Research Article Generalized Derivations in Semiprime Gamma Rings

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Research Article Generalized Derivations in Semiprime Gamma Rings"

Transcript

1 International Mathematics and Mathematical Sciences Volume 2012, Article ID , 14 pages doi: /2012/ Research Article Generalized Derivations in Semiprime Gamma Rings Kalyan Kumar Dey, 1 Akhil Chandra Paul, 1 and Isamiddin S. Rakhimov 2 1 Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh 2 Department of Mathematics, FS, and Institute for Mathematical Research INSPEM), Universiti Putra Malaysia, Serdang, Malaysia Correspondence should be addressed to Kalyan Kumar Dey, kkdmath@yahoo.com Received 10 November 2011; Revised 5 December 2011; Accepted 5 December 2011 Academic Editor: Christian Corda Copyright q 2012 Kalyan Kumar Dey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition aαbβc aβbαc for all a, b, c M, α, β Γ,andletD : M M be an additive mapping such that D xαx D x αx xαd x for all x M, α Γ and for some derivation d of M. We prove that D is a generalized derivation. 1. Introduction Hvala 1 first introduced the generalized derivations in rings and obtained some remarkable results in classical rings. Daif and Tammam El-Sayiad 2 studied the generalized derivations in semiprime rings. The authors consider an additive mapping G : R R of a ring R with the property G x 2 G x x xd x for some derivation D of R. They prove that G is a Jordan generalized derivation. Aydin 3 studied generalized derivations of prime rings. The author proved that if I is an ideal of a noncommutative prime ring R, a is a fixed element of R and F is an generalized derivation on R associated with a derivation d then the condition F x, a 0or F x,a 0 for all x I implies d x λ x, a. ÇevenandÖztürk 4 have dealt with Jordan generalized derivations in Γ-rings and they proved that every Jordan generalized derivation on some Γ-rings is a generalized derivation. Generalized derivations of semiprime rings have been treated by Ali and Chaudhry 5. The authors proved that if F is a commuting generalized derivation of a semiprime ring

2 2 International Mathematics and Mathematical Sciences R associated with a derivation d then d x y, z 0 for all x, y, z R and d is central. They characterized a decomposition of R relative to the generalized derivations. Atteya 6 proved that if U is nonzero ideal of a semiprime ring R and R admits a generalized derivation D such that D xy xy Z R then R contains a nonzero central ideal. Rehman 7, 8 studied the commutativity of a ring R by means of generalized derivations acting as homomorphisms and antihomomorphisms. In this paper, we prove the following results Let M be a 2-torsion-free semiprime Γ-ring satisfying the following assumption: aαbβc aβbαc a, b, c M, α, β Γ, and D : M M be an additive mapping. If there exists a derivation d of M such that D xαx D x αx xαd x for all x M, α Γ, then D is a Jordan generalized derivation. 2. Preliminaries Let M and Γ be additive abelian groups. M is called a Γ-ring if there exists a mapping M M M M such that for all a, b, c M, α, β Γ the following conditions are satisfied: i aβb M, ii a b αc aαc bαc, a α β b aαb aβb, aα b c aαb aαc, aαb βc aα bβc. For any a, b M and for α, β Γ the expressions aαb bαa is denoted by a, b α and αaβ βaα are denoted by α, β a. Then one has the following identities: [ ] aβb, c α aβ b, c α a, c α βb a[ β, α ] c b, [ a, bβc ]α bβ a, c α a, b α βc b[ β, α ] a c, 2.1 for all a, b, c M and for all α, β Γ. Using the assumption the above identities reduce to [ ] aβb, c α aβ b, c α a, c α βb, [ a, bβc ]α bβ a, c α a, b α βc, 2.2 for all a, b, c M and α, β Γ. Further M stands for a prime Γ-ring with center Z M. The ring M is n-torsion-free if nx 0, x M implies x 0, where n is a positive integer, M is prime if aγmγb 0 implies a 0orb 0, and it is semiprime if aγmγa 0 implies a 0. An additive mapping T : M M is called a left right centralizer if T xαy T x αy T xαy xαt y for x, y M, α Γ and it is called a Jordan left right centralizer if T xαx T x αx T xαx xαt x x M, α Γ. 2.3 A mapping θ : M M M is called biadditive if it is additive in both arguments. An additive mapping D : M M is called a derivation if D xαy D x αy xαd y for all

3 International Mathematics and Mathematical Sciences 3 x, y M, α Γ and it is called a Jordan derivation if D xαx D x αx xαd x for all x M, α Γ. A derivation D is inner if there exists a M, such that D x aαx xαa holds for all x M, α Γ. Every derivation is a Jordan derivation. The converse is in general not true. An additive mapping D : M M is said to be a generalized derivation if there exists a derivation d : M M such that D xαy D x αy xαd y for all x, y M, α Γ. The maps of the form x aαx xαb where a, b are fixed elements in M and for all α Γ called the generalized inner derivation. An additive mapping D : M M is said to be a Jordan generalized derivation if there exists a derivation d : M M such that D xαx D x αx xαd x for all x M, α Γ. Hence the concept of a generalized derivation covers both the concepts of a derivation and a left centralizers and the concept of a Jordan generalized derivation covers both the concepts of a Jordan derivation and a left Jordan centralizers. An example of a generalized derivation and a Jordan generalized derivation is given in Main Results We start from the following subsidiary results. Lemma 3.1. Let M be a semiprime Γ-ring. If a, b M are such that aαxβb 0 for all x M, α, β Γ, thenaαb bαa 0. Proof. Let x M. Then aαbβxγaαb aα bβxγa ) αb 0, bαaβxγbαa bα aβxγb ) αa By semiprimeness of M with respect to β, γ Γ, it follows that aαb bαa 0. Lemma 3.2. Let M be a semiprime Γ-ring and θ, ϕ : M M M biadditive mappings. If θ x, y αwβϕ x, y 0for all x, y, w M, thenθ x, y αwβϕ u, v 0for all x, y, u, v, w M, α, β Γ. Proof. First we replace x with x u in the relation θ x, y αwβϕ x, y 0, and use the biadditivity of the θ and ϕ. Then we have θ x u, y ) αwβϕ x u, y ) 0 θ ) αwβϕ u, y ) θ u, y ) αwβϕ ). 3.2 Then θ ) αwβϕ u, y )) γzδ θ ) αwβϕ u, y )) θ u, y ) αwβϕ )) γzδ θ u, y ) αwβϕ u, y )) Hence θ x, y αwβϕ u, y 0 by semiprimeness of M with respect to γ,δ Γ. Nowwereplacey by y v and obtain the assertion of the lemma with the similar observation as above.

4 4 International Mathematics and Mathematical Sciences Lemma 3.3. Let M be a semiprime Γ-ring satisfying the assumption and a be a fixed element of M.Ifaβ x, y α 0 for all x, y M, α, β Γ, thena Z M. Proof. First we calculate the following expressions using the assumption, z, a α βxδ z, a α zαaβxδ z, a α aαzβxδ z, a α zαaβ z, xαa δ zαaβ z, x δ αa aα z, zδxαa β aα z, zδx β αa. 3.4 Since aβ x, y α 0 for all x, y M, α, β Γ, weget z, a α βxδ z, a α 0. By the semiprimeness of M we get z, a α 0 for all α Γ. Hence a Z M. Lemma 3.4. Let M be a Γ-ring satisfying the condition and D : M M be a Jordan generalized derivation with the associated derivation d.letx, y, z M and α, β Γ. Then i D xαy yαx D x αy D y αx xαd y yαd x. In particular, if M is 2-torsion-free, then ii D xαyβx D x αyβx xβd yβx, iii D xαyβz zβyαx D x αyβz D z βyαx xαd yβz zβd yαx. Proof. i We have D xαx D x αx xαd x, for all x M, α Γ. Then replacing x by x y, and following the series of implications below we get the result: D x y ) α x y )) D x y ) α x y ) x y ) αd x y ) D xαx xαy yαx yαy ) D x αx D y ) αx D x αy D y ) αx xαd y ) xαd x yαd y ) yαd x D xαx yαy ) D xαy yαx ) D x αx xαd x D y ) αy yαd y )) D x αy D y ) αx xαd y ) yαd x D xαy yαx ) D x αy D y ) αx xαd y ) yαd x, x, y M, α Γ. 3.5 ii Replace y by xβy yβx in the above relation 3.5, then we get, D xα xβy yβx ) xβy yβx ) αx ) D x α xβy yβx ) D xβy yβx ) αx xαd xβy yβx ) xβy yβx ) αd x, x, y, z M, α, β Γ. D xαxβy yβxαx ) D xαyβx ) D xβyαx ) D x αxβy D x αyβx D x βyαx D y ) βxαx xβd y ) αx yβd x αx xαd xβy yβx ) xβy yβx ) αd x, x, y, z M, α, β Γ. 3.6

5 International Mathematics and Mathematical Sciences 5 Using the assumption, we conclude that D xαxβy yβxαx ) 2D xαyβx ) D x αxβy D x αyβx D x βyαx D y ) βxαx xβd y ) αx yβd x αx xαd xβy yβx ) Again, replacing x by xβx in 3.5 xβy yβx ) αd x, x, y, z M, α, β Γ. 3.7 D xβxαy yαxβx ) D xβx ) αy D y ) αxβx xβxαd y ) yαd xβx ), x, y M, α, β Γ, D xβxαy yαxβx ) D x βxαy xβd x αy D y ) αxβx xβxαd y ) Adding both sides 2D xαyβx, weget, yαd x βx yαxβd x, x, y M, α, β Γ. D xβxαy yαxβx ) 2D xαyβx ) D x βxαy xβd x αy D y ) αxβx xβxαd y ) yαd x βx yαxβd x 2D xαyβx ), x, y M, α, β Γ Comparing 3.7 and 3.9 we obtain, 2D xαyβx ) 2 { D x αyβx xαyβd x xαd y ) βx } Since M is 2-torsion-free, it gives D xαyβx ) D x αyβx xαd yβx ) iii Replace x for x z in 3.12,weget, D x z αyβ x z ) D x z αyβ x z x z αd yβ x z ) D xαyβx xαyβz zαyβx zαyβz ) D x αyβx D z αyβx D x αyβz D z αyβz xαd yβx ) xαd yβz ) zαd yβx yβz ) D xαyβx zαyβz ) D xαyβz zαyβx ) D x αyβx D z αyβz xαd yβx ) zαd yβz )) D z αyβx D x αyβz xαd yβz ) zαd yβx ))

6 6 International Mathematics and Mathematical Sciences D xαyβz zαyβx ) D x αyβz D z αyβx xαd yβz ) zαd yβx ) D xαyβz zβyαx ) D x αyβz D z αyβx xαd yβz ) zαd yβx ), x, y M, α, β Γ Definition 3.5. Let M be a Γ-ring and D : M M be a Jordan generalized derivation with the associated derivation d. Define G α x, y D xαy D x αy xαd y for all x, y M and α Γ. Lemma 3.6. The function G α x, y has the following properties: i G α x, y G α y, x 0. ii G α x, y z G α x, y G α x, z. iii G α x y, z G α x, z G α y, z. iv G α β x, y G α x, y G β x, y. Proof. The results easily follow from Lemma 3.4 i. Remark 3.7. D is a generalized derivation if and only if G α x, y 0 for all x, y M, α Γ. Theorem 3.8. Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition. Letx, y, z M and β, δ Γ. Then i G α x, y βzδ x, y α 0 for all z M, ii G α x, y β x, y α 0. Proof. i From Lemma 3.4 iii we get D xαyβz zβyαx ) D x αyβz D z βyαx xαd yβz ) zβd yαx ) We set A xαyβzδyαx yαxβzδxαy Since D A D xαyβzδyαx yαxβzδxαy ) D xα yβzδyαx ) yα xβzδxαy )) D x αyβzδyαx xαd yβzδyαx ) D y ) αxβzδxαy yαd xβzδxαy )

7 International Mathematics and Mathematical Sciences 7 D x αyβzδyαx xαd y ) βzδyαx xαyβd zδyαx ) D y ) αxβzδxαy yαd x βzδxαy yαxβd zδxαy ), x, y, z M, α, β, δ Γ Again D A D xαyβzδyαx yαxβzδxαy ) D xαy ) βzδ yαx ) yαx ) βzδ xαy )) D xαy ) βzδyαx D yαx ) βzδxαy xαyβd zδyαx ) yαxβd zδxαy ), x, y, z M, α, β, δ Γ From 3.15 and 3.16 we find, ) )) ) ) ) D xαy D x αy xαd y βzδyαx D yαx D y αx yαd x βzδxαy 0. G α ) βzδyαx y, x ) βzδxαy 0, G α ) βzδyαx ) βzδxαy 0, 3.17 ) [ G α x, y βzδ y, x 0, ]α ) [ G α x, y βzδ x, y 0, for x, y M, α, β, δ Γ. ]α ii According to Lemma 3.4 ii we have, D xαyβz ) D x αyβz xαd yβz ) Replace z by xαy in 3.18 we find D xαyβxαy ) D x αyβxαy xαd yβxαy ) D xαy ) β xαy )) D x αyβxαy xαd yβxαy ) D xαy ) βxαy xαyβd xαy ) D x αyβxαy xαd yβxαy ) 0 D xαy ) D x αy xαd y )) βxαy ) xαyβd xαy ) xαyβd xαy ) 0 ) G α x, y βxαy Similarly G α x, y βyαx 0. Therefore, ) ) ) [ G α x, y βxαy x, y βyαx x, y β x, y ]α Lemma 3.9. G α x, y Z M, for all x, y M, α Γ. Proof. From Theorem 3.8 ii, we have G α x, y β x, y α 0. Therefore due to Lemma 3.4 ii G α x, y Z M.

8 8 International Mathematics and Mathematical Sciences Theorem Let M be a 2-torsion-free semiprime Γ-ring satisfying the assumption and D : M M be a Jordan generalized derivation with associated derivation d on M. ThenD is a generalized derivation. Proof. In particular, rγg α x, y, G α x, y γr Z M for all r M, α, γ Γ. This gives ) ) ) ) xαg α x, y δ x, y βy x, y δ x, y βyαx ) ) yβg α x, y δ x, y αx ) ) yαg α x, y δ x, y βx Then 4D xαg α x, y δg α x, y βy 4D yβg α x, y δg α x, y αx. Now we will compute each side of this equality by using 3.15 and the above relation, 4D ) ) ) xαg α x, y δ x, y βy 2D ) ) ) ) ) xαg α x, y δ x, y βy x, y δ x, y βyαx ) ) ) ) ) 2D x αg α x, y δ x, y βy 2xαd x, y δ x, y βy 2D ) ) ) ) ) G α x, y δ x, y βy αx 2 x, y δ x, y βyαd x ) ) ) ) ) )) 2D x αg α x, y δ x, y βy D x, y δ x, y βy yβ x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x ) ) )) ) 2D x αg α x, y δ x, y βy D x, y δ x, y βyαx ) )) ) ) ) G α x, y δd x, y βyαx D y β x, y δ x, y αx ) ) ) ) )) G α x, y δ x, y βd y αx yβd x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x So we get 4D ) ) ) xβg α x, y δ x, y αy ) ) )) ) 2D x βg α x, y δ x, y αy D x, y δ x, y βyαx ) )) ) ) ) G α x, y δd x, y βyx D y β x, y δ x, y αx ) ) ) ) )) G α x, y δ x, y βd y αx yβd x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x, x,y M, α, β, δ Γ Moreover, 4D yβg α ) αx ) 2D yβg α ) αx ) βxαy ) 2D y ) βg α ) αx 2yβd ) αx ) 2D G α ) βx ) αy 2 ) βxαd y )

9 International Mathematics and Mathematical Sciences 9 2D y ) βg α ) αx D ) βx xβ )) αy 2yβd G α ) αx ) 2 ) βxαd y ) 2D y ) βg α ) αx D ) ) βxαy G α ) δd )) βxαy D x β ) αy G α ) αd x βy xαd )) βy 2yβd G α ) αx ) 2 ) αxβd y ) So we get 4D ) ) ) yβg α x, y δ x, y αx 2D y ) ) ) )) ) βg α x, y δ x, y αx D x, y δ x, y αxβy ) )) ) ) G α x, y δd x, y αxβy D x β x, y δ x, y αy ) ) ) )) G α x, y δ x, y αd x βy xαd x, y δ x, y βy 2yβd ) ) ) ) ) ) G α x, y δ x, y αx 2 x, y δ x, y αxβd y, x, y M, α, β, δ Γ Comparing the results of 3.22 and 3.24 and using the above relations ) ) G α x, y βyαx x, y βyαx ) xαg α x, y βy ) xαg α x, y βy ) G α x, y βxαy, ) )) )) ) G α x, y δd x, y βyαx d x, y δ x, y βyαx d )) ) G α x, y δ x, y αxβy ) )) G α x, y δd x, y αxβy, ) )) )) ) xβg α x, y δd x, y αy d x, y αxδ x, y βy d )) ) G α x, y δ x, y βxαy d )) ) G α x, y δ x, y αyβx ) )) G α x, y βyδd x, y αx ) )) yβg α x, y δd x, y αx, 3.26 we obtain ) ) ) ) ) D x αg α x, y δ x, y βy xα x, y δ x, y βd y D y ) ) ) ) ) αg α x, y δ x, y βx yα x, y δ x, y βd x, 3.27

10 10 International Mathematics and Mathematical Sciences which gives ϕ α ) β ) ϕα y, x ) α ), 3.28 where ϕ α x, y stands for D x αy xαd y. On the other hand, we have 4D xαyβg α )) 4D xα ) δyβ )) Now we use 3.15 and the properties of G α x, y, to derive 4D xαyβg α )) 2D ) ) ) ) ) xαyβg α x, y δ x, y x, y δ x, y αxβy 2D xαy ) ) ) ) )) βg α x, y δ x, y 2xαyβd x, y δ x, y D G α )) αxβy 2 ) βd xαy ), which gives 4D xαyβg α )) 2D xαy ) β ) 2xαyβd )) 2D G α )) αxβy 2G α ) βd xαy ), x,y M, α, β, δ Γ Moreover, 4D ) )) xαg α x, y δyβ x, y 2D ) ) ) )) xαg α x, y δyβ x, y yβ x, y δxα x, y 2D ) ) ) ) ) ) G α x, y αx δ x, y βy 2 x, y αxδd x, y βy 2D ) ) ) ) ) ) G α x, y βy δ x, y αx 2 x, y βyδd x, y αx D ) ) ) ) ) ) ) xαg α x, y x, y αx δ x, y βy 2 x, y αxδd x, y βy D ) ) ) ) ) ) ) yβg α x, y x, y βy δ x, y αx 2 x, y βyδd x, y αx 3.32 ) ) )) ) D x αg α x, y δ x, y βy D x, y δ x, y αxβy xαd )) ) ) ) G α x, y δ x, y βy x, y αd x δ x, y βy ) ) ) ) ) ) 2G α x, y αxδd x, y βy D y β x, y δ x, y αx D )) ) )) ) G α x, y δ x, y βyαx yβd x, y δ x, y αx ) ) ) ) ) ) G α x, y βd y δ x, y αx 2 x, y βyδd x, y αx.

11 International Mathematics and Mathematical Sciences 11 So we obtain 4D ) )) xαg α x, y δyβ x, y ) ) )) ) D x αg α x, y δ x, y βy D x, y δ x, y βxαy xαd )) ) ) ) G α x, y δ x, y βy x, y αd x δ x, y βy ) ) ) ) ) ) 2G α x, y αxδd x, y βy D y β x, y δ x, y αx D )) ) )) ) G α x, y δ x, y βyαx yβd x, y δ x, y αx ) ) ) ) ) ) G α x, y βd y δ x, y αx 2 x, y βyδd x, y αx, x, y M, α, β, δ Γ Comparing 3.31 and 3.33, we derive 2D xαy ) βg α ) ϕ α ) β ) ϕα y, x ) β ), x,y M, α, β, δ Γ Finally using 3.31 we get D xαy βg α x, y δg α x, y ϕ α x, y βg α x, y δg α x, y. But G α x, y D xαy ϕ α x, y. By the semiprimeness of M, we have ϕ α x, y βg α x, y 0. Again by the primeness of M, wegetg α x, y. The proof is complete. It is clear that if we let the derivation d to be the zero derivation in the above theorem, we get the following result. Theorem Let M be a 2-torsion-free semiprime Γ-ring and D : M M be an additive mapping which satisfies D xαx D x αx for all x M, α Γ. ThenD is a left centralizer Proof. We have D xαx D x αx If we replace x by x y, weget D xαy yαx ) D x αy D y ) αx By replacing y with xαy yαx and using 3.5, we arrive at D xα xαy yαx ) xαy yαx ) αx ) D x αxαy D x αyαx D x αyαx D y ) αxαx But on the other hand, D xαxαy yαxαx ) 2D xαyαx ) D x αxαy D y ) αxαx 2D xαyαx ). 3.38

12 12 International Mathematics and Mathematical Sciences Comparing 3.37 and 3.38 we obtain D xαyαx ) D x αyαx If we linearize 3.39 in x, weget D xαyαz zαyαx ) D x αyαz D z αyαx Now we shall compute D xαyαzαyαx yαxαzαxαy in two different ways. If we use 3.39 we have D xαyαzαyαx yαxαzαxαy ) D x αyαzαyαx D y ) αxαzαxαy But if we use 3.40 we have D xαyαzαyαx yαxαzαxαy ) D xαy ) αzαyαx D yαx ) αzαxαy Comparing 3.41 and 3.42 and introducing a bi-additive mapping G α x, y D xαy D x αy we arrive at G α ) αzαyαx y, x ) αzαxαy Equality 3.36 can be rewritten in this notation as G α x, y G α y, x. Using this fact and 3.43 we obtain ) [ G α x, y αzα x, y ]α Using first Lemma 3.2 and then Lemma 3.1 we have G α ) αzα u, v α Nowfixsomex, y M and using Lemma 3.3 we get G α x, y Z. In particular, rβg α x, y, G α x, y βr Z for all r M. This gives xβg α ) βy ) ΓyΓx yγg α ) Γx yγg α ) Γx. 3.46

13 International Mathematics and Mathematical Sciences 13 Therefore 4D xγg α x, y ΓG α x, y Γy 4D yγg α x, y ΓG α x, y Γx. Both sides of this equality will be computed in few steps using 3.36, 2D ) ) ) ) ) xγg α x, y Γ x, y Γy x, y Γ x, y ΓyΓx 2D ) ) ) ) ) yγg α x, y Γ x, y Γx x, y Γ x, y ΓxΓy, 2D x ΓG α ) Γy 2D ) Γy ) Γx 2D y ) ΓG α ) Γx 2D ) Γx ) Γy, 2D x ΓG α ) Γy D ) Γy yγ )) Γx 2D y ) ΓG α ) Γx D ) ) Γx xγ ) Γy, 2D x ΓG α ) Γy D ) ) ΓyΓx D y ) Γx 2D y ) ΓG α ) Γx D ) ) ΓxΓy D x ΓG α ) Γy, D x ΓG α ) Γy D ) ) ΓyΓx D y ) ΓG α ) Γx D ) ) ΓxΓy Since G α x, y ΓyΓx G α x, y ΓyΓx xγg α x, y Γy xγg α x, y Γy G α x, y ΓxΓy, we obtain D x ΓG α ) Γy D y ) Γx On the other hand, we also have 4D ) )) ) )) xγyγg α x, y Γ x, y 4D xγ x, y ΓyΓ x, y, 2D ) ) ) ) ) xγyγg α x, y Γ x, y x, y Γ x, y ΓxΓy 2D ) ) ) )) xγg α x, y ΓyΓ x, y yγ x, y ΓxΓ x, y, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy 2D G α ) Γx ) Γy 2D ) Γy ) Γx, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy D xγg α ) ) Γx ) Γy D yγ ) ) Γy ) Γx, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy D x ΓG α ) Γy D ) ) ΓxΓy D y ) ΓG α ) Γx D ) ) ΓxΓy, 2D xγy ) ΓG α ) D x ΓyΓG α ) D y ) ΓxΓ ). 3.49

14 14 International Mathematics and Mathematical Sciences Finally using 3.48 we arrive at D xγy ΓG α x, y ΓG α x, y D x ΓyΓG α x, y ΓG α x, y,but this means that G α x, y ΓG α x, y ΓG α x, y 0. Hence, G α ) ΓMΓ ) ) ΓM 0, G α ) ΓMΓ ) ) ΓM 0, 3.50 which implies G α x, y 0. The proof is complete. Acknowledgments The paper was supported by Grant FR MOHE Malaysia. The authors are thankful to the referee for valuable comments. References 1 B. Hvala, Generalized derivations in rings, Communications in Algebra, vol. 26, no. 4, pp , M. N. Daif and M. S. Tammam El-Sayiad, On generalized derivations in semiprime rings, International Contemporary Mathematical Sciences, vol. 2, no , pp , N. Aydin, A note on generalized derivations of prime rings, International Algebra, vol. 5, no. 1 4, pp , Y. Çeven and M. A. Öztürk, On Jordan generalized derivations in gamma rings, Hacettepe Mathematics and Statistics, vol. 33, pp , F. Ali and M. A. Chaudhry, On generalized derivations of semiprime rings, International Algebra, vol. 4, no , pp , M. J. Atteya, On generalized derivations of semiprime rings, International Algebra, vol. 4, no. 9 12, pp , N.-U. Rehman, On commutativity of rings with generalized derivations, Mathematical Okayama University, vol. 44, pp , N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Matematički. Serija III, vol. 39, no. 1, pp , 2004.

15 Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization

SEMI DERIVATIONS OF PRIME GAMMA RINGS

SEMI DERIVATIONS OF PRIME GAMMA RINGS GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) xx (2011) 31 (2011) 65-70 SEMI DERIVATIONS OF PRIME GAMMA RINGS Kalyan Kumar Dey 1 and Akhil Chandra Paul 2 1,2 Department of Mathematics Rajshahi University,

Διαβάστε περισσότερα

Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution

Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution Ali Kareem Kadhim School of Mathematical Sciences Universiti Sains Malaysia, 11800 USM Penang, Malaysia Hajar Sulaiman School of Mathematical

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

and Institute for Mathematical Research (INSPEM) Universiti Putra Malaysia MALAYSIA 2,3 Department of Mathematics

and Institute for Mathematical Research (INSPEM) Universiti Putra Malaysia MALAYSIA 2,3 Department of Mathematics International Journal of Pure and Applied Mathematics Volume 82 No. 5 2013, 669-681 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v82i5.1

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites ao DOI: 10.2478/s12175-012-0080-3 Math. Slovaca 63 (2013), No. 1, 41 52 SEMIGROUP ACTIONS ON ORDERED GROUPOIDS Niovi Kehayopulu* Michael Tsingelis** (Communicated by Miroslav Ploščica ) ABSTRACT. In this

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα