Research Article Generalized Derivations in Semiprime Gamma Rings
|
|
- Πρίσκιλλα Σπυρόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 International Mathematics and Mathematical Sciences Volume 2012, Article ID , 14 pages doi: /2012/ Research Article Generalized Derivations in Semiprime Gamma Rings Kalyan Kumar Dey, 1 Akhil Chandra Paul, 1 and Isamiddin S. Rakhimov 2 1 Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh 2 Department of Mathematics, FS, and Institute for Mathematical Research INSPEM), Universiti Putra Malaysia, Serdang, Malaysia Correspondence should be addressed to Kalyan Kumar Dey, kkdmath@yahoo.com Received 10 November 2011; Revised 5 December 2011; Accepted 5 December 2011 Academic Editor: Christian Corda Copyright q 2012 Kalyan Kumar Dey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition aαbβc aβbαc for all a, b, c M, α, β Γ,andletD : M M be an additive mapping such that D xαx D x αx xαd x for all x M, α Γ and for some derivation d of M. We prove that D is a generalized derivation. 1. Introduction Hvala 1 first introduced the generalized derivations in rings and obtained some remarkable results in classical rings. Daif and Tammam El-Sayiad 2 studied the generalized derivations in semiprime rings. The authors consider an additive mapping G : R R of a ring R with the property G x 2 G x x xd x for some derivation D of R. They prove that G is a Jordan generalized derivation. Aydin 3 studied generalized derivations of prime rings. The author proved that if I is an ideal of a noncommutative prime ring R, a is a fixed element of R and F is an generalized derivation on R associated with a derivation d then the condition F x, a 0or F x,a 0 for all x I implies d x λ x, a. ÇevenandÖztürk 4 have dealt with Jordan generalized derivations in Γ-rings and they proved that every Jordan generalized derivation on some Γ-rings is a generalized derivation. Generalized derivations of semiprime rings have been treated by Ali and Chaudhry 5. The authors proved that if F is a commuting generalized derivation of a semiprime ring
2 2 International Mathematics and Mathematical Sciences R associated with a derivation d then d x y, z 0 for all x, y, z R and d is central. They characterized a decomposition of R relative to the generalized derivations. Atteya 6 proved that if U is nonzero ideal of a semiprime ring R and R admits a generalized derivation D such that D xy xy Z R then R contains a nonzero central ideal. Rehman 7, 8 studied the commutativity of a ring R by means of generalized derivations acting as homomorphisms and antihomomorphisms. In this paper, we prove the following results Let M be a 2-torsion-free semiprime Γ-ring satisfying the following assumption: aαbβc aβbαc a, b, c M, α, β Γ, and D : M M be an additive mapping. If there exists a derivation d of M such that D xαx D x αx xαd x for all x M, α Γ, then D is a Jordan generalized derivation. 2. Preliminaries Let M and Γ be additive abelian groups. M is called a Γ-ring if there exists a mapping M M M M such that for all a, b, c M, α, β Γ the following conditions are satisfied: i aβb M, ii a b αc aαc bαc, a α β b aαb aβb, aα b c aαb aαc, aαb βc aα bβc. For any a, b M and for α, β Γ the expressions aαb bαa is denoted by a, b α and αaβ βaα are denoted by α, β a. Then one has the following identities: [ ] aβb, c α aβ b, c α a, c α βb a[ β, α ] c b, [ a, bβc ]α bβ a, c α a, b α βc b[ β, α ] a c, 2.1 for all a, b, c M and for all α, β Γ. Using the assumption the above identities reduce to [ ] aβb, c α aβ b, c α a, c α βb, [ a, bβc ]α bβ a, c α a, b α βc, 2.2 for all a, b, c M and α, β Γ. Further M stands for a prime Γ-ring with center Z M. The ring M is n-torsion-free if nx 0, x M implies x 0, where n is a positive integer, M is prime if aγmγb 0 implies a 0orb 0, and it is semiprime if aγmγa 0 implies a 0. An additive mapping T : M M is called a left right centralizer if T xαy T x αy T xαy xαt y for x, y M, α Γ and it is called a Jordan left right centralizer if T xαx T x αx T xαx xαt x x M, α Γ. 2.3 A mapping θ : M M M is called biadditive if it is additive in both arguments. An additive mapping D : M M is called a derivation if D xαy D x αy xαd y for all
3 International Mathematics and Mathematical Sciences 3 x, y M, α Γ and it is called a Jordan derivation if D xαx D x αx xαd x for all x M, α Γ. A derivation D is inner if there exists a M, such that D x aαx xαa holds for all x M, α Γ. Every derivation is a Jordan derivation. The converse is in general not true. An additive mapping D : M M is said to be a generalized derivation if there exists a derivation d : M M such that D xαy D x αy xαd y for all x, y M, α Γ. The maps of the form x aαx xαb where a, b are fixed elements in M and for all α Γ called the generalized inner derivation. An additive mapping D : M M is said to be a Jordan generalized derivation if there exists a derivation d : M M such that D xαx D x αx xαd x for all x M, α Γ. Hence the concept of a generalized derivation covers both the concepts of a derivation and a left centralizers and the concept of a Jordan generalized derivation covers both the concepts of a Jordan derivation and a left Jordan centralizers. An example of a generalized derivation and a Jordan generalized derivation is given in Main Results We start from the following subsidiary results. Lemma 3.1. Let M be a semiprime Γ-ring. If a, b M are such that aαxβb 0 for all x M, α, β Γ, thenaαb bαa 0. Proof. Let x M. Then aαbβxγaαb aα bβxγa ) αb 0, bαaβxγbαa bα aβxγb ) αa By semiprimeness of M with respect to β, γ Γ, it follows that aαb bαa 0. Lemma 3.2. Let M be a semiprime Γ-ring and θ, ϕ : M M M biadditive mappings. If θ x, y αwβϕ x, y 0for all x, y, w M, thenθ x, y αwβϕ u, v 0for all x, y, u, v, w M, α, β Γ. Proof. First we replace x with x u in the relation θ x, y αwβϕ x, y 0, and use the biadditivity of the θ and ϕ. Then we have θ x u, y ) αwβϕ x u, y ) 0 θ ) αwβϕ u, y ) θ u, y ) αwβϕ ). 3.2 Then θ ) αwβϕ u, y )) γzδ θ ) αwβϕ u, y )) θ u, y ) αwβϕ )) γzδ θ u, y ) αwβϕ u, y )) Hence θ x, y αwβϕ u, y 0 by semiprimeness of M with respect to γ,δ Γ. Nowwereplacey by y v and obtain the assertion of the lemma with the similar observation as above.
4 4 International Mathematics and Mathematical Sciences Lemma 3.3. Let M be a semiprime Γ-ring satisfying the assumption and a be a fixed element of M.Ifaβ x, y α 0 for all x, y M, α, β Γ, thena Z M. Proof. First we calculate the following expressions using the assumption, z, a α βxδ z, a α zαaβxδ z, a α aαzβxδ z, a α zαaβ z, xαa δ zαaβ z, x δ αa aα z, zδxαa β aα z, zδx β αa. 3.4 Since aβ x, y α 0 for all x, y M, α, β Γ, weget z, a α βxδ z, a α 0. By the semiprimeness of M we get z, a α 0 for all α Γ. Hence a Z M. Lemma 3.4. Let M be a Γ-ring satisfying the condition and D : M M be a Jordan generalized derivation with the associated derivation d.letx, y, z M and α, β Γ. Then i D xαy yαx D x αy D y αx xαd y yαd x. In particular, if M is 2-torsion-free, then ii D xαyβx D x αyβx xβd yβx, iii D xαyβz zβyαx D x αyβz D z βyαx xαd yβz zβd yαx. Proof. i We have D xαx D x αx xαd x, for all x M, α Γ. Then replacing x by x y, and following the series of implications below we get the result: D x y ) α x y )) D x y ) α x y ) x y ) αd x y ) D xαx xαy yαx yαy ) D x αx D y ) αx D x αy D y ) αx xαd y ) xαd x yαd y ) yαd x D xαx yαy ) D xαy yαx ) D x αx xαd x D y ) αy yαd y )) D x αy D y ) αx xαd y ) yαd x D xαy yαx ) D x αy D y ) αx xαd y ) yαd x, x, y M, α Γ. 3.5 ii Replace y by xβy yβx in the above relation 3.5, then we get, D xα xβy yβx ) xβy yβx ) αx ) D x α xβy yβx ) D xβy yβx ) αx xαd xβy yβx ) xβy yβx ) αd x, x, y, z M, α, β Γ. D xαxβy yβxαx ) D xαyβx ) D xβyαx ) D x αxβy D x αyβx D x βyαx D y ) βxαx xβd y ) αx yβd x αx xαd xβy yβx ) xβy yβx ) αd x, x, y, z M, α, β Γ. 3.6
5 International Mathematics and Mathematical Sciences 5 Using the assumption, we conclude that D xαxβy yβxαx ) 2D xαyβx ) D x αxβy D x αyβx D x βyαx D y ) βxαx xβd y ) αx yβd x αx xαd xβy yβx ) Again, replacing x by xβx in 3.5 xβy yβx ) αd x, x, y, z M, α, β Γ. 3.7 D xβxαy yαxβx ) D xβx ) αy D y ) αxβx xβxαd y ) yαd xβx ), x, y M, α, β Γ, D xβxαy yαxβx ) D x βxαy xβd x αy D y ) αxβx xβxαd y ) Adding both sides 2D xαyβx, weget, yαd x βx yαxβd x, x, y M, α, β Γ. D xβxαy yαxβx ) 2D xαyβx ) D x βxαy xβd x αy D y ) αxβx xβxαd y ) yαd x βx yαxβd x 2D xαyβx ), x, y M, α, β Γ Comparing 3.7 and 3.9 we obtain, 2D xαyβx ) 2 { D x αyβx xαyβd x xαd y ) βx } Since M is 2-torsion-free, it gives D xαyβx ) D x αyβx xαd yβx ) iii Replace x for x z in 3.12,weget, D x z αyβ x z ) D x z αyβ x z x z αd yβ x z ) D xαyβx xαyβz zαyβx zαyβz ) D x αyβx D z αyβx D x αyβz D z αyβz xαd yβx ) xαd yβz ) zαd yβx yβz ) D xαyβx zαyβz ) D xαyβz zαyβx ) D x αyβx D z αyβz xαd yβx ) zαd yβz )) D z αyβx D x αyβz xαd yβz ) zαd yβx ))
6 6 International Mathematics and Mathematical Sciences D xαyβz zαyβx ) D x αyβz D z αyβx xαd yβz ) zαd yβx ) D xαyβz zβyαx ) D x αyβz D z αyβx xαd yβz ) zαd yβx ), x, y M, α, β Γ Definition 3.5. Let M be a Γ-ring and D : M M be a Jordan generalized derivation with the associated derivation d. Define G α x, y D xαy D x αy xαd y for all x, y M and α Γ. Lemma 3.6. The function G α x, y has the following properties: i G α x, y G α y, x 0. ii G α x, y z G α x, y G α x, z. iii G α x y, z G α x, z G α y, z. iv G α β x, y G α x, y G β x, y. Proof. The results easily follow from Lemma 3.4 i. Remark 3.7. D is a generalized derivation if and only if G α x, y 0 for all x, y M, α Γ. Theorem 3.8. Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition. Letx, y, z M and β, δ Γ. Then i G α x, y βzδ x, y α 0 for all z M, ii G α x, y β x, y α 0. Proof. i From Lemma 3.4 iii we get D xαyβz zβyαx ) D x αyβz D z βyαx xαd yβz ) zβd yαx ) We set A xαyβzδyαx yαxβzδxαy Since D A D xαyβzδyαx yαxβzδxαy ) D xα yβzδyαx ) yα xβzδxαy )) D x αyβzδyαx xαd yβzδyαx ) D y ) αxβzδxαy yαd xβzδxαy )
7 International Mathematics and Mathematical Sciences 7 D x αyβzδyαx xαd y ) βzδyαx xαyβd zδyαx ) D y ) αxβzδxαy yαd x βzδxαy yαxβd zδxαy ), x, y, z M, α, β, δ Γ Again D A D xαyβzδyαx yαxβzδxαy ) D xαy ) βzδ yαx ) yαx ) βzδ xαy )) D xαy ) βzδyαx D yαx ) βzδxαy xαyβd zδyαx ) yαxβd zδxαy ), x, y, z M, α, β, δ Γ From 3.15 and 3.16 we find, ) )) ) ) ) D xαy D x αy xαd y βzδyαx D yαx D y αx yαd x βzδxαy 0. G α ) βzδyαx y, x ) βzδxαy 0, G α ) βzδyαx ) βzδxαy 0, 3.17 ) [ G α x, y βzδ y, x 0, ]α ) [ G α x, y βzδ x, y 0, for x, y M, α, β, δ Γ. ]α ii According to Lemma 3.4 ii we have, D xαyβz ) D x αyβz xαd yβz ) Replace z by xαy in 3.18 we find D xαyβxαy ) D x αyβxαy xαd yβxαy ) D xαy ) β xαy )) D x αyβxαy xαd yβxαy ) D xαy ) βxαy xαyβd xαy ) D x αyβxαy xαd yβxαy ) 0 D xαy ) D x αy xαd y )) βxαy ) xαyβd xαy ) xαyβd xαy ) 0 ) G α x, y βxαy Similarly G α x, y βyαx 0. Therefore, ) ) ) [ G α x, y βxαy x, y βyαx x, y β x, y ]α Lemma 3.9. G α x, y Z M, for all x, y M, α Γ. Proof. From Theorem 3.8 ii, we have G α x, y β x, y α 0. Therefore due to Lemma 3.4 ii G α x, y Z M.
8 8 International Mathematics and Mathematical Sciences Theorem Let M be a 2-torsion-free semiprime Γ-ring satisfying the assumption and D : M M be a Jordan generalized derivation with associated derivation d on M. ThenD is a generalized derivation. Proof. In particular, rγg α x, y, G α x, y γr Z M for all r M, α, γ Γ. This gives ) ) ) ) xαg α x, y δ x, y βy x, y δ x, y βyαx ) ) yβg α x, y δ x, y αx ) ) yαg α x, y δ x, y βx Then 4D xαg α x, y δg α x, y βy 4D yβg α x, y δg α x, y αx. Now we will compute each side of this equality by using 3.15 and the above relation, 4D ) ) ) xαg α x, y δ x, y βy 2D ) ) ) ) ) xαg α x, y δ x, y βy x, y δ x, y βyαx ) ) ) ) ) 2D x αg α x, y δ x, y βy 2xαd x, y δ x, y βy 2D ) ) ) ) ) G α x, y δ x, y βy αx 2 x, y δ x, y βyαd x ) ) ) ) ) )) 2D x αg α x, y δ x, y βy D x, y δ x, y βy yβ x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x ) ) )) ) 2D x αg α x, y δ x, y βy D x, y δ x, y βyαx ) )) ) ) ) G α x, y δd x, y βyαx D y β x, y δ x, y αx ) ) ) ) )) G α x, y δ x, y βd y αx yβd x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x So we get 4D ) ) ) xβg α x, y δ x, y αy ) ) )) ) 2D x βg α x, y δ x, y αy D x, y δ x, y βyαx ) )) ) ) ) G α x, y δd x, y βyx D y β x, y δ x, y αx ) ) ) ) )) G α x, y δ x, y βd y αx yβd x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x, x,y M, α, β, δ Γ Moreover, 4D yβg α ) αx ) 2D yβg α ) αx ) βxαy ) 2D y ) βg α ) αx 2yβd ) αx ) 2D G α ) βx ) αy 2 ) βxαd y )
9 International Mathematics and Mathematical Sciences 9 2D y ) βg α ) αx D ) βx xβ )) αy 2yβd G α ) αx ) 2 ) βxαd y ) 2D y ) βg α ) αx D ) ) βxαy G α ) δd )) βxαy D x β ) αy G α ) αd x βy xαd )) βy 2yβd G α ) αx ) 2 ) αxβd y ) So we get 4D ) ) ) yβg α x, y δ x, y αx 2D y ) ) ) )) ) βg α x, y δ x, y αx D x, y δ x, y αxβy ) )) ) ) G α x, y δd x, y αxβy D x β x, y δ x, y αy ) ) ) )) G α x, y δ x, y αd x βy xαd x, y δ x, y βy 2yβd ) ) ) ) ) ) G α x, y δ x, y αx 2 x, y δ x, y αxβd y, x, y M, α, β, δ Γ Comparing the results of 3.22 and 3.24 and using the above relations ) ) G α x, y βyαx x, y βyαx ) xαg α x, y βy ) xαg α x, y βy ) G α x, y βxαy, ) )) )) ) G α x, y δd x, y βyαx d x, y δ x, y βyαx d )) ) G α x, y δ x, y αxβy ) )) G α x, y δd x, y αxβy, ) )) )) ) xβg α x, y δd x, y αy d x, y αxδ x, y βy d )) ) G α x, y δ x, y βxαy d )) ) G α x, y δ x, y αyβx ) )) G α x, y βyδd x, y αx ) )) yβg α x, y δd x, y αx, 3.26 we obtain ) ) ) ) ) D x αg α x, y δ x, y βy xα x, y δ x, y βd y D y ) ) ) ) ) αg α x, y δ x, y βx yα x, y δ x, y βd x, 3.27
10 10 International Mathematics and Mathematical Sciences which gives ϕ α ) β ) ϕα y, x ) α ), 3.28 where ϕ α x, y stands for D x αy xαd y. On the other hand, we have 4D xαyβg α )) 4D xα ) δyβ )) Now we use 3.15 and the properties of G α x, y, to derive 4D xαyβg α )) 2D ) ) ) ) ) xαyβg α x, y δ x, y x, y δ x, y αxβy 2D xαy ) ) ) ) )) βg α x, y δ x, y 2xαyβd x, y δ x, y D G α )) αxβy 2 ) βd xαy ), which gives 4D xαyβg α )) 2D xαy ) β ) 2xαyβd )) 2D G α )) αxβy 2G α ) βd xαy ), x,y M, α, β, δ Γ Moreover, 4D ) )) xαg α x, y δyβ x, y 2D ) ) ) )) xαg α x, y δyβ x, y yβ x, y δxα x, y 2D ) ) ) ) ) ) G α x, y αx δ x, y βy 2 x, y αxδd x, y βy 2D ) ) ) ) ) ) G α x, y βy δ x, y αx 2 x, y βyδd x, y αx D ) ) ) ) ) ) ) xαg α x, y x, y αx δ x, y βy 2 x, y αxδd x, y βy D ) ) ) ) ) ) ) yβg α x, y x, y βy δ x, y αx 2 x, y βyδd x, y αx 3.32 ) ) )) ) D x αg α x, y δ x, y βy D x, y δ x, y αxβy xαd )) ) ) ) G α x, y δ x, y βy x, y αd x δ x, y βy ) ) ) ) ) ) 2G α x, y αxδd x, y βy D y β x, y δ x, y αx D )) ) )) ) G α x, y δ x, y βyαx yβd x, y δ x, y αx ) ) ) ) ) ) G α x, y βd y δ x, y αx 2 x, y βyδd x, y αx.
11 International Mathematics and Mathematical Sciences 11 So we obtain 4D ) )) xαg α x, y δyβ x, y ) ) )) ) D x αg α x, y δ x, y βy D x, y δ x, y βxαy xαd )) ) ) ) G α x, y δ x, y βy x, y αd x δ x, y βy ) ) ) ) ) ) 2G α x, y αxδd x, y βy D y β x, y δ x, y αx D )) ) )) ) G α x, y δ x, y βyαx yβd x, y δ x, y αx ) ) ) ) ) ) G α x, y βd y δ x, y αx 2 x, y βyδd x, y αx, x, y M, α, β, δ Γ Comparing 3.31 and 3.33, we derive 2D xαy ) βg α ) ϕ α ) β ) ϕα y, x ) β ), x,y M, α, β, δ Γ Finally using 3.31 we get D xαy βg α x, y δg α x, y ϕ α x, y βg α x, y δg α x, y. But G α x, y D xαy ϕ α x, y. By the semiprimeness of M, we have ϕ α x, y βg α x, y 0. Again by the primeness of M, wegetg α x, y. The proof is complete. It is clear that if we let the derivation d to be the zero derivation in the above theorem, we get the following result. Theorem Let M be a 2-torsion-free semiprime Γ-ring and D : M M be an additive mapping which satisfies D xαx D x αx for all x M, α Γ. ThenD is a left centralizer Proof. We have D xαx D x αx If we replace x by x y, weget D xαy yαx ) D x αy D y ) αx By replacing y with xαy yαx and using 3.5, we arrive at D xα xαy yαx ) xαy yαx ) αx ) D x αxαy D x αyαx D x αyαx D y ) αxαx But on the other hand, D xαxαy yαxαx ) 2D xαyαx ) D x αxαy D y ) αxαx 2D xαyαx ). 3.38
12 12 International Mathematics and Mathematical Sciences Comparing 3.37 and 3.38 we obtain D xαyαx ) D x αyαx If we linearize 3.39 in x, weget D xαyαz zαyαx ) D x αyαz D z αyαx Now we shall compute D xαyαzαyαx yαxαzαxαy in two different ways. If we use 3.39 we have D xαyαzαyαx yαxαzαxαy ) D x αyαzαyαx D y ) αxαzαxαy But if we use 3.40 we have D xαyαzαyαx yαxαzαxαy ) D xαy ) αzαyαx D yαx ) αzαxαy Comparing 3.41 and 3.42 and introducing a bi-additive mapping G α x, y D xαy D x αy we arrive at G α ) αzαyαx y, x ) αzαxαy Equality 3.36 can be rewritten in this notation as G α x, y G α y, x. Using this fact and 3.43 we obtain ) [ G α x, y αzα x, y ]α Using first Lemma 3.2 and then Lemma 3.1 we have G α ) αzα u, v α Nowfixsomex, y M and using Lemma 3.3 we get G α x, y Z. In particular, rβg α x, y, G α x, y βr Z for all r M. This gives xβg α ) βy ) ΓyΓx yγg α ) Γx yγg α ) Γx. 3.46
13 International Mathematics and Mathematical Sciences 13 Therefore 4D xγg α x, y ΓG α x, y Γy 4D yγg α x, y ΓG α x, y Γx. Both sides of this equality will be computed in few steps using 3.36, 2D ) ) ) ) ) xγg α x, y Γ x, y Γy x, y Γ x, y ΓyΓx 2D ) ) ) ) ) yγg α x, y Γ x, y Γx x, y Γ x, y ΓxΓy, 2D x ΓG α ) Γy 2D ) Γy ) Γx 2D y ) ΓG α ) Γx 2D ) Γx ) Γy, 2D x ΓG α ) Γy D ) Γy yγ )) Γx 2D y ) ΓG α ) Γx D ) ) Γx xγ ) Γy, 2D x ΓG α ) Γy D ) ) ΓyΓx D y ) Γx 2D y ) ΓG α ) Γx D ) ) ΓxΓy D x ΓG α ) Γy, D x ΓG α ) Γy D ) ) ΓyΓx D y ) ΓG α ) Γx D ) ) ΓxΓy Since G α x, y ΓyΓx G α x, y ΓyΓx xγg α x, y Γy xγg α x, y Γy G α x, y ΓxΓy, we obtain D x ΓG α ) Γy D y ) Γx On the other hand, we also have 4D ) )) ) )) xγyγg α x, y Γ x, y 4D xγ x, y ΓyΓ x, y, 2D ) ) ) ) ) xγyγg α x, y Γ x, y x, y Γ x, y ΓxΓy 2D ) ) ) )) xγg α x, y ΓyΓ x, y yγ x, y ΓxΓ x, y, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy 2D G α ) Γx ) Γy 2D ) Γy ) Γx, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy D xγg α ) ) Γx ) Γy D yγ ) ) Γy ) Γx, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy D x ΓG α ) Γy D ) ) ΓxΓy D y ) ΓG α ) Γx D ) ) ΓxΓy, 2D xγy ) ΓG α ) D x ΓyΓG α ) D y ) ΓxΓ ). 3.49
14 14 International Mathematics and Mathematical Sciences Finally using 3.48 we arrive at D xγy ΓG α x, y ΓG α x, y D x ΓyΓG α x, y ΓG α x, y,but this means that G α x, y ΓG α x, y ΓG α x, y 0. Hence, G α ) ΓMΓ ) ) ΓM 0, G α ) ΓMΓ ) ) ΓM 0, 3.50 which implies G α x, y 0. The proof is complete. Acknowledgments The paper was supported by Grant FR MOHE Malaysia. The authors are thankful to the referee for valuable comments. References 1 B. Hvala, Generalized derivations in rings, Communications in Algebra, vol. 26, no. 4, pp , M. N. Daif and M. S. Tammam El-Sayiad, On generalized derivations in semiprime rings, International Contemporary Mathematical Sciences, vol. 2, no , pp , N. Aydin, A note on generalized derivations of prime rings, International Algebra, vol. 5, no. 1 4, pp , Y. Çeven and M. A. Öztürk, On Jordan generalized derivations in gamma rings, Hacettepe Mathematics and Statistics, vol. 33, pp , F. Ali and M. A. Chaudhry, On generalized derivations of semiprime rings, International Algebra, vol. 4, no , pp , M. J. Atteya, On generalized derivations of semiprime rings, International Algebra, vol. 4, no. 9 12, pp , N.-U. Rehman, On commutativity of rings with generalized derivations, Mathematical Okayama University, vol. 44, pp , N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Matematički. Serija III, vol. 39, no. 1, pp , 2004.
15 Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization
SEMI DERIVATIONS OF PRIME GAMMA RINGS
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) xx (2011) 31 (2011) 65-70 SEMI DERIVATIONS OF PRIME GAMMA RINGS Kalyan Kumar Dey 1 and Akhil Chandra Paul 2 1,2 Department of Mathematics Rajshahi University,
Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution
Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution Ali Kareem Kadhim School of Mathematical Sciences Universiti Sains Malaysia, 11800 USM Penang, Malaysia Hajar Sulaiman School of Mathematical
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
and Institute for Mathematical Research (INSPEM) Universiti Putra Malaysia MALAYSIA 2,3 Department of Mathematics
International Journal of Pure and Applied Mathematics Volume 82 No. 5 2013, 669-681 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v82i5.1
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings
International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Fuzzifying Tritopological Spaces
International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman
F A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras
Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
arxiv: v1 [math.ra] 19 Dec 2017
TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites
ao DOI: 10.2478/s12175-012-0080-3 Math. Slovaca 63 (2013), No. 1, 41 52 SEMIGROUP ACTIONS ON ORDERED GROUPOIDS Niovi Kehayopulu* Michael Tsingelis** (Communicated by Miroslav Ploščica ) ABSTRACT. In this
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle
Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified