalatini-Lovelock! K µρ = 4 G µρ + 2 µ G ρ + 2 ρ G µ Ansatz: ds 2 = dt 2 e 2A(t) ḡ mn dx m dx n with R mnp q = 0 T µν : perfect fluidwith P = ωρ B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 26/29

81 6 Explicit example: FRW in Gauss-Bonnet gravity S = d D x g [R 2 4R µν R µν + R µνρ R µνρ NB: β 4 = 1, β 1 = β 3 = β 6 = 0 = NotPalatini-Lovelock! K µρ = 4 G µρ + 2 µ G ρ + 2 ρ G µ Ansatz: ds 2 = dt 2 e 2A(t) ḡ mn dx m dx n with R mnp q = 0 T µν : perfect fluidwith P = ωρ Metric eqns: H tt = (D 1)! 2(D 5)! (A ) 4, H mn = (D 2)! (D 5)! e2a ḡ mn [ 2A (A ) (D 1)(A ) 4 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 26/29

82 6 Explicit example: FRW in Gauss-Bonnet gravity S = d D x g [R 2 4R µν R µν + R µνρ R µνρ NB: β 4 = 1, β 1 = β 3 = β 6 = 0 = NotPalatini-Lovelock! K µρ = 4 G µρ + 2 µ G ρ + 2 ρ G µ Ansatz: ds 2 = dt 2 e 2A(t) ḡ mn dx m dx n with R mnp q = 0 T µν : perfect fluidwith P = ωρ Metric eqns: H tt = (D 1)! 2(D 5)! (A ) 4, H mn = (D 2)! (D 5)! e2a ḡ mn [ 2A (A ) (D 1)(A ) 4 Solutions: ω = 1: desitter space with A(t) = 1 t ω 1: powerlaw solution with e A(t) = 2 ( (D 1)(1+ω) ) 4 t t 0 B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 26/29

83 Palatini eqns: H tt = (D 1)(D 2) [4(A ) 2 + 4A (A ) (D 3)(D 4)(A ) 4 [ H mn = e 2A ḡ mn 4(D 2)(A ) 2 + 2(D 2) 2 (D 5)A (A ) 2 + (D 1)! 2(D 5)! (A ) 4 Ktt t = 8(D 1)(D 2)A A K p tm = 2(D 2) δm [A p + (D 4)A A [ Kmn t = 4(D 2) e 2A ḡ mn A + (D 2)A A B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 27/29

84 Palatini eqns: H tt = (D 1)(D 2) [4(A ) 2 + 4A (A ) (D 3)(D 4)(A ) 4 [ H mn = e 2A ḡ mn 4(D 2)(A ) 2 + 2(D 2) 2 (D 5)A (A ) 2 + (D 1)! 2(D 5)! (A ) 4 Ktt t = 8(D 1)(D 2)A A K p tm = 2(D 2) δm [A p + (D 4)A A [ Kmn t = 4(D 2) e 2A ḡ mn A + (D 2)A A Solutions: K ρ µν = 0 forde Sitter solution H µν = T µν = H µν = T µν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 27/29

85 Palatini eqns: H tt = (D 1)(D 2) [4(A ) 2 + 4A (A ) (D 3)(D 4)(A ) 4 [ H mn = e 2A ḡ mn 4(D 2)(A ) 2 + 2(D 2) 2 (D 5)A (A ) 2 + (D 1)! 2(D 5)! (A ) 4 Ktt t = 8(D 1)(D 2)A A K p tm = 2(D 2) δm [A p + (D 4)A A [ Kmn t = 4(D 2) e 2A ḡ mn A + (D 2)A A Solutions: K ρ µν = 0 forde Sitter solution H µν = T µν = H µν = T µν K ρ µν 0 forpower law solution no solution for Palatini eqns! B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 27/29

86 Palatini eqns: H tt = (D 1)(D 2) [4(A ) 2 + 4A (A ) (D 3)(D 4)(A ) 4 [ H mn = e 2A ḡ mn 4(D 2)(A ) 2 + 2(D 2) 2 (D 5)A (A ) 2 + (D 1)! 2(D 5)! (A ) 4 Ktt t = 8(D 1)(D 2)A A K p tm = 2(D 2) δm [A p + (D 4)A A [ Kmn t = 4(D 2) e 2A ḡ mn A + (D 2)A A Solutions: K ρ µν = 0 forde Sitter solution H µν = T µν = H µν = T µν K ρ µν 0 forpower law solution no solution for Palatini eqns! Only desitter satisfies G µν = Λg µν Only ω = 1hasnecessary symmetries B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 27/29

87 7 Conclusions For an action S = d D x [ g L(g µν, R µνρ ) + L(g µν, φ) Metric formalism: H µν = T µν where H µν 1 g δs(g) δg µν B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 28/29

88 7 Conclusions For an action S = d D x [ g L(g µν, R µνρ ) + L(g µν, φ) Metric formalism: Palatini formalism: H µν = T µν where H µν 1 g δs(g) δg µν H µν = T µν, K µν = 0 where H µν 1 δs(g, Γ), K µν g δg µν 1 δs(g, Γ) g δγ µν Levi Civita B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 28/29

89 H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) Equivalence between both formalisms for K ρ µν 0 Lovelock in metric AND sufficient symmetries in Palatini Solutions of Palatini eqns are solutions of metric eqns Solutions of metric eqns are solutions of Palatini if required symmetry Palatini is non-trivial subset of metric B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 29/29

90 H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) Equivalence between both formalisms for K ρ µν 0 Lovelock in metric AND sufficient symmetries in Palatini Solutions of Palatini eqns are solutions of metric eqns Solutions of metric eqns are solutions of Palatini if required symmetry Palatini is non-trivial subset of metric Practical advantage? Still possible to calculate H µν frompalatini eqns butit isnotworthit... B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 29/29

91 H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) Equivalence between both formalisms for K ρ µν 0 Lovelock in metric AND sufficient symmetries in Palatini Solutions of Palatini eqns are solutions of metric eqns Solutions of metric eqns are solutions of Palatini if required symmetry Palatini is non-trivial subset of metric Practical advantage? Still possible to calculate H µν frompalatini eqns butit isnotworthit... Philosophical advantage? Levi-Civita is minimum of the action for Palatini solutions for other solutions, just convenient choice? B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 29/29

92 H µν = H µν 1 2 ρk ρ (µν) g µ ρ K (νρ) g ν ρ K (µρ) Equivalence between both formalisms for K ρ µν 0 Lovelock in metric AND sufficient symmetries in Palatini Solutions of Palatini eqns are solutions of metric eqns Solutions of metric eqns are solutions of Palatini if required symmetry Palatini is non-trivial subset of metric Practical advantage? Still possible to calculate H µν frompalatini eqns butit isnotworthit... Philosophical advantage? Levi-Civita is minimum of the action for Palatini solutions for other solutions, just convenient choice? Advantages are obvious when equivalence: Lovelock is very special! B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 29/29

93 Recall: H µν = 1 g δs(g) δg µν expl + 1 g δs(g) δr αβγ δ δr αβγ δ δγ σ ρ δγ σ ρ δg µν H µν 1 g δs(g, Γ) δg µν, K µν 1 g δs(g, Γ) δγ µν H µν = H µν 1 2 ρk ρ (µν) + 1g 2 µ ρ K(νρ) + 1g 2 ν ρ K(µρ) the chain rule reflects structure of Lovelock gravities no (Riem) terms K µν 0 equivalence between metric & Palatini B. Janssen (UGR) Palatini vs metric formalism in higher-curvature gravity 30/29

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

From Fierz-Pauli to Einstein-Hilbert

From Fierz-Pauli to Einstein-Hilbert From Fierz-Pauli to Einstein-Hilbert Gravity as a special relativistic field theory Bert Janssen Universidad de Granada & CAFPE A pedagogical review References: R. Feynman et al, The Feynman Lectures on

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

A Short Introduction to Tensors

A Short Introduction to Tensors May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Toward a non-metric theory of gravity

Toward a non-metric theory of gravity oward a non-metric theory of gravity playing around with the (affine) connection! Oscar Castillo-Felisola o.castillo.felisola(at)gmail.com UFSM, Valparaiso O. Castillo-Felisola (UFSM, Valparaiso) oward

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Parallel transport and geodesics

Parallel transport and geodesics Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

A Short Introduction to Tensor Analysis

A Short Introduction to Tensor Analysis June 20, 2008 Scalars and Vectors An n-dim manifold is a space M on every point of which we can assign n numbers (x 1,x 2,...,x n ) the coordinates, in such a way that there will be a one to one correspondence

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Riemannian Curvature

Riemannian Curvature Riemannian Curvature February 6, 013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, w, which we parallel

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Geometry of the 2-sphere

Geometry of the 2-sphere Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,

Διαβάστε περισσότερα

A Short Introduction to Tensor Analysis 2

A Short Introduction to Tensor Analysis 2 A Short Introduction to Tensor Analysis 2 Kostas Kokkotas November 12, 2013 2 This chapter based strongly on Lectures of General Relativity by A. Papapetrou, D. Reidel publishing company, (1974) Kostas

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Sixth lecture September 21, 2006

Sixth lecture September 21, 2006 Sixth lecture September, 006 Web Page: http://www.colorado.edu/physics/phys7840 NOTE: Next lectures Tuesday, Sept. 6; noon Thursday, Sept. 8; noon Tuesday, Oct. 3; noon Thursday, Oct. 5; noon more????

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 s Free graviton Hamiltonian Show that the free graviton action we discussed in class (before making it gauge- and Lorentzinvariant), S 0 = α d 4 x µ h ij µ h ij, () yields the correct free Hamiltonian

Διαβάστε περισσότερα

Ricci Tensor of Diagonal Metric

Ricci Tensor of Diagonal Metric University of Massachusetts - Amherst ScholarWorks@UMass Amherst Astronomy Department Faculty Publication Series Astronomy 1996 Ricci Tensor of Diaonal Metric K. Z. Win University of Massachusetts - Amherst

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Linearized Conformal gravity

Linearized Conformal gravity Utah State University From the SelectedWors of James Thomas Wheeler Winter January 28, 206 Linearized Conformal gravity James Thomas Wheeler Available at: https://wors.bepress.com/james_wheeler/8/ Linearized

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα