Neutrino experiments and nonstandard interactions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Neutrino experiments and nonstandard interactions"

Transcript

1 Neutrino experiments and nonstandard interactions p. 1 Neutrino experiments and nonstandard interactions Omar G. Miranda Romagnoli Cinvestav

2 Neutrino experiments and nonstandard interactions p. 2 Contents Neutrino flavors Neutrino oscillations Solar and atmospheric Neutrinos Beyond the Standard Model

3 Neutrino flavors Neutrino experiments and nonstandard interactions p. 3

4 Neutrino experiments and nonstandard interactions p. 4 Neutrino flavors For neutrinos coming from the decay: n p + e + ν we observe the reaction ν + p n + e + When neutrinos are coming from the decay: we observe the reaction π µ + ν ν + p n + µ +

5 Neutrino experiments and nonstandard interactions p. 5 Neutrino experiments without oscillations Muon neutrinos on nuclei CHARM, CDHS, NuTeV R ν = σ(ν µn ν µ X) σ(ν µ N µ X) Muon neutrinos on electrons CHARM II σ(ν µ e ν µ e )

6 Neutrino experiments and nonstandard interactions p. 6 Neutrino experiments without oscillations NuTeV PRL (22); NNPDF NPB (29); Bentz et al PLB (21) NuTeV [Bentz et al.] NuTeV [NNPDF Coll.] NuTeV SM [Global EW fit] sin 2 θ W [on-shell]

7 Neutrino experiments and nonstandard interactions p. 7 Neutrino experiments without oscillations Electron neutrinos on nuclei Bugey, Chooz... Electron neutrinos on electrons LAMPF, Irvine (Reines, Gurr, Sobel),..., MUNU, Texono σ(ν e e ν e e )

8 Neutrino experiments and nonstandard interactions p. 8 Neutrino experiments without oscillations Barranco, OGM, Rashba PLB (28): sin 2 θ W =.259 ±.25 TEXONO PRD (21): sin 2 θ W =.251 ±.39 χ global Irvine Krasnoyarsk Rovno LAMPF LSND MUNU 9 % C. L. 1 1 σ sin 2 θ W

9 Neutrino experiments and nonstandard interactions p. 9 Neutrino oscillations Pontecorvo (1957,1967), Maki, Nakagawa, Sakata (1962) Massive ν s : the massive states ν i (i=1,2,3) are not equal to the flavor states (weak interactions) ν a (e, µ, τ) ν a = i U ai ν i Time: t = ν a (x, t = ) = i U ai e ip ix ν i Time: t > ν a (x, t) = i U ai e ip ix ie i t ν i Ultrarrelativistic ν-s m i p i E i = m 2 i + p2 i p i + m2 i 2p i y x t ν a (x, t) = i U ai e i m 2 i 2p t i ν i

10 Neutrino experiments and nonstandard interactions p. 1 Two neutrinos conversion Probability ν e ν µ P νe ν µ (x) = sin 2 (2θ) sin 2 πx Losc oscillation lenght Losc 25 km ( ) ( ) E 1 5 ev 2 MeV m 2

11 Neutrino experiments and nonstandard interactions p. 11 Oscillations in matter Wolfenstein 1978, Mikheev & Smirnov 1985 Neutral currents (NC): exchange of Z Charge currents (CC): exchange of W ± V e = ( 2G F N e N ) n, V µ = V τ = ( 2G F N ) n 2 2 Evolution equation i d dt ν e ν µ = m2 4E cos 2θ + 2 G F N e m 2 4E sin 2θ m 2 4E sin2θ m 2 4E cos 2θ ν e ν µ..

12 Neutrino experiments and nonstandard interactions p. 12 Constant density case Conversion probabilitiy ν e ν µ : ( P(ν e ν µ ; L) = sin 2 2θ m sin 2 π L ) l m, Mixing angle in matter sin 2 2θ m = ( m 2 2E ) 2 sin 2 2θ ( m 2 2E cos 2θ 2G F N e )2 + ( m 2 2E ) 2 sin 2 2θ Resonance 2G F N e = m2 2E cos 2θ

13 Neutrino experiments and nonstandard interactions p. 13 Three families U = R 23 (θ 23 ; )R 13 (θ 13 ;δ)r 23 (θ 23 ; )P, R 13 (θ 13 ;δ) = cos θ 13 sinθ 13 e iδ 1. sin θ 13 e iδ cosθ 13 P = diag(e iα, e iβ, 1)

14 Neutrino experiments and nonstandard interactions p. 14 Three families c 12 c 13 s 12 c 13 s 13 e iδ (s 12 c 23 + c 12 s 23 s 13 e iδ ) (c 12 c 23 s 12 s 23 s 13 e iδ ) s 23 c 13 (s 12 s 23 c 12 c 23 s 13 e iδ ) (c 12 s 23 + s 12 c 23 s 13 e iδ ) c 23 c 13 P(ν α ν β ) = X δ αβ 4 X i>j R j + 2 X i>j I 2 Uαj U βj e i m 2 j L 2E = n o Uαi U αju βi Uβj sin 2 n o Uαi U αju βi Uβj sin m 2! ij 4E L! m2 ij 2E L (1)

15 The solar interior Neutrino experiments and nonstandard interactions p. 15

16 Neutrino experiments and nonstandard interactions p. 16 Nuclear reactions in the Sun p + p 2 H + e + + ν e p + e + p 2 H + ν e (pp) 99.6 % (pep).4 % 2 H + p 3 He + γ 85 % 3 He + 3 He 4 He + 2p 15 % 3 He + 4 He 7 Be + γ % 3 He + p 4 He + e + + ν e %.13 % 7 Be + e 7 Li + ν e 7 Be + p 8 B + γ ( 7 Be) ( 8 B) 7 Li + p 2 4 He 8 B 8 Be + e + + ν e 8 Be 2 4 He

17 Neutrino experiments and nonstandard interactions p. 17 solar neutrino spectrum Bahcall s home page

18 Neutrino experiments and nonstandard interactions p. 18 Homestake Experiment, R.Davis 68 ν e + 37 Cl e + 37 Ar Pontecorvo 46

19 Neutrino experiments and nonstandard interactions p. 19 Homestake Experiment, R. Davis 68 ν e + 37 Cl e + 37 Ar Pontecorvo 46

20 Neutrino experiments and nonstandard interactions p. 2 Super-Kamiokande ν e + e ν e + e and ν x + e ν x + e Event/day/bin 2 Super-Kamiokande θ Sun 5-2 MeV cos θ Sun

21 Neutrino experiments and nonstandard interactions p. 21 Super-Kamiokande Predicted 8 B neutrino flux: cm 2 s 1 Super-Kamiokande I PLB (22); PRD (26) φ = 2.35 ±.2 (stat ±.8 (syst) 1 6 cm 2 s 1 Super-Kamiokande II PRD (28) φ = 2.38 ±.5 (stat ±.16 (syst) 1 6 cm 2 s 1 Super-Kamiokande III PRD (211) φ = 2.32 ±.4 (stat ±.5 (syst) 1 6 cm 2 s 1

22 Neutrino experiments and nonstandard interactions p. 22 SNO 2 PRL ν e + d p+ p + e (CC), ν x + d p + n + ν x (NC), ν x + e ν x + e (ES). φ e = (stat.)+.9.9 (syst.) φ µτ = (stat.) (syst.) φ SNO NC = (stat.) (syst.)

23 Neutrino experiments and nonstandard interactions p. 23 SNO 2 Outer H 2 O Inner H 2 O D 2 O Acrlyic Vessel PSUP

24 Neutrino experiments and nonstandard interactions p. 24 SNO 2 s -1 ) 6 cm -2 (1 φ µτ SNO φ ES SNO φ CC SNO φ NC φ SSM φ e 6 (1-2 cm -1 s )

25 Neutrino experiments and nonstandard interactions p. 25 theory vs. experiment [Bahcall s home page]

26 Neutrino experiments and nonstandard interactions p. 26 solar neutrino spectrum Bahcall s home page

27 Neutrino experiments and nonstandard interactions p. 27 Borexino experiment survival probability ν e P ee : Be - Borexino pp - all solar 8. B - all solar All solar without Borexino MSW Prediction [MeV] Borexino PRL (211) E ν

28 Neutrino experiments and nonstandard interactions p. 28 SNO experiment P νe ν e 1σ band SNO Borexino 7 Be pp - All solar ν experiments Pνe νe SNO E ν (MeV)

29 KamLAND 2 PRL reactor neutrinos geo neutrinos accidentals 1 Events/.425 MeV MeV analysis threshold KamLAND data no oscillation best-fit oscillation sin 2 2θ = 1. m 2 = 6.9 x 1-5 ev Prompt Energy (MeV) ( ) ν e + p n + e + : P νe ν µ (x) = sin 2 (2θ) sin 2 m 2 4E x Neutrino experiments and nonstandard interactions p

30 Neutrino experiments and nonstandard interactions p. 3 KamLAND 2 PRL ) 2 (ev m Rate excluded Rate+Shape allowed LMA Palo Verde excluded Chooz excluded sin 2θ

31 Neutrino experiments and nonstandard interactions p. 31 SNO 2 log( m /ev ) (a) SMA LMA -7 LOW % CL 95% CL 99% CL 99.73% CL VAC log(tan θ)

32 Other solutions Barranco et al PRD (22) Neutrino experiments and nonstandard interactions p. 32

33 6σ 5σ 4 σ 3 1 2σ σ σ Data fit KamLAND PRL (28) 2 χ σ 3σ 2σ 1σ ) 2 (ev -4 1 KamLAND 95% C.L. 99% C.L % C.L. best fit m 2 21 Solar 95% C.L. 99% C.L % C.L. best fit tan 2 θ 12 m 2 = ev 2, tan 2 θ = χ 2 Neutrino experiments and nonstandard interactions p. 33

34 Neutrino experiments and nonstandard interactions p. 34 m 2 21 and sin 2 θ m 2 21 [ 1-5 ev 2 ] sin 2 θ 12 sin 2 θ 12 = , m2 21 = ev 2 Schwetz, Tortola, Valle New J.Phys. 13 (211) 634

35 Atmospheric Neutrinos Neutrino experiments and nonstandard interactions p. 35

36 Neutrino experiments and nonstandard interactions p. 36 Atmospheric Neutrinos We will have the decays: and π + µ + + ν µ µ + e + + ν e + ν µ π µ + ν µ µ e + ν e + ν µ

37 Neutrino experiments and nonstandard interactions p. 37 Atmospheric Neutrinos 3 2 Sub-GeV e-like P < 4 MeV/c 3 2 Sub-GeV µ-like P < 4 MeV/c 6 4 multi-ring Sub-GeV µ-like Number of Events Sub-GeV e-like 4 Sub-GeV µ-like multi-ring P > 4 MeV/c P > 4 MeV/c Multi-GeV µ-like Multi-GeV e-like Multi-GeV µ-like PC cosθ cosθ cosθ

38 Neutrino experiments and nonstandard interactions p. 38 Atmospheric Neutrinos Super-Kamiokande PRD (26)

39 Neutrino experiments and nonstandard interactions p. 39 Atmospheric Neutrinos Data/Prediction (null osc.) L/E (km/gev) Super-Kamiokande PRL (24)

40 Accelerator Neutrinos Neutrino experiments and nonstandard interactions p. 4

41 Neutrino experiments and nonstandard interactions p. 41 neutrino oscillations Schwetz, Tortola, Valle New J. Phys (211) 4 m 2 31 [ 1-3 ev 2 ] 3 2 MINOS global atmospheric sin 2 θ 23

42 Neutrino experiments and nonstandard interactions p. 42 neutrino oscillations Schwetz, Tortola, Valle New J. Phys (211) m 2 31 [1-3 ev 2 ] GLOBAL SK+K2K+MINOS Sol + Reactors 9% CL (2 dof) Reactors sin 2 θ 13

43 Neutrino experiments and nonstandard interactions p. 43 neutrino oscillations T2K PRL (211) π π/2 2 Δm23 > δ CP -π/2 Best fit to T2K data 68% CL 9% CL -π

44 Neutrino experiments and nonstandard interactions p. 44 neutrino oscillations Schwetz, Tortola, Valle New J. Phys (211) parameter best fit ±1σ 2σ 3σ m 2 21 [1 5 ev 2 ] m 2 31 [1 3 ev 2 ] ( ) ( ) ( ) sin 2 θ sin 2 θ ± sin θ δ π π π 2π

45 Neutrino experiments and nonstandard interactions p. 45 Nonstandar interactions Beside the Standard Model Lagrangian: L eff = 2 2G F ([ ν β γ ρ Ll β ][ fγ ρ Lf ] + h.c.) m2 2 2G F P,f,β g f P [ ν βγ ρ Lν β ][ fγ ρ Pf] 4E cos 2θ + 2G F N e m 2 4E sin 2θ m 2 4E sin2θ m 2 4E cos 2θ

46 Neutrino experiments and nonstandard interactions p. 46 Non Standard Interactions (NSI) Most extensions of the SM predict neutral current non-standard interactions (NSI) of neutrinos which can be either flavor preserving (FD or NU) or flavor-changing (FC). NSI effective Lagragian: L NSI eff = αβfp ε fp αβ 2 2G F ( ν α γ ρ Lν β )( fγ ρ Pf) e, u, d e, u, d Here α, β = e, µ, τ; f = e, u, d; P = L, R; L = (1 γ 5 )/2; R = (1 + γ 5 )/2

47 Neutrino experiments and nonstandard interactions p. 47 R/ p parity violating SUSY An example of non-standard neutrino-electron and neutrino quark interactions: L = λ ijk ẽ k R ( ν i L) c e j L + λ ijk d j L d k Rν i L +... Barger, Giudice & Han 89 See e.g. Roulet 91, Amanik et al 5

48 Solar ν Oscillations and NSI with quarks Neutrino experiments and nonstandard interactions p. 48

49 Neutrino experiments and nonstandard interactions p. 49 Solar ν Oscillations and NSI with quarks H NSI = 2G F N f ( ε ε ε ). with ε = sin θ 23 ε fv eτ ε = sin 2 θ 23 ε fv ττ ε fv ee and ε fv ττ = ε fl ττ + ε fr ττ

50 Neutrino experiments and nonstandard interactions p. 5 Non Standard Interactions H NSI = 2G F N f ( ε ε ε ). Mixing angle in matter + NSI ( ) m 2 2E sin 2θ + 2 2G F εn d tan 2θ m = m 2 2E cos 2θ 2G F N e +. 2G F ε N d Resonance m2 2E cos 2θ 2G F N e + 2G F ε N d =. ε > N e N d

51 Neutrino experiments and nonstandard interactions p. 51 Data fit OGM, Tortola, Valle JHEP 61:8,26 m 2 SOL [ev2 ] sin 2 θ SOL sin 2 θ SOL

52 Neutrino experiments and nonstandard interactions p. 52 Data fit Tortola, OGM, Valle, JHEP 61:8, m 2 SOL [ev2 ] LMA-I LMA- LMA-D sin 2 θ SOL sin 2 θ SOL

53 Neutrino experiments and nonstandard interactions p. 53 Nonstandar interactions χ σ m 2 SOL [1-5 ev 2 ] % CL sin 2 θ SOL m 2 SOL [ ev2 ] % CL 3σ sin 2 θ SOL χ 2 Escrihuela, Miranda, Tortola, Valle, Phys.Rev.D8:159,29

54 Neutrino experiments and nonstandard interactions p. 54 Predictions for the probability.7.6 global best fit BF without NSI BF dark side < P ee >.5.4 pp (all) 7 Be (Borexino) 8 B (Borexino).3 8 B (SNO) E [MeV]

55 Neutrino experiments and nonstandard interactions p. 55 NSI-d constraints from Solar + Kamland 2 15 χ % C.L. 9% C.L ε ε

56 Neutrino experiments and nonstandard interactions p. 56 NSI-d constraints from Solar + Kamland Palazzo, Valle PRD (29)

57 Neutrino experiments and nonstandard interactions p. 57 NSI-d constraints for ν e and ν τ R e = σ(ν en νx) + σ( ν e N νx) σ(ν e N ex) + σ( ν e N ēx) = ( g Le) + ( g Re ) Constraints from CHARM II experiment ε L ee.3 < ε L ee <.3 ε R ee.6 < ε R ee <.5 ε L eµ ε L eµ <.5 ε R eµ ε R eµ <.5 ε L eτ ε L eτ <.5 ε R eτ ε R eτ <.5 CHARM II Collaboration, P. Vilain et. al. Phys. Lett. B (1994) Davidson, Peña-Garay,Rius,Santamaria JHEP 33:11 (23) hep-ph/3293

58 Neutrino experiments and nonstandard interactions p. 58 NSI-d constraints for ν e ν + d ν + p + n SNO NC is proportional to g 2 A ǫ A = α=e,µ,τ P eα NC ǫ da αα, da ε ττ CHARM (99%CL) solar + KamLAND (99%CL) da ε ee

59 Neutrino experiments and nonstandard interactions p. 59 NSI-d constraints for ν µ R µ = σ(ν µn νx) + σ( ν µ N νx) σ(ν µ N µx) + σ( ν µ N µx) = ( g Lµ) + ( g Rµ ) NuTeV [Bentz et al.] NuTeV [NNPDF Coll.] NuTeV SM [Global EW fit] sin 2 θ W [on-shell] Escrihuela, Miranda, Tortola, Valle, PRD (211)

60 Neutrino experiments and nonstandard interactions p. 6 NSI-d constraints for ν µ R µ = σ(ν µn νx) + σ( ν µ N νx) σ(ν µ N µx) + σ( ν µ N µx) = ( g Lµ) + ( g Rµ ) NNPDF da ε µµ.5 qa ε µτ Bentz et al. -.5 CHARM + CDHS.5 1 dv ε µµ qv ε µτ Escrihuela, Miranda, Tortola, Valle, PRD (211)

61 Neutrino experiments and nonstandard interactions p. 61 NSI-d constraints for ν µ.2.1 NNPDF.1.5 da ε µµ da ε µµ -.1 Bentz et al dv ε µµ dv ε µµ

62 Neutrino experiments and nonstandard interactions p. 62 NSI-d constraints for ν µ Global with NuTeV reanalysis NSI with down NSI with up NU NU NNPDF Bentz at al..42 < ǫ dv µµ < < ǫ uv µµ < < ǫ da µµ < < ǫ ua µµ < < ǫ dv µµ < < ǫ uv µµ < < ǫ da µµ < < ǫ ua µµ <.14 FC FC NNPDF/Bentz et al..7 < ǫ dv µτ <.7.7 < ǫ uv µτ <.7.39 < ǫ da µτ < < ǫ ua µτ <.39 Escrihuela, Miranda, Tortola, Valle, PRD (211)

63 Neutrino experiments and nonstandard interactions p. 63 NSI-e Laboratory constraints Laboratory experiments: 1. Reactor neutrinos 2. LEP data (e + e ν νγ) 3. CHARM

64 Neutrino experiments and nonstandard interactions p. 64 The ν e e interaction σ(ν e e νe) = 2G2 F m ee ν π 2 4(1 + gl e + εel ee ) 2 + X ε el αe (ge R + εer ee ) α e X ε er αe 2 α e 3 5 Davidson, Peña-Garay,Rius,Santamaria JHEP 33:11 (23) hep-ph/3293:.7 < ε el ee <.1 1. < ε er ee <.5 at 9 % C L Berezhiani, Raghavan, Rossi PLB (22) hep-ph/111138:.15 < ε el ee < < ε er ee <.5 at 99 % C L

65 Neutrino experiments and nonstandard interactions p. 65 The ν e e interaction Experiment Energy (MeV) events measurement LSND ν e e σ = [1.1 ± 1.5] E νe (MeV) 1 45 cm 2 Irvine ν e e σ = [.86 ±.25] σ V A Irvine ν e e σ = [1.7 ±.44] σ V A Rovno ν e e σ = (1.26 ±.62) 1 44 cm 2 /fission MUNU ν e e ±.34 events day Tritium Reactor LSND g L g R

66 Neutrino experiments and nonstandard interactions p. 66 The ν µ e ν µ e interaction dσ theo CHARM dy = 2G2 F m e π E ν + g L 2 + α µ g 2 R + α µ ε L αµ 2 ε R αµ 2 (1 y) 2

67 Neutrino experiments and nonstandard interactions p. 67 The e + e ν νγ interaction σ theo LEP (s) = dx dc γ H(x,s γ ;s) σ theo (ŝ), H(x,s γ ;s) = 2α πxs γ [ ( 1 x ) 2 x 2 c 2 γ ], σ SM (s) = N νg 2 F 6π M4 Z (g2 R + g2 L ) s ˆ(s M 2 Z ) 2 + (M Z Γ Z ) 2 (! s + 2M 2 W + G 2 F π M2 W M2 W s + M 2 W s 2s s g L MZ 2 (s M2 Z ) " (s + M 2 W ) 2 (s MZ 2 )2 + (M Z Γ Z ) 2 s 2 log log s + M 2 W M 2 W s + M 2 W M 2 W!! M2 W s 3 2 #),

68 Neutrino experiments and nonstandard interactions p. 68 The e + e ν νγ interaction σ NU (s) = X α=e,µ,τ G 2 F 6π s + G2 F π εl eem 2 W σ FC (s) = X α β=e,µ,τ " (ε L αα) 2 + (ε R αα) 2 2(g L ε L αα + g R ε R MZ 2 αα) (s M2 Z ) # (s MZ 2 )2 + (M Z Γ Z ) 2 "! # (s + M 2 W ) 2 s + MW 2 s 2 log M2 W 3, s 2 G 2 F 6π s h (ε L αβ )2 + (ε R αβ )2i. M 2 W

69 Neutrino experiments and nonstandard interactions p. 69 Laboratory constraints L ε ee R ε ee L ε µµ R ε µµ L ε ττ R ε ττ Barranco, Miranda, Moura, Valle PRD

70 Neutrino experiments and nonstandard interactions p. 7 Laboratory constraints.5 ε ll L L,R ε µµ L,R ε ee -.5 L,R ε ττ ε ll R

71 Neutrino experiments and nonstandard interactions p. 71 Laboratory constraints Region at 9% C. L. one parameter previous limits ε L ee.14 < ε L ee <.9.3 < ε L ee <.8.5 < ε L ee <.1 ε R ee.3 < ε R ee <.18.4 < ε R ee <.15.4 < ε R ee <.14 ε L µµ.33 < ε L µµ <.55 εl µµ <.3 εl µµ <.3 ε R µµ.4 < ε R µµ <.53 ε R µµ <.3 ε R µµ <.3 ε L ττ.6 < ε L ττ <.4.5 < ε L ττ <.2 ε L ττ <.5 ε R ττ.4 < ε R ττ <.6.3 < ε R ττ <.4 ε R ττ <.5 Barranco, Miranda, Moura, Valle PRD

72 Neutrino experiments and nonstandard interactions p. 72 Solar neutrinos solar neutrinos could be sensitive to the NSI with electrons Propagation could be affected Detection could also be affected! especially in SuperKamiokande

73 Neutrino experiments and nonstandard interactions p. 73 Solar neutrinos ε el ee ε el ee ε el ee ε er ee -1 1 ε er ee -1 1 ε er ee Bolaños, OGM, Palazzo, Tortola, Valle PRD79:11312,29

74 Neutrino experiments and nonstandard interactions p. 74 Solar neutrinos ε el ττ ε el ττ ε el ττ ε er ττ ε er ττ ε er ττ Bolaños, Miranda, Palazzo, Tortola, Valle Phys.Rev.D79:11312,29

75 Neutrino experiments and nonstandard interactions p. 75 Solar neutrinos Solar analysis Laboratory Previous limits ε L ee.36 < ε L ee < < ε L ee <.9.5 < ε L ee <.1 ε R ee.27 < ε R ee <.59.3 < ε R ee <.18.4 < ε R ee <.14 ε L µµ.33 < ε L µµ <.55 εl µµ <.3 ε R µµ.4 < ε R µµ <.53 ε R µµ <.3 ε L ττ.16 < ε L ττ <.11.6 < ε L ττ <.4 ε L ττ <.5 ε R ττ 1.5 < ε R ττ <.31.4 < ε R ττ <.6 ε R ττ <.5 Bolaños, OGM, Palazzo, Tortola, Valle PRD79:11312,29

76 Neutrino experiments and nonstandard interactions p. 76 Improving NSI constraints ΦeΜ Ε eμ Coloma, Donini, López-Pavón, Minakata

77 Neutrino experiments and nonstandard interactions p. 77 Confusion problem for θ 13 R eµ A s B s 13 ǫ P + C ǫ 2 P + D ǫ Pǫ S + E ǫ 2 S + F s 13ǫ S ǫ S ǫ S eτ, ǫ P ǫ P eτ. Huber, Schwetz, Valle, PRD

78 Neutrino experiments and nonstandard interactions p. 78 Confusion problem for θ 13 Neutrino factory + two different neutrino detectors sin 2 2θ 13 and δ marginalized Input: δ = π/4 sin 2 2θ 13 =.1 ε ee = ε eτ = ε ττ = ε eτ ε eτ ε ττ km ε eτ ε eτ ε ττ km ε eτ σ 2 σ 3 σ ε eτ ε ee ε ττ ε ττ ε ee Combined Ribeiro, Minakata, Nunokawa, S. Uchinami, R. Zukanovich-Funchal JHEP 712:2,27.

79 Neutrino experiments and nonstandard interactions p. 79 Confusion problem for θ 13 Neutrino factory + two different neutrino detectors ε ee and ε eτ marginalized ε ττ and ε eτ marginalized ε ee and ε ττ marginalized 6 δ 4 2 Input: δ = 3π/2 sin 2 2θ 13 =.1 ε ee = ε eτ = ε ττ = 3 km 6 δ km 6 δ σ 2 σ 3 σ Combined sin 2 2θ Ribeiro, Minakata, Nunokawa, S. Uchinami, R. Zukanovich-Funchal JHEP 712:2,27.

80 Confusion problem for θ 13 Neutrino factory + two different neutrino detectors Ε m eτ sensitivity 3Σ Ε m eτ sensitivity 3Σ 12 1 Optimum for standard performance indicators Symmetry axis 12 1 Symmetry axis L2 km Magic baseline Ε m ΑΒ Ε m ΑΒ L2 km Magic baseline 4 Ε m ΑΒ 1 2. Ε m ΑΒ Ε m ΑΒ EΜ 25 GeV GLoBES 28 Ε m ΑΒ Ε m ΑΒ EΜ 5 GeV GLoBES L1 km L1 km 12 1 Ε m ΜΤ sensitivity 3Σ Symmetry axis 12 1 Ε m ΜΤ sensitivity 3Σ Symmetry axis L2 km 8 6 Magic baseline L2 km 8 6 Magic baseline EΜ 25 GeV GLoBES 28 2 EΜ 5 GeV GLoBES L1 km L1 km 12 1 Ε m ΤΤ sensitivity 3Σ Symmetry axis Ε m ΤΤ sensitivity 3Σ Symmetry axis L2 km 8 6 Magic baseline L2 km 8 6 Magic baseline EΜ 25 GeV GLoBES 28 2 EΜ 5 GeV GLoBES L1 km L1 km Kopp, Ota, Winter, PRD Neutrino experiments and nonstandard interactions p. 8

81 Neutrino experiments and nonstandard interactions p. 81 Improving NSI constraints [J. Barranco, OGM, T.I. Rashba JHEP 512:21 5] Neutrino-nuclei coherent scattering (for qr << 1) dσ dt = G2 F M 2π ((G V + G A ) 2 + (G V G A ) 2 1 T «2 `G 2 V E MT G2 A ν Eν 2 ), M is the nucleus mass; T recoil nucleus energy (from to T max = 2E 2 ν/(m + 2E ν )); E ν neutrino energy.

82 Neutrino experiments and nonstandard interactions p. 82 Coherent scattering.6 T th = 4eV.6 T th = 1eV uv ε ee uv ε ee Ge [9% C.L.] Ge [9% C.L.] 76 Ge [99%] 76 Ge [99%] Ge+ Si [9%] Ge+ Si [99%] Ge+ Si [9%] Ge+ Si [99%] dv ε ee dv ε ee J. Barranco, OGM, T.I. Rashba JHEP 512:21 5

83 Neutrino experiments and nonstandard interactions p. 83 Coherent scattering.6 T th = 4eV.6 T th = 1eV uv ε τe uv ε τe Ge [9% C.L.] Ge [9% C.L.] 76 Ge [99%] 76 Ge [99%] Ge+ 28 Si [9%] Ge+ 28 Si [9%] 76 Ge+ 28 Si [99%] 76 Ge+ 28 Si [99%] dv ε τe dv ε τe J. Barranco, OGM, T.I. Rashba JHEP 512:21 5

84 Neutrino experiments and nonstandard interactions p. 84 Estimated bounds on NSI from TEXONO-like experiment (Ge+Si).6 T th = 4eV.6 T th = 4eV.4.4 uv ε ee Ge [9% C.L.] 76 Ge [99%] 76 Ge+ 28 Si [9%] 76 Ge+ 28 Si [99%] dv ε ee uv ε τe Ge [9% C.L.] 76 Ge [99%] Ge+ Si [9%] Ge+ Si [99%] dv ε τe 76 Ge+ 28 Si Tth =4eV ǫ dv ee <.36 ǫ uv ee <.38 ǫ dv τe <.48 ǫ uv τe <.5.6 T th = 1eV.6 T th = 1eV Ge+ 28 Si Tth =1eV uv ε ee Ge [9% C.L.] 76 Ge [99%] Ge+ Si [9%] Ge+ Si [99%] uv ε τe Ge [9% C.L.] 76 Ge [99%] Ge+ Si [9%] Ge+ Si [99%] ǫ dv ee <.18 ǫ uv ee <.19 ǫ dv τe <.34 ǫ uv τe < dv ε ee dv ε τe

85 Conclusions The solar neutrino problem remained unsolved for more than 3 years. It was the motivation, together with the atmospheric neutrino puzzle, for several experiments that have allowed to get a better knowledge of the Standard Model and of the neutrino properties. Neutrino physics counts now with several experiments that are improving the measurements of neutrino parameters and it is expected that new generation experiments could give a clue of the direction for physics beyond the Standard Model. Although we now better the neutrino masses diferences and mixings, there are many open question. Neutrino experiments and nonstandard interactions p. 85

86 Neutrino experiments and nonstandard interactions p. 86 R-parity breaking Susy λ ijk L i L Lj LĒk R λ ijk Li L Qj L D k R, (2) ν 2 ẽ Rk e 1 ν 2 λ 2j1 e 1 ẽ Lj e 1 λ 21k λ 21k ν 2 e 1 λ 2j1 ν 2 a) b) J. Barranco, OGM, T.I. Rashba PRD (27)

87 Neutrino experiments and nonstandard interactions p. 87 R-parity breaking Susy J. Barranco, OGM, T I Rashba hep-ph/72175 λ d L 1j1-2 λ d R 11k λ d 2 L current limit 1j1 TEXONO 1 ev beta beam TEXONO 4 ev SPS mass*time/(m year) J. Barranco, OGM, T.I. Rashba PRD (27)

Solar Neutrinos: Fluxes

Solar Neutrinos: Fluxes Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17

Διαβάστε περισσότερα

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e LEPTONS e J = 1 2 Mass m = (548.5799110 ± 0.0000012) 10 6 u Mass m = 0.510998902 ± 0.000000021 MeV me + m e /m < 8 10 9, CL = 90% qe + + q / e e < 4 10 8 Magnetic moment µ =1.001159652187 ± 0.000000000004

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

The NOνA Neutrino Experiment

The NOνA Neutrino Experiment The NOνA Neutrino Experiment Thomas Coan Southern Methodist University For the NOνA Collaboration 11th ICATPP Villa Olmo, Como 2009 Outline NuMI Off-Axis νe Appearance Experiment Neutrino Physics Motivation

Διαβάστε περισσότερα

Ó³ Ÿ. A , º 9Ä Ä ³ μ 1

Ó³ Ÿ. A , º 9Ä Ä ³ μ 1 Ó³ Ÿ. A. 2012.. 9, º 9Ä10.. 70Ä128 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ œ Ÿ ˆ Ÿ ˆ ˆŠ.. ³ μ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ²² μ, Ê ³μ ÉμÖÐ Ì ² ±Í Ö ²Ö É Ö Ô± ³ É ²Ó Ö Ë ± Ê ±μ É ²Ó ÒÌ É μ. - Ê ÕÉ Ö Ô± ³ ÉÒ μ ³ Õ μéμ±μ μ² Î ÒÌ É³μ

Διαβάστε περισσότερα

Ηλιακά νετρίνα. Πρόβλημα ηλιακών νετρίνων, ταλαντώσεις.

Ηλιακά νετρίνα. Πρόβλημα ηλιακών νετρίνων, ταλαντώσεις. Ηλιακά νετρίνα Πρόβλημα ηλιακών νετρίνων, ταλαντώσεις. Αντιδράσεις στο εσωτερικό του Ηλίου (Τυπικό Ηλιακό Μοντέλο) 98,4 % pp pep hep Be B Εικόνα 1Πυρηνικές αντιδράσεις στο κέντρο του ηλίου J.Bacall (2005)

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(170) Ä Ê³μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(170) Ä Ê³μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2011.. 8, º 7(170).. 1192Ä1231 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ ˆ ˆŠ ˆ.. ʳμ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Éμ ±μ ±É ² ±Í, μî É ÒÌ Éμ μ³ ± ²Ó ±μ ² É Ï±μ² μ Ë ± Ô² - ³ É ÒÌ Î É Í É μë ± 2010. ±Í Î Ò ÊÕ μî Ó ÉÊ É ³,

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Index , 332, 335, 338 equivalence principle, , 356

Index , 332, 335, 338 equivalence principle, , 356 Index accidental symmetry, 334 adiabaticity condition, 102 105, 121 125 adiabaticity parameter, 103, 358 allowed approximation, 245 anomalous magnetic moment, (see under magnetic moment) anomaly, 19 20,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 4.. 1291Ä1301 Š œ Š ˆŒ CMS LHC ˆ Š ˆ ˆŠˆ ŒŠ Œˆ Œ ˆ.. ³ Éμ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö μ É Ö ± ɱ μ μ ʲÓÉ Éμ Ô± ³ É CMS μ²óïμ³ μ μ³ ±μ²² μ μ ±Ê Ë ± ³± ³

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.

Διαβάστε περισσότερα

2-2 -1-1 Flux x E ν ( m sec sr GeV ) 1 3 1 2 Honda BGS νµ + νµ νe + νe 1 1 1-2 1-1 1 1 1 Neutrino Energy (GeV) 2.5 Honda ν µ + ν µ ν + e ν e 2.5 BGS ν µ + ν µ ν + e ν e 2. 2. Flux Ratios 1.5 ν e 1.5 ν

Διαβάστε περισσότερα

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC Σ(85) Ξ(5) Production of and measured by ALICE in pp, ppb and PbPb collisions at the LHC for the ALICE Collaboration Pusan National University, OREA Quark Matter 7 in Chicago 7.. QM7 * suppressed, no suppression

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Magnetised Iron Neutrino Detector. (MIND) at a Neutrino Factory. Neutrino GDR Meeting, Paris, 29 April 2010

Magnetised Iron Neutrino Detector. (MIND) at a Neutrino Factory. Neutrino GDR Meeting, Paris, 29 April 2010 Magnetised Iron Neutrino Detector (MIND) at a Neutrino Factory, Paul Soler*, Anselmo Cervera, Andrew Laing, Justo Martín-Albo Neutrino mixing Weak eigenstates do not have to coincide with mass eigenstates

Διαβάστε περισσότερα

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity 1.- Introduction. 2.- Higgs physics 3.- hhh at one loop level in SM 4.- Littlest Higgs Model with T-parity 5.- hhh at one loop in LHM with T-parity 7.- Conclusions Higgs Decay modes at LHC Direct measurement

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ó³ Ÿ. 2014.. 11, º 4(188).. 817Ä827 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ÿ.. ² ± Ì,. Œ. ŠÊ Íμ,.. μ ± Ö 1, Œ. ƒ. μ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ò Ê²ÓÉ ÉÒ ³ ÒÌμ μ ÉÖ ²ÒÌ μ μ É μ μ ²Ê μ±μ - Ê Ê μ³ Ö

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. P3-2009-104.. ² ± μ ˆ ˆ Š Š ˆ œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. ² ± μ.. ²μ μ ± μé±²μ μé ÓÕÉμ μ ±μ μ ±μ ÉÖ μé Ö μ³μðóõ É μ μ ³ ²ÒÌ Ô P3-2009-104 ÓÕÉμ

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ. Ó³ Ÿ. 2010.. 7, º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ œ ˆŠ Ÿ ˆŸ Š Ÿ Š. ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ. Ð ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ Ö ± É μ É Êα Ê ±μ ÒÌ μéμ μ

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Physics of CP Violation (III)

Physics of CP Violation (III) Physics of CP Violation (III) Special Lecture at Tsinghua Univiersity, Beijing, China 21-25 March 2011 Tatsuya Nakada École Polytechnique Fédéale de Lausanne (EPFL) Experimental observation of CP violation

Διαβάστε περισσότερα

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö Ó³ Ÿ. 2008.. 5, º 6(148).. 865Ä873 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ Œ ˆ ˆ Š - ˆ - LHC.. ³μ,.. μ μö,.. Ö±μ,.. Ê ±μ Î Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö ³μÉ μ ³μ μ ÉÓ μ Ê Ö Éμ - É Éμ - μ μ ³ ³ 700, 1000, 1500, 2000 3000

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

Questions on Particle Physics

Questions on Particle Physics Questions on Particle Physics 1. The following strong interaction has been observed. K + p n + X The K is a strange meson of quark composition u s. The u quark has a charge of +2/3. The d quark has a charge

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B Ó³ Ÿ. 2013.. 10, º 4(181).. 566Ä571 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B.. ˆ μ, ˆ.. μ ±μ,.. ŠÊ Ó³ μ,.. ³ μ,. ˆ. Î,.. ÖÎ±μ ²Ó μ μ Ê É μ Ê É μ ÖÉ ƒμ Ê É Ò ÊÎ Ò Í É μ ±μ Í Ä ±μ-ô É Î ± É ÉÊÉ

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280 Ó³ Ÿ.. 2012.. 9, º 8.. 89Ä97 Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280 ƒ. ƒ. ƒê²ó ±Ö,.. Ê, ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö Ò μ±μî ÉμÉ Ö Ê ±μ ÖÕÐ Ö É ³ ÉÒ ³μ μ μ Éμ Ö - ÒÌ ±Í ³. ƒ.. ² μ Ñ μ μ É ÉÊÉ Ö

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

In your answer, you should make clear how evidence for the size of the nucleus follows from your description 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes it suitable for this experiment.

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ P9-2008-102.. Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ Ë ³μ... P9-2008-102 ˆ μ²ó μ Ô± μ³ Î ± ³ μ³ ²Ö μ²êî Ö Êα μ μ - ÉμÎ ± μ²êî É ÒÌ Ê ±μ ÒÌ Êαμ 48 Ö ²Ö É Ö μ μ ±²ÕÎ

Διαβάστε περισσότερα

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1 P13-2011-43 Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1 Š ˆ ˆ Œ Š Œ ˆ Š ˆ - ˆ ˆ Œ ˆ ˆŸ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1 Í μ ²Ó Ò ÊÎ μ-êî Ò Í É Ë ± Î É Í Ò μ± Ì Ô -

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Detailed Studies of neutrino oscillations with atmospheric neutrinos of wide energy range from 1 MeV to 1 GeV in Super-Kamiokande Jun Kameda September 22 Doctor Thesis, University of Tokyo Abstract An

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Ηλιακά νετρίνα. Εικόνα 1 Πυρηνικές αντιδράσεις στο κέντρο του ηλίου. * σ ve : 9.3*10-45 cm 2 (E/Mev) 2

Ηλιακά νετρίνα. Εικόνα 1 Πυρηνικές αντιδράσεις στο κέντρο του ηλίου. * σ ve : 9.3*10-45 cm 2 (E/Mev) 2 Ηλιακά νετρίνα. Γνωρίζουμε ότι ενέργεια που ακτινοβολεί ο ήλιος, παράγεται από θερμοπυρηνικές αντιδράσεις στον πυρήνα του ηλίου. Στα προϊόντα των αντιδράσεων περιλαμβάνεται μεγάλος αριθμός νετρίνων. Μπορούμε

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα