Turkish Journal of I N E Q U A L I T I E S

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Turkish Journal of I N E Q U A L I T I E S"

Transcript

1 Turkih J Ineq, ) 7), Page 6 37 Turkih Journal of I N E Q U A L I T I E S Available online at wwwtjinequalitycom PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS M ADIL KHAN AND TU KHAN Abtract The paper preent Hermite-Hadamard type inequalitie, which involve Riemann-Liouville fractional integral and contain an arbitrary parameter from the interval of definition of twice differentiable convex and concave function Introduction Fractional calculu i the notion of integral and derivative of arbitrary order, which i the generalization of integer-order differentiation and n-fold integration The beginning of fractional calculu i conidered to be the correpondence between L Hopital and Leibniz in 695, where the idea for differentiation of non-integer order wa dicued 9 Thi correpondence gave birth to the idea of fractional calculu Further contribution in thi area were made by Euler, Laplace, Fourier, Abel, Liouville, Riemann, Grunwald, Letnikov, Hadamard, Weyl, Riez, Marchaud, Kober and Caputo, 9, Fractional calculu play an important role in variou field uch a Electricity, Biology, Economic, Signal and Image Proceing The following definition i well-known in the literature and i widely ued: Definition A function ζ : I R, defined on the interval I in R, i aid to be convex on I if ζρτ ρ)τ ) ρζτ ) ρ)ζτ ), ) for all τ, τ I and ρ Alo we ay that ζ i concave on I, if the inequality given in ) hold in the revere direction Correponding to the definition of convex function the following double inequality ha played a very important role in variou field of cience Key word and phrae Convex function, Hermite-Hadamard inequality, fractional integral, Hölder inequality Mathematic Subject Claification 6D5 Received: 87 Accepted:87 6

2 PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 7 Theorem Let ζ be a convex function Then for τ, τ I with τ < τ, ξ τ, τ we have: ) τ τ τ ζ ζξ)dξ ζτ ) ζτ ) ) τ τ τ The order of inequality in ) i revered if ζ i concave Thi inequality i the widely ued Hermite-Hadamard inequality, which give an etimate from both ide of the mean ie from above and below of the mean value of a convex function and enure the integrability of any convex function too For more information about the Hermite-Hadamard inequality, the intereted reader can ee, 4 8, 5, 3, 4 We recall the definition of Riemann-Liouville R-L) fractional integral which we will ue in further reult: Definition 9) Let ζ L τ, τ with τ The Riemann-Liouville R-L) fractional integral operator J η ζ and J η ζ of order η > are defined by: τ τ J η τ ξ ζξ) = ξ ρ) η ζρ)dρ, with ξ > τ Γη) τ and J η ζξ) = τ ρ ξ) η ζρ)dρ, τ Γη) ξ with ξ < τ Here, Γη) repreent the Gamma function given by: Here J ζξ) = J ζξ) = ζξ) τ τ Riemann integral Γη) = e u u η du When η =, the R-L fractional integral reduce to E Set firtly examined Otrowki type inequalitie involving R-L fractional integral Alo, Sarikaya et al tudied the fractional form of the inequality ) For other of-late application of fractional derivative and fractional integral, one can ee 3, 4, 8,, 3 9 The fractional form of Hermite-Hadamard inequality i given below We will deign new bound for the difference of rightmot term in thi inequality Theorem ) Let ζ : τ, τ R be a poitive function with τ < τ and ζ L τ, τ If ζ i convex function on τ, τ, then the following inequality for R-L fractional integral hold: ) τ τ Γη ) ζ τ τ ) η J η τ ζτ ) J η τ ζτ ) ζτ ) ζτ ) 3) Remark By replacing η = in 3), we get the inequality )

3 8 M ADIL KHAN AND TU KHAN The following reult i due to Sarikaya et al, which contain a differentiable convex function In thi reult the difference of rightmot term in inequality 3) wa bounded Theorem 3 ) Let ζ : I R R be a twice differentiable function on I the interior of I) uch that τ, τ I with τ < τ If ζ i convex function on τ, τ, then the following inequality for fractional integral hold: ζτ ) ζτ ) Γη ) τ τ ) η J η ζτ τ ) J η ζτ τ ) τ τ ) η ) η ) ζ τ ) ζ τ ) In 7, Yu ming chu et al have dicovered an integral identity involving R-L fractional integral, which i given below: Lemma Let ζ : I, ) R be a twice differentiable function on I, uch that τ, τ I with τ < τ If ζ L τ, τ, then for η >, θ τ, τ the following identity hold: ζ θ) θ τ ) η τ θ) η) η )ζτ )τ θ) η η )ζτ )θ τ ) η η )τ τ ) Γη ) J η ζθ) J η ζθ) = θ τ ) η τ τ ) τ τ η )τ τ ) τ θ) η η )τ τ ) ρ η) ζ ρτ ρ)θ)dρ ρ η) ζ ρτ ρ)θ)dρ 4) Here, in the current paper, we deduce ome parameterized inequalitie of Hermite-Hadamard type via R-L fractional integral ee Theorem,,3,5,4) The novelty of thee reult i that they contain an arbitrary parameter θ from the interval of definition of twice differentiable convex or concave function Further more when the parameter θ i replaced by the midpoint of the interval we get different bound for the trapezoidal formula Main reult Before giving our main reult we introduce ome notation for the ake of implification Let ζ : I, ) R be a twice differentiable function on I and τ, τ I with τ < τ If ζ L τ, τ ζ i integrable on τ, τ ), then for all θ τ, τ and η >, we define L ζ by: L ζ θ, η, τ, τ ) = ζ θ) θ τ ) η τ θ) η) η )ζτ )τ θ) η η )ζτ )θ τ ) η η )τ τ ) Γη ) J η ζθ) J η ζθ) τ τ ) τ τ

4 PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 9 For θ = τ τ, we have ) τ τ L ζ, η, τ, τ = and by putting η = in thi, we get ) τ τ η ζτ ) ζτ ) Γη ) J η τ τ ζ τ τ ) τ ) J η ζ τ ) τ τ L ζ,, τ, τ = ζτ ) ζτ ) τ τ τ τ τ τ ), ζθ)dθ, which i the difference between the two right mot term in ) or the celebrated trapezoidal formula term Now we find out our firt parameterized bound Theorem Let all the requiite of Lemma hold Additionally, if ζ i convex function on τ, τ, then we have: L ζ θ, η, τ, τ ) θ τ ) η ζ τ ) η4 η ζ θ) τ θ) η ζ τ ) η4 τ τ )η 3) η ζ θ) ) Proof Uing Lemma, well known triangle inequality and convexity of ζ, we have L ζ θ, η, τ, τ ) θ τ ) η ρ η ) ζ ρτ ρ)θ) dρ η )τ τ ) τ θ) η η )τ τ ) θ τ ) η η )τ τ ) τ θ) η η )τ τ ) = θ τ ) η η )τ τ ) τ θ) η η )τ τ ) = θ τ ) η The proof i completed ρ η ) ζ ρτ ρ)θ) dρ ρ η) ρ ζ τ ) ρ) ζ θ) dρ ρ η) ρ ζ τ ) ρ) ζ θ) dρ η η 3) η η 3) ζ τ ) η4 η ζ θ) ) η 4)η ) ζ τ ) η 3)η ) ) ζ τ ) η 4)η ) η 3)η ) ) ζ θ) ) ζ θ) τ θ) η ζ τ ) η4 η ζ θ) τ τ )η 3)

5 3 M ADIL KHAN AND TU KHAN Corollary Under the hypothei of Theorem, we get ) ) L τ τ τ τ η ζ τ ) ζ τ ) ζ, η, τ, τ ) η ) Proof If we put θ = τ τ in inequality ) and ue the convexity of ζ, we get the deired inequality The aociated verion for power of the econd derivative abolute value of the function are included in the following theorem Theorem Let all the requiite of Lemma hold Additionally, if ζ i convex function on τ, τ for > and r =, then we have the following inequality: L ζ θ, η, τ, τ ) ) M r θ τ ) η ζ τ ) ζ θ) ) η )τ τ ) τ θ) η ζ τ ) ζ θ) ), 3) where M = Γ r)γ η ) η )Γ r η ) Proof Uing Lemma, triangle and Hölder inequalitie, we have L ζ θ, η, τ, τ ) θ τ ) η ρ η ) ζ ρτ ρ)θ) dρ η )τ τ ) τ θ) η η )τ τ ) θ τ ) η η )τ τ ) τ θ) η η )τ τ ) Uing the convexity of ζ, we get ρ η ) ζ ρτ ρ)θ) dρ r ρ η) r dρ r ρ η) r dρ ζ ρτ ρ)θ) dρ ζ ρτ ρ)θ) dρ ζ ρτ ρ)θ) dρ = ρ ζ τ ) ρ) ζ θ) ) dρ ζ τ ) ζ θ)

6 PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 3 Similarly alo ζ ρτ ρ)θ) dρ ρ ζ τ ) ρ) ζ θ) ) dρ = ζ τ ) ζ θ) ρ η) r dρ = u η u) r du = η Combining all the above inequalitie, we have the concluion 3) Γ r)γ η ) η )Γ r η ) = M Corollary Under the hypothei of Theorem, we have ) L τ τ M ζ, η, τ, τ ) ) r τ τ η η ) ) ζ τ ) τ τ ) ζ ) ζ τ ) τ τ ) ζ ) M τ τ η ζ τ ) ζ τ ) r 4) η ) Proof In inequality 3), if we take θ = τ τ, we get the firt bound in 4) The econd bound in 4) can be obtained by uing the convexity of ζ and the fact that: µ µ x ν y ν ) ω x ω ν µ yν ω, ν= ν= ν= for ω and x i, y i, where i =,, µ A more general parameterized bound can be prolonged in the following Theorem Theorem 3 Let all the requiite of Lemma hold Additionally, if ζ i convex function on τ, τ for, then we have the following inequality: L ζ θ, η, τ, τ ) ) η η η )τ τ ) ) η θ τ ) η η 3) ζ τ ) η 4)η ) η 3)η ) ζ θ) ) η τ θ) η η 3) ζ τ ) η 4)η ) η 3)η ) ζ θ) 5)

7 3 M ADIL KHAN AND TU KHAN Proof Uing Lemma and Power mean-inequality, we have L ζ θ, η, τ, τ ) θ τ ) η η )τ τ ) τ θ) η η )τ τ ) θ τ ) η η )τ τ ) τ θ) η η )τ τ ) ρ η) ζ ρτ ρ)θ) dρ ρ η) ζ ρτ ρ)θ) dρ ρ η )dρ ρ η) ζ ρτ ρ)θ) dρ ρ η )dρ ρ η) ζ ρτ ρ)θ) dρ 6) ince ζ i convex function on τ, τ, o we have ρ η ) ζ ρτ ρ)θ) dρ = ρ ρ η ) ζ τ ) ρ) ρ η ) ζ θ) dρ η η 3) ζ τ ) η 4)η ) η 3)η ) ζ θ), 7) imilarly we can write ρ η ) ζ ρτ ρ)θ) dρ = ρ ρ η ) ζ τ ) ρ) ρ η ) ζ θ) dρ η η 3) ζ τ ) η 4)η ) η 3)η ) ζ θ) 8) Alo we have ρ η )dρ = ) η η Now uing 7) and 8) in 6), we get 5)

8 PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 33 Corollary 3 Under the hypothei of Theorem 3, we have ) L τ τ ζ, η, τ, τ ) η τ τ ) η η η ) η η 3) ζ τ ) η η 3) ζ τ ) η 4)η ) η 3)η ) ζ τ τ ) η ) ) η η 4 η 3) η 3) η 4)η ) η 3)η ) ζ τ τ ) ) τ τ ) ζ τ ) ζ τ ) η ) ) ) 9) Proof In inequality 5), if we take θ = τ τ, we get the firt bound in 9) The econd bound in 9) can be obtained by uing the fact that: µ µ µ x ν y ν ) ω x ω ν yν ω, ν= ν= ν= for ω and x i, y i, where i =,, µ and then convexity of ζ Remark By putting = in 9), we get the inequality ) Intead of convexity, uing concavity property of the function we get two different inequalitie, which are given below Theorem 4 Let all the requiite of Lemma hold Additionally, If ζ i concave on τ, τ for each >, then the following inequality hold: L ζ θ, η, τ, τ ) θ τ ) η ) ζ η)τ η4)θ η3) τ θ) η ) ζ η)τ η4)θ η3) η )τ τ ) ) for each θ in τ, τ Proof By power mean inequality, we have ρ ζ τ ) ρ) ζ τ ) ) ρ ζ τ ) ρ) ζ τ ) ζ ρτ ρ)τ ), by concavity of ζ ) and therefore ζ ρτ ρ)τ ) ρ ζ τ ) ρ) ζ τ ),

9 34 M ADIL KHAN AND TU KHAN thi how that ζ i alo concave Now uing Lemma, triangular inequality and then Jenen integral inequality in turn, we have L ζ θ, η, τ, τ ) θ τ ) η η )τ τ ) τ θ) η η )τ τ ) ρ η) ζ ρτ ρ)θ) dρ ρ η) ζ ρτ ρ)θ) dρ θ τ ) η ρ η )ρτ ρ)θ)dρ ρ η )dρ ζ η )τ τ ) ρ η )dρ τ θ) η ρ η )ρτ ρ)θ)dρ ρ η )dρ ζ η )τ τ ) ρ η )dρ = θ τ ) η ) ζ η)τ η4)θ η3) τ θ) η ) ζ η)τ η4)θ η3) η )τ τ ) Corollary 4 Under the hypothei of Theorem 4, we have the following: ) ) L τ τ τ τ η ) 3η 8)τ η 4)τ ζ, η, τ, τ η ) ζ 4η 3) ) 3η 8)τ η 4)τ ζ 4η 3) ) τ τ η ) τ τ η ζ ) Proof By chooing θ = τ τ in the inequality ), we get the firt bound in ) The econd bound in ) i obtained by uing the concavity of ζ If we ue the property of concavity of ζ in another way, we get an another general reult, which i given below Theorem 5 Let all the requiite of Lemma hold Additionally, if ζ i concave function on τ, τ for > uch that r = Then we have the following inequality: θ τ L ζ θ, η, τ, τ ) M ) η ) ζ θτ τ θ) η ) ζ θτ r ) η )τ τ ) where M = Γr)Γ η ) η)γr η )

10 PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 35 Proof Applying Lemma, triangle and Hölder inequalitie, we have L ζ θ, η, τ, τ ) θ τ ) η ρ η ) ζ ρτ ρ)θ) dρ η )τ τ ) τ θ) η η )τ τ ) θ τ ) η η )τ τ ) τ θ) η η )τ τ ) ρ η ) ζ ρτ ρ)θ) dρ r ρ η) r dρ r ρ η) r dρ ζ ρτ ρ)θ) dρ ζ ρτ ρ)θ) dρ Since, ζ i concave on τ, τ, we can ue the Jenen inequality to get: ζ ρτ ρ)θ) dρ ζ ρτ ρ)θ)dρ ) = θ τ ζ, Similarly, Alo, ) ζ ρτ ρ)θ) dρ θ τ ζ ρ η) r dρ = u) r u η du = η Γ r)γ η ) η )Γ r η ) = M putting the lat three inequalitie in the above inequality, we get the required inequality in ) Corollary 5 Let all the requiite of Theorem 5 hold Then we have: ) L τ τ ζ, η, τ, τ M r τ τ ) η ) ) 3τ τ η η ) ζ τ 3τ 4 ζ 4 where M r η M = τ τ ) η ) ζ τ τ 3) Γ r)γ η ) η )Γ r η ) Proof By chooing θ = τ τ in the inequality ), we get the firt bound in 3) The econd bound in 3) i obtained uing concavity of ζ

11 36 M ADIL KHAN AND TU KHAN Competing interet The author declare that they have no competing interet Author contribution All author contributed equally to the writing of thi paper All author read and approved the final manucript Reference R Bai, F Qi, B Xi, Hermite-Hadamard type inequalitie for the m and α, m)-logarithmically convex function, Filomat, 73), -7 K Diethelm, The analyi of fractional differential equation, Lecture Note in Mathematic, 3 YJ Hao, HM Srivatava, H Jafari, XJ Yang, Helmholtz and diffuion equation aociated with local fractional derivative operator involving the Cantorian and Cantor-type cylindrical coordinate, Adv Math Phy, 33), Art ID 75448, -5 4 I Ican, New general integral inequalitie for quai-geometrically convex function via fractional integral, J Inequal Appl, 33), -5 5 I Ican, Generalization of different type integral inequalitie for -convex function via fractional integral, Appl Anal, 934), WH Li, F Qi, Some Hermite-Hadamard type inequalitie for function whoe n-th derivative are a, m)-convex, Filomat, 73), Yu-Ming Chu, M Adil Khan, TU Khan, T Ali, Generalization of Hermite-Hadamard type inequalitie for MT-convex function, J Nonlinear Sci Appl, 96), XJ Ma, HM Srivatava, D Baleanu, XJ Yang, A new Neumann erie method for olving a family of local fractional Fredholm and Volterra integral equation, Math Probl Eng, 3 3), Art ID 35, -6 9 I Podlubny, Fractional Differential Equation, Academic Pre, San Diego, 999 E Set, New inequalitie of Otrowki type for mapping whoe derivative are -convex in the econd ene via fractional integral, Comput Math Appl, 63), HM Srivatava and P Agarwal, Certain fractional integral operator and the generalized incomplete hypergeometric function, Appl Appl Math, 83), MZ Sarikaya, E Set, H Yaldiz and N Baak, Hermite-Hadamard inequalitie for fractional integral and related fractional inequalitie, Math and Comp Modelling, 573), J Wang, X Li, C Zhu, Refinement of Hermite-Hadamard type inequalitie involving fractional integral, Bull Belg Math Soc Simon Stevin, 3), J Wang, J Deng, M Feckan, Hermite-Hadamard type inequalitie for r-convex function via R-L fractional integral, Ukrainian Math J, 653), 93-5 J Wang, X Li, M Feckan, Y Zhou, Hermite-Hadamard-type inequalitie for R-L fractional integral via two kind of convexity, Appl Anal, 93), XJ Yang, D Baleanu, HM Srivatava, JAT Machado, On local fractional continuou wavelet tranform, Abtr Appl Anal 33), Art ID 7546, -5 7 AM Yang, ZS Chen, HM Srivatava, XJ Yang, Application of the local fractional erie method and the variational iteration method to the Helmhotz equation involving local fractional derivative operator, Abtr Appl Anal, 33), Art ID 595, -6 8 XJ Yang, HM Srivatava, JH He, D Baleanu, Cantor-type cylindrical-coordinate method for differential equation with local fractional derivative, Phy Lett A, 3773), C Zhu, M Feckan, J Wang, Fractional integral inequalitie for differentiable convex mapping and application to pecial mean and a midpoint formula, J Appl Math Statitic Inform, 8), -8 ECD Oliveira, JAT Machado, Review of definition for fractional derivative and integral, Math Probl Eng, 44), -6 KS Miller, B Ro, An introduction to the fractional calculu and fractional differential equation, John Wiley and Son, New York, 993 JT Machado, V Kiryakova, F Mainardi, Recent hitory of fractional calculu, Commun Nonlinear Sci Numer Simul, 3), Shan-He Wu, IA Baloch and I Ican, On Harmonically p, h, m)-preinvex function, Journal of Function Space, 77), Article ID 4859, 9 page

12 PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS 37 4 L Chun, Some new inequalitie of Hermite-Hadamard type for α, m ) α, m )-convex function on coordinate, Journal of Function Space, 44), Article ID 97595, 7 page Department of Mathematic, Univerity of Pehawar, Pehawar, Pakitan addre: adilwati@gmailcom addre: tahirullah348@gmailcom

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION Journal of Fractional Calculu and Application, Vol. 3, July 212, No. 6, pp. 1 9. ISSN: 29-5858. http://www.fcaj.web.com/ EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Continuous Distribution Arising from the Three Gap Theorem

Continuous Distribution Arising from the Three Gap Theorem Continuous Distribution Arising from the Three Gap Theorem Geremías Polanco Encarnación Elementary Analytic and Algorithmic Number Theory Athens, Georgia June 8, 2015 Hampshire college, MA 1 / 24 Happy

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα