Free boundary problem for the Navier-Stokes equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Free boundary problem for the Navier-Stokes equations"

Transcript

1 Free boundary problem for the Navier-Stokes equations Yoshihiro Shibata Department of Mathematics & Research Institute of Sciences and Engineerings, Waseda University Fluids under Pressure Summer School 216, Aug 29 Sept 2 Nečas Center for Mathematical Modelling, Prague, Czech Republic Organizers: S Nečasová, T Bodnár, and G P Galdi Partially supported by Top Global University Project and JSPS Grant-in-aid for Scientific Research (S) # YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

2 Some physical backgound the cavitation A cloud of bubles created by a screw propeller droplet fall, motion of the surface of the sea YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

3 One phase problem for the incompressible viscous fluid flow Let Ω be a domain in R N, which is occupied by some viscous fluid Let Γ be the boundary of Ω Let Ω t and Γ t be time evolutions of Ω and Γ for t > Let n t be the unit outer normal to Γ t Problem is to find a domain Ω t, velocity v = (v 1,, v N ) and pressure p satisfying (1) div v = in <t<t Ω t (, T ), t v + (v )v Div (µd(v) pi) = in <t<t Ω t (, T ), (µd(v) pi)n t = σh(γ t )n t, V Γt = v n t on <t<t Γ t (, T ), v t= = v, Ω t t= = Ω = Ω µ : positive constant, viscosity coefficient, σ: positive constant, coefficient of surface tension H(Γ t ): doubled mean curvature of Γ t, V Γt : evolution speed of Γ t in the n t direction D(v) = v + v = doubled deformation tensor whose (i, j) component is i v j + j v i, I is the N N identity matrix YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

4 Modelling φ t : Ω Ω t : ξ x = φ t (ξ) is the diffeomorphism Navier-Stokes equations in the isothemal case ρ t + div (ρu) = ρ(u t + u u) = Div T (eq for the mass conservation), (eq for the conservation of momentum) ρ:mass density, u = (u 1,, u N ): velocity field, T = (T ij ): stress tensor, Div T i = Reynolds tranport theorem : v(x, t) = ( t φ t )(φ 1 t (x)), J: Jacobina of the trasformation x = φ t (ξ), = t J = (div v)j Conservation of Mass d ρ dx = d ρ(φ t, t)j dξ = ((ρ t + div (ρv))j dξ = div (ρ(v u)) dx = ρ(v u) n t dσ dt Ω t dt Ω Ω Ω t Γ t (v u) n t = on Γ t = d ρ dx = Γ t : boundary of Ω t, n t : unit outer normal to Γ t dt Ω t V Γt = u n t on Γ t (kinematic condition) V Γt = v n t : evolution speed of the free surface If Γ t is given by F (x, t) = locally, then F t + u F = In fact, = d dt F (ϕ t, t) = F t + F v, and F v = F n t v = F n t u = F u N j=1 T ij x j YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

5 Modelling Conservation of Momentum: d ρu dx = d ρ(φ t, t)u(φ t, t)j dξ = (ρ t + ρ v)u + ρ(u t + v u) + ρudiv v)j dξ dt Ω t dt Ω Ω using the momentum eq = (Div [ρ(v u) u] + Div T) dx = {(ρ(v u) n t )u + Tn t } dx = Tn t dx = Ω t Γ t Γ t Tn t = div Γt T Γt = Tn t dx = = the conservation of momenutum d ρu dx = Γ t dt Ω t Here, we assume that div Γt T Γt = σh Γt n t (the surface tension only acts on Γ t H Γt n t = Γt x = div Γt n t Γt : the Laplace-Beltrami op on Γ t, x: position vector of Γ t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

6 Modelling Incompressibility : Assume that ρ is positive constant Eq of mass conservation: ρ t + div (ρu) = = div u = Constitutive Relation : Classical Newton Law T = µd(u) pi Assume that ( t φ)(φ 1 (x)) = u(x, t), and then x = φ t (ξ) is a solution of the Cauchy problem dx dt = u(x, t) (t > ), x t= = ξ v(ξ, t) = u(φ t (ξ), t) : the Lagrange representation of the velocity field Lagrange map: x = ξ + Γ t = {x = X v (ξ, t), ξ Γ}, t v(ξ, s) ds = X v (ξ, t)(= φ t (ξ)) Ω t = {x = X v (ξ, t), ξ Ω} This expresses the fact that the free surface Γ t consists for all t > of the same fluid particles, which do not leave it and are not incident on it from Ω t Point in solving the free boundary problem : Transform time dependent domain Ω t to some fixed domain 1 Lagrange transform: Ω t Ω 2 Hanzawa transform: Ω t = {x = f(y, t) y D} with some unknow function f 3 any other transformation else??? YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

7 Equation in the Lagrange coordinate t Lagrange transform: x = ξ + u(ξ, s) ds Let A be the inverse matrix of the Jacobi matrix x t j u j = δ jk + ds ξ k ξ k t x = A ξ = ξ + V ( u(ξ, s) ds) ξ Passing to the Lagrange coordinates and setting p(x u (ξ, t), t) = q(ξ, t), t u Div (µd(u) qi) = F(u), div u = G 1 (u) = div G 2 (u) in Ω (, T ), (2) (µd(u) qi + H(u))n t σh(γ t )n t = on Γ (, T ), u t= = v(ξ) in Ω n t = T A 1 n T A 1 n 1, n : the unit outer normal to Γ t t t t F(u) = V ( u ds) t u + V 2 ( u ds) 2 u + V 3 ( u ds)( 2 u ds, u), t t t G 1 (u) = V 4 ( u ds) u, G 2 (u) = V 5 ( u ds)u, H(u) = V 6 ( u ds) u, t with some matrices V j = V j (w) of polynomials with respect to w = u(ξ, s) ds such that V j () = for j =, 2, 4, 5, and 6 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

8 Boundary condition Let Π t d = d < d, n t > n t, Π d = d < d, n > n And then, d = is equivalent to Π Π t d = and n d = Boundary condition: (S(u, q) + H(u))n t σh(γ t )n t = with S(u, q) = µd(u) qi equivalent to Π Π t (µd(u) + H(u))n t = and t n (S(u, q) + H(u))n t σn Γt (ξ + u ds) = t we have used the fact that H(Γ t )n t = Γt X u (ξ, t) = Γt (ξ + u ds) The first condition is equivalent to Π µd(u)n = Π (Π Π t )µd(u)n t + Π µd(u)(n n t ) Π Π t H(u)n t To find the equivalent condtion to the second equations, we observe that t t σn Γt (ξ + u ds) = σn {( Γt Γ )(ξ + u ds)} σn Γ ξ H(Γ) t σn Γ u ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

9 t t ) = σn {( Γt Γ )(ξ + u ds)} σh(γ) σ Γ (n u ds t t } + σ {2( Γ n) Γ u ds + ( Γ n) u ds t ( t ) = σn {( Γt Γ )(ξ + u ds)} σh(γ) + (m σ Γ ) n u ds t t t } mn u ds + σ {2( Γ n) Γ u ds + ( Γ n) u ds [ t = (m σ Γ ) n u ds σ(m σ Γ ) 1( t t )] n {( Γt Γ )(ξ + u ds)} ( Γ n) u ds K(u) t t σh(γ) mn u ds + 2σ( Γ n) Γ u ds Here, we choose m so large positive numeber in such a way that (m σ Γ ) 1 exists t t Let K(u) = n ( Γ Γt ) u ds + n ( Γ Γt )ξ ( Γ n) u ds, t η = n u ds (m Γ ) 1 K(u) Thus, the second equation may be written in the form : t η n u = (m σ Γ ) 1 t K(u), < µd(u)n t, n > q < n t, n > + < H(u))n t, n > +(m σ )η t t σh(γ) mn u ds + 2σ( Γ n) Γ u ds = YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

10 The second equation is changed as follows: =< µd(u)n, n > + < µd(u)(n t n), n > q < n t, n > + < H(u))n t, n > +(m σ )η t t σh(γ) mn u ds + 2σ( Γ n) Γ u ds, so that =< µd(u)n, n > q + (m σ Γ )η + (< n t, n > 1 1)(< µd(u)n, n > +(m σ Γ )η) { t t } < n t, n > 1 σh(γ) < n t, n > 1 mn u ds 2σ( Γ n) Γ u ds, Thus, our nonlinear equations in the Lagrange coordinate is: (3) t u Div S(u, q) = F(u), div u = G 1 (u) = div G 2 (u) in Ω (, T ), t η n u = (m Γ ) 1 t K(u) on Γ (, T ), S(u, q)n + (σ(m Γ )η)n = σ < n t, n > 1 H(Γ)n + I(u, η) on Γ (, T ) u t= = v in Ω, η t= = on Γ, with (4) I(u, η) = Π ((Π Π t )µd(u)n t + µd(u)(n n t ) Π t H(u)n t ) + [(1 < n, n t > 1 )(< µd(u)n, n > +(m σ Γ )η) t t + < n, n t > 1 (mn u ds 2σ( Γ n) Γ u ds)]n, t t K(u) = n ( Γ Γt ) u ds + n ( Γ Γt )ξ ( Γ n) u ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

11 Example of domains Main condition for the domain Ω For any f L q (Ω), there exists a unique u Ĥ1 q,(ω) of the weak Dirichlet problem: ( u, φ) Ω = (f, φ) Ω for any φ Ĥ1 q, (Ω) with some q and q (1 < q, q < ) Ĥ 1 q,(ω) = {u L q,loc (Ω) u L q (Ω) N, u Γ = } Example of domains: (1) Ω is a bounded domain : drop problem (2) Ω is a perturbed half space: ocean problem without bottom Let φ(x ) be a function in W 3 1/r R (R N 1 ) with N < r < Let H φ = {x = (x 1,, x N ) R N x N > φ(x ) (x R N 1 )}, Γ φ = {x = (x 1,, x N ) R N x N = φ(x ) (x R N 1 )} Assume that there exists an R > such that Ω B R = H φ B R and Γ B R = Γ φ B R, where B R = {x R N x > R} and B R = {x R N x < R} for any R > In addition, we assume that Γ is a hypersurface of W 3 1/r R class (3) Ω is an exterior domain the model for cavitation problem Ω = B c 1 f(x) = log x (N = 2), f(x) = x (N 1) 1 (N 3) satisfy f = in B c 1 and f x =1 = But, C (Ω) is in general not dense in Ĥ1 q,(ω), so these function are not non-trivial solutions to the homoneneous weak Dirichlet problem weak and strong are different in the exterior domains! YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

12 Local well-posedness Theorem Let R >, N < q < and 2 < p < Then, there exists a time T depending on R such that for any initial data v with v R satisfying the compatibility B q,p 2(1 1/p) (Ω) condition: (5) div v = on Ω, D(v )n < D(v )n, n > n = on Γ, problem (3) admits unique solutions u, q and η with u L p ((, T ), H 2 q (Ω) N ) H 1 p((, T ), L q (Ω) N )), η L p ((, T ), H 3 1/q q satisfying the estimate: (Γ)) Hp((, 1 T ), Wq 2 1/q (Γ))) q L p ((, T ), H 1 q (Ω) + Ĥ1 q,(ω)), u Lp((,T ),H 2 q (Ω)) + t u Lp((,T ),Lq(Ω)) + t η Lp((,T ),W 3 1/q q with some constant C independent of R Remark (Γ)) + tη Lp((,T ),W 2 1/q (Γ)) + q Lp((,T ),Lq(Ω)) CR (1) q Hq 1 (Ω) + Ĥ1 q, (Ω) means that there exist q 1 Hq 1 (Ω) and q 2 Ĥ1 q, (Ω) such that q = q 1 + q 2 Especially, q Γ = q 1 Γ (2) Since the map: x = X u (ξ, t) is invertible, the problem with Euler coordinate is also uniquely solvable for certain time interval (, T ) q YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

13 Some references H Abels, The initial-value problem for the Navier-Stokes equations with a free surface in L q Sobolev spaces, Adv Differential Equations, 1 (25), G Allain, Small-time existence for the Navier-Stokes equations with a free surface, Appl Math Optim, 16 (1987), 37 5 J T Beale, The initial value problem for the Navier-Stokes equations with a free boundary, Comm Pure Appl Math, 34 (1981), J T Beale, Large time regularity of viscous surface waves, Arch Rat Mech Anal, 84 (1984), J T Beale and T Nishida, Large time behavior of viscous surface waves, Lecture Notes in Numer Appl Anal, 128 (1985), 1 14 Y Enomoto and Y Shibata, On the R-sectoriality and its application to some mathematical study of the viscous compressible fluids, Funk Ekvaj, 56 (213), Y Hataya and S Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension, Nonlinear Anal, 71 (29), Y Hataya, A remark on Beal-Nishida s paper, Bull Inst Math Acad Sin (NS), 6 (211), I Sh Mogilevskiĭ and V A Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions, Nonlinear Analysis A Tribute in Honour of Giovanni Prodi, Quaderni, Pisa, (1991), P B Mucha and W Zaj aczkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion, Applicationes Mathematicae, 27 (2), T Nishida, Equations of fluid dynamics free surface problems, Comm Pure Appl Math, 39 (1986), S221 S238 M Padula and V A Solonnikov, On the local solvability of free boundary problem for the Navier-Stokes equations, J Math Sci, 17 (21), M Padula and V A Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation, Quad Mat, 1 (22), YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

14 H Saito and Y Shibata, On the global well posedness of free boundary problem for the Navier-Stokes equations with surface tension, in preparation B Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior, SIAM J Math Anal, 28 (1997), Y Shibata, On the maximal L p-l q regularity of the Stokes equations and the one phase free boundary problem for the Navier-Stokes equations, in Mathematical Analysis on the Navier-Stokes Equations and Related Topics, Past and Future - In memory of Prof T Miyakawa (ed T Adachi et al), Gakuto International Series, 35, Math Sci Appl, 211, Y Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal L p-l q regularity class, J Differential Equations, 258 (215), Y Shibata, On the R-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations, submitted to proceedings of the International Conference on Mathematical Fluid Dynamics, Present and Future V A Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, Zap Nauchn Sem (LOMI), 152 (1986), (in Russian); English transl J Soviet Math, 4 (1988), V A Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv Akad Nauk SSSR Ser Mat, 51 (1987), (in Russian); English transl Math USSR Izv, 31 (1988), V A Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, Algebra i Analiz, 3 (1991), (in Russian); English transl St Petersburg Math J, 3 (1992), V A Solonnikov, Lectures on evolution free boundary problems: Classical solutions, Mathematical aspects of evolving interfaces (Funchal, 2), Lecture Notes in Math, 1812, Springer, Berlin, 23, D Sylvester, Large time existence of small viscous surface waves without surface tension, Commun Partial Differential Equations, 15 (199), N Tanaka, Global existence of two phase non-homogeneous viscous incompressible weak fluid flow, Commun Partial Differential Equations, 18 (1993), A Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch Rat Mech Anal, 133 (1996), A Tani and N Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch Rat Mech Anal, 13 (1995), YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

15 The linearized problem (6) t u Div (µd(u) qi) = f, in Ω (, T ), div u = f d = div f d in Ω (, T ), t η n u = g in Γ (, T ), (µd(u) qi)n + (σ(m Γ )η)n = h in Γ (, T ), u t= = in Ω, η t= = on Γ, Maximal L p -L q regularity theorem Let T > and 1 < p, q < Assume that 2/p + 1/q < 1 Let f L p ((, T ), L q (Ω) N ), f d L p ((, T ), Hq 1 (Ω)) Hp((, 1 T ), Wq 1 (Ω)), f d Hp((, 1 T ), L q (Ω) N ), g L p ((, T ), Wq 2 1/q (Γ)), h L p ((, T ), Hq 1 (Ω) N ) Hp((, 1 T ), Wq 1 (Ω) N ), which satisfy the compatibility condition: div f d t= = in Ω and Π h t= = on Γ YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

16 Maximal Regularity Theorem Problem (6) admits unique solutions u, q and η with u Hp((, 1 T ), L q (Ω) N ) L p ((, T ), Hq 2 (Ω) N ), q L p ((, T ), Hq 1 (Ω) + Ĥ1 q,(ω)), η L p ((, T ), Hq 3 (Ω)) Hp((, 1 T ), Hq 2 (Ω)) possessing the estimate: (7) [[(u, q, η)]] t Ce γt I((, t), f, f d, g, h) with some positive constants γ and C Here, we have set [[(u, q, η)]] t = u Lp((,t),H 2 q (Ω)) + t u Lp((,t),L q(ω)) + q Lp((,t),L q(ω)) + η Lp((,t),W 3 q (Ω)) + t η Lp((,t),W 2 q (Ω)), I((, t), f, f d, g, h) = { f Lp((,t),L q(ω)) + (f d, h) Lp((,t),H 1 q (Ω)) + g Lp((,T ),Wq 2 1/q (Γ)) + tf d Lp((,t),Lq(Ω)) + t (f d, h) Lp((,t),W q 1 (Ω)) } YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

17 Abstract Setting Let me consider the equations u t Au = f in Ω (, T ), Bu Γ = g, u t= = u X, Y UMD Banach space (Hilbert transforms on X and Y are bounded), Y X, Y is dense in X, A : Y X: closed linear op Ay X C y Y Z = [X, Y ] 1/2 (complex interpolation),and then u H 1/2 p ((, T ), Z) provided that u L p ((, T ), Y ) H 1 p((, T ), X) = M p,q Assumption for B: Bu H 1/2 p ((, T ), X) L p ((, T ), Z) provided that u M p,q Example: A =, B = / ν (Neumann boundary condition); X = L q (Ω), Y = H 2 q (Ω), Z = H 1 q (Ω) Cauchy problen : u t Au = in Ω (, ), Bu Γ =, u t= = u Assumption Assume that A generates a C analytic semigroup {T (t)} t on X such that T (t)x X Ce γt x X, t T (t)x X Ct 1 e γt x X (x X), t T (t)x X Ce γt x Y (y D = {v Y Bv Γ = }) Then, T (t)u M p,q provided that u (X, Y ) 1 1/p,p and e γt T (t)u Lp((, ),Y ) + e γt t T (t)u Lp((, ),X) C u (X,Y )1 1/p,p YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

18 ( ) Let l s p = {(a n ) (2 sn a n ) p < } (1 p < ), l s = {(a n ) sup 2 ln a n < } n= (e 2γt t u(t) X ) p dt = n= 2 n+1 (2 n/p e γ2n+1 sup t u(t) X ) p 2 n <t<2 n+1 n= 2 n (e 2γt t u(t) X ) p dt Thus, setting a n = e γ2n+1 sup t u(t) X, we have 2 n <t<2 n+1 (e 2γt t u(t) X ) p dt (2 n/p a n ) p = (a n ) 1/p l n= On the other hand, using the estimates: t u(t) X Ct 1 e γt u X and t u(t) X Ce γt u Y, we have 2 n a n u X, a n u Y, so that (a n ) l 1 u X, (a n ) l u Y Since we know that l 1/p p = (l 1, l ) 1 1/p,p, we have (a n ) 1/p l C u (X,Y )1 p,p, p so that (a n ) l 1 u X, (a n ) l u Y Since we know that l 1/p p = (l 1, l ) 1 1/p,p, we have (a n ) 1/p l C u (X,Y )1 p,p p p n Z YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

19 Operator Valued Fourier Multiplier Theorem R-boundedness A family T L(X, Y ) of operators is R-bounded if there exists a constant C > such that for all m N, (T k ) k=1,,m T, and (x k ) k=1,,m X we have m L r k T k x k C m L r k x k p ([,1];Y ) p ([,1];X) k=1 Here the Rademacher functions r k, k N, are given by r k : [, 1] { 1, 1}, t sign(sin(2 k πt)) The smallest such C is called R bound of T on L(X, Y ) which is written by R L(X,Y ) T in what follows Weis operator valued Fourier mutliplier theorem: Math Ann 319 (21), Let X and Y be two UMD Banach spaces and 1 < p < Let M be a function in C 1 (R \ {}, L(X, Y )) such that k=1 R L(X,Y ) {(ρ d dρ )l M(ρ) ρ R \ {}} = κ l < (l =, 1) Let T M be the operator defined by T M ϕ = F 1 [MF[ϕ]] for any ϕ with F[ϕ] D(R, X) Then, T M is extended to a bounded linear operator from L p (R, X) into L p (R, Y ) Moreover, denoting this extension also by T M, we have T M L(Lp(R,X),L p(r,y )) C(κ + κ 1 ) for some positive constant C depending on p, X and Y YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

20 Next, we consider t u Au = f in Ω (, T ), Bu = g on Ω (, T ) Extending f and g suitably to R, we consider Apply the Laplace transform in time t = λ Σ ϵ,λ = {λ C arg λ π ϵ, λ λ } λv Av = ˆf in Ω, Bv Γ = ĝ Γ (λ = γ + iτ) u L p (R, Y ) H 1 p(r, X) = λv X, λ 1/2 v Z = [X, Y ] 1/2,, v Y X = {F = (F 1, F 2, F 3 ) F 1, F 2 X, F 3 Z}, F 1 ˆf, F 2 λ 1/2 ĝ, F 3 ĝ Assumption There exists a solution operator S(λ) Hol (Σ ϵ,λ L(X, Y )) such that for any λ Σ ϵ,λ and ( ˆf, ĝ) X Z, v = S(λ)( ˆf, λ 1/2 ĝ, ĝ) is a unique solution and R L(X,X) ({(τ τ ) l (λs(λ)) λ Σ ϵ,λ }) C (l =, 1) R L(X,Z) ({(τ τ ) l (λ 1/2 S(λ)) λ Σ ϵ,λ }) C (l =, 1), R L(X,Y ) ({(τ τ ) l S(λ) λ Σ ϵ,λ }) C (l =, 1) Then, u = L 1 [S(λ)( ˆf(λ), λ 1/2 ĝ(λ),ˆ(λ))] is a unique solution of the time dependent problem Apply the Weis theorem and note that L[f](λ) = e λt f(t) dt = F[e γt f], L 1 [g(λ)] = 1 e λt g(λ)] = e γt F 1 [g(γ + iτ)](t) R 2π R e γt t u Lp(R,X) + e γt Λ 1/2 γ u Lp(R,Z) + e γt u Lp(R,Y ) C{ e γt f Lp(R,X) + e γt Λ 1/2 γ g Lp(R,X) + e γt g Lp(R,Z)} γ λ e γt Λ 1/2 γ f = L 1 [λ 1/2 ˆf(λ)], H 1/2 p ((, T ), Z) = {v w : e γt Λ 1/2 γ w Lp(R,Z) < and w (,T ) = v} YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

21 Reduced Stokes equations (Grubb-Solonnikov method) Let Ĥ 1 q (Ω) = {v L q,loc (Ω) v L q (Ω) N, v Γ = } Assume that the Weak Dirichlet Problem ( u, φ) Ω = (f, φ) Ω has unique solution v H 1 q,(ω) for any f L q (Ω) N ( φ H 1 q, (Ω)) Example bounded domain, half-space, perturbed half-space, layer, perturbed layer, exterior domain Exterior domain: Ω = B c 1 = { x > 1} f(x) = log x (N = 2), f(x) = x (N 2) (N 3) are non-trivial sol of the strong Dirichlet prob: f = in Ω, f x =1 = But, they are not solutions of homogeneous weak Dirichlet problem ( ) C (Ω) is not dense in H 1 q (Ω) Stokes problem λu Div (µd(u) pi) = f, div u = g in Ω, (µd(u) p)n = h Here, to solve div u = g, it is necessary to assume that G : (g, φ) Ω = (G, φ) Ω ( φ H 1 q, (Ω)) div u = g means that (u, φ) Ω = (G, φ) Ω ( φ H 1 q, (Ω)) Reduced Stokes problem λu Div (µd(u) K(u)I) = f in Ω, (µd(u) K(u)I)n Γ = Here, for u H 2 q (Ω), let K(u) be a unique solution of the weak Dirichlet problem: ( K(u), φ) Ω = (Div (µd(u) div u, φ) Ω ( φ Hq 1,(Ω)), K(u) =< µd(u)n, n > div u = on Γ Equivalence Assume that (f, φ) Ω = ( φ Hq 1,(Ω)) and < h, n >= on Γ Then, Stokes and Reduced Stokes are equivalent YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

22 Stokes = Reduced Stokes Let g be a solution of the variational problem: λ(g, φ) Ω + ( g, φ) Ω = (f, φ) Ω ( φ Hq 1,(Ω)), g = on Γ Let u and p be solutions of λu Div (µd(u) pi) = f, div u = g in Ω, (µd(u) p)n = h on Γ And then, (f, φ) Ω = λ(u, φ) Ω (µdiv D(u) div u, φ) ΩK(u) ( div u, φ) Ω + ( p, φ) Ω Since (g, φ) Ω = (λ 1 (f + g), φ) Ω div u = g yields λ(u, φ) Ω = ((f + g), φ) Ω Thus, ( (p K(u)), φ) Ω = From the boundary condition ( φ H 1 q, (Ω)), = K(u) + g p = K(u) p (( )div u = g = on Γ, ) Thus, p = K(u), so that u satisfies, =< h, n >=< µd(u)n, n > p = K(u) + div u p λu Div (µd(u) K(u)) = f in Ω, (µd(u) K(u)I)n Γ = YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

23 Reduced Stokes = Stokes Given divergence deta g, let G be a function: (G, φ) Ω = (g, φ) Ω ( φ H 1 q, (Ω)) Let L be a solution of the weak Dirichlet problem: ( L, φ) Ω = (λg g, φ) Ω ( φ Hq 1,(Ω)), L = g on Γ Let u be a solution of the Reduced Stokes eq λu Div (µd(u) K(u)) = f + L in Ω, (µd(u) K(u)I)n = h + gn on Γ ( L, φ) Ω = ( L + f, φ) Ω = λ(u, φ) Ω (µdiv D(u) div u, φ) Ω ( div u, φ) Ω + ( K(u), φ) Ω Thus, λ((u G), φ) Ω ( (div u g), φ) Ω = ( φ Ĥ1 q, (Ω)) Taking φ H 1 q, (Ω)), we have λ((div u g), φ) Ω + ( (div u g), φ) Ω = Moreover, div u g =< µd(u)n, n > K(u) g = g g = on Γ Thus, the uniqueness implies that div u = g in Ω Thus, by the equation, λ((u G), φ) Ω = ( φ Ĥ1 q, (Ω)) = ((u G), φ) Ω = ( φ Ĥ1 q,(ω)) = div u = g in Ω Let p = K(u) L, and then noting that K(u) g = K(u) + L on Γ, we have λu Div (µd(u) pi) = f, div u = g in Ω, (µd(u) p)n = h YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

24 Local estimate of K(u) Let D be any compact subset of Ω, and then we have K(u) Lq(D) C D { 2 u 1/q L q(ω) u 1 1/q L q(ω) + u L q(ω)} In fact, let f be arbitrary element of C (D), Let ψ Ĥ2 q,(ω) be a solution of the strong Dirichlet problem: ψ = f in Ω, possessing the estimate: ψ H 1 q (Ω) C φ L q (Ω) By Poincarés inequality, (f, φ) Ω f Lq (D) φ Lq(D) C D f Lq (D) φ Lq(Ω) Thus, by the Hahn-Banach, F L q : (f, φ) Ω = (F, φ) Ω ( φ Ĥ1 q,(ω)) Ĥ2 q (Ω) = {ψ Ĥ1 q (Ω) ψ H1 q (Ω)N } Thus, ψ exists Then, (K(u), f) Ω = (K(u), ψ) Ω = (K(u), n ψ) Γ ( K(u), ψ) Ω = (< µd(u)n, n > div u, n ψ) Γ (µdiv D(u) div u, ψ) Ω = (< µd(u)n, n > div u, n ψ) Γ ((µd(u) div ui)n, ψ) Γ + (µd(u) div ui, 2 ψ) Ω Since u Lq(Γ) C 2 u 1/q L q(ω) u L q(ω), (K(u), f) Ω C D { 2 u 1/q L q(ω) u 1 1/q L q(ω) + u L q(ω)} ψ H 1 q (Ω) C D { 2 u 1/q L q(ω) u 1 1/q L q(ω) + u L q(ω)} f Lq (Ω) This implies the required inequality YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

25 Existence of R bounded solution operator in R N Consider the Stokes eq in R N R t u Div (µd(u) pi) = f, div u = g = div g in R N R Consider the resolvent problem in R N λv Div (µd(u) pi) = ˆf = L[f], div u = ĝ = div ĝ in R N ˆf = λv µ u µ div u + p = λv µ v µ g + p div ˆf = λdiv v µ div v µ ĝ + p = λ ˆ div g 2µ ĝ + p Thus, p = 1 div ˆf λ 1 div ĝ + 2µĝ Thus, v = (λ ) 1 (ˆf 1 div ˆf) + λ(λ ) 1 1 div ĝ 2µ(λ ) 1 ĝ Let F 1 L q (R N ) N, F 2 L q (R N ) N and F 3 H 1 q (R N ) be variables corresponding to ˆf, λĝ and ĝ Let X q (R N ) = {(F 1, F 2, F 3 ) L q (R N ) N L q (R N ) N H 1 q (R N )} Let S(λ)(F 1, F 2, F 3 ) = F 1[ F[F 1 ](ξ) ξ 2 ξξ F[F 1 ](ξ) ] λ + ξ 2 + F 1[ ξ 2 ξξ F[F 2 ] ] λ + ξ 2 2µF 1[ iξf[f 3 ](ξ) ] λ + ξ 2 Let Σ ϵ,λ = {λ C arg λ π ϵ, λ λ } with < ϵ < π/2 and λ > We have λ + ξ 2 sin ϵ 2 ( λ + ξ 2 ) for any λ Σ ϵ, and ξ R N YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

26 Theorem (Theorem 33 in Y Enomoto and Y Shibata, Funkcialaj Ekvacioj 56 (213), ) Let m(λ, ξ) be a function that is a C function with respect to ξ R N \ {} for any λ Σ ϵ,λ and satisfies the estimate: ξ αm(λ, ξ) C α ξ α for any α N N Let M(λ)f = F 1 ξ [m(λ, ξ)f[f](ξ)] Then, M is a R bounded operator satisfying the estimate: R L(Lq(R N ))({M(λ) λ Σ ϵ,λ }) C q max C α α n/2+2 v = S(λ)(ˆf, λĝ, ĝ) is a unique solution, and R L(Xq(R N ),L q(r N )){(τ τ ) l (λs(λ)) λ Σ ϵ }) C(l =, 1, λ = γ + iτ), R L(Xq(R N ),L q(r N )){(τ τ ) l (λ 1/2 S(λ)) λ Σ ϵ }) C(l =, 1), R L(Xq(R N ),L q(r N )){(τ τ ) l ( 2 S(λ)) λ Σ ϵ }) C(l =, 1, λ = γ + iτ) u(t) = L 1 [S(λ)(L[f](λ), L[λg](λ), L[g](λ))](t) is a solution to the problem: t u Div (µd(u) pi) = f, div u = g = div g in R N R e γt (u t, Λ 1/2 γ u, 2 u) Lp(R,L q(ω) C{ e γt (f, λg) Lp(R,L q) + e γt g Lp(R,H 1 q (R N )} ( γ >, 1 < p, q < ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

27 Existence of R bounded solution operator in R N + λv v = in R N +, ( v/ x N ) xn = = g xn = with R N + = {x = (x 1,, x N ) R N x N > } Applying the partial Fourier transform with respect to tangential variable x = (x 1,, x N 1 ) yields that (λ + ξ 2 )F [v](ξ, x N ) 2 NF [v](ξ, x N ) = in x N >, ( N F[v])(ξ, ) = F [g](ξ, ) Let ω λ (ξ ) = λ + ξ 2 ((ξ = (ξ 1,, ξ N 1 )), and then by the inverse Fourier transform F 1, the solution formula is given by S 1 (λ)g = F 1[ e ω λ(ξ )x N F [g](ξ, )](x ) = = x N F 1 [e ω λ(ξ )(x N +y N ) F [g](ξ, y N )](x ) F 1 [ω λ (ξ )e ω λ(ξ )(x N +y N ) F [g](ξ, y N )](x ) F 1 [e ω λ(ξ )(x N +y N ) F [ N g](ξ, y N )](x ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

28 Definition of multiplier class Let Ξ be a domain in C and let m(ξ, λ) (λ = γ + iτ Ξ) be a function defined for (ξ, λ) (R N 1 \ {}) Ξ Assume that τ m(ξ, λ) (λ = γ + iτ) exists and that m(ξ, λ) and τ m(ξ, λ) are bothis infinitely many differentiable functions with respect to ξ R N 1 \ {} for each λ Ξ (1) m(ξ, λ) is called a multiplier of order s with type 1 on Ξ if the estimates: (8) κ ξ ((τ τ ) l m(ξ, λ) C α ( λ 1/2 + ξ ) s κ (l =, 1) hold for any multi-index κ N N 1 and (ξ, λ) Ξ and (ξ, λ) Ξ with some constant C κ depending solely on κ and Ξ (2) m(ξ, λ) is called a multiplier of order s with type 2 on Ξ if the estimates: (9) κ ξ ((τ τ ) l m(ξ, λ) C κ ( λ 1/2 + ξ ) s ξ κ (l =, 1) hold for any multi-index κ N N 1 and (ξ, λ) Ξ with some constants C κ depending solely on κ and Ξ Let M s,i (Ξ) be the set of all multipliers of order s with type i on Ξ (i = 1, 2) ω(ξ, λ) M 1,1, ξ M 1,2 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

29 Lemma (Shibata and Shimizu, J Math Soc Japan 64(2) (212), ) Let < ϑ < π/2 and 1 < q < Given l (ξ,, λ) M,1 (Σ ϑ ) and l 1 (ξ, λ) M,2 (Σ ϑ ), we define the operators L j (λ) (j = 1, 2, 3, 4) by [L 1 (λ)h](x) = F 1 [l (ξ, λ)λ 1/2 e ωλ(ξ )(x N +y ) N F[h](ξ, y N )](x ) dy N, [L 2 (λ)h](x) = F 1 [l 1 (ξ, λ) ξ e ωλ(ξ )(x N +y ) N F [h](ξ, y N )](x ) dy N, [L 3 (λ)h](x) = F 1 [l 1 (ξ, λ) ξ )(x e ωλ(ξ N +y ) N e ξ (x N +y N ) ω λ (ξ ) ξ F [h](ξ, y N )](x ) dy N, [L 4 (λ)h](x) = F 1 [l 1 (ξ, λ) ξ e ξ (x N +y ) N F [h](ξ, y N )](x ) dy N, Then, R L(Lq(R N + )({(τ τ ) l L i (λ) λ Σ ϵ,λ }) C (l =, 1, i = 1, 2, 3, 4) Theorem There exists an operator S 2 (λ) such that v = S 2 (λ)(f, λ 1/2 g, g) is a unique solution of the equations: (1) λv v = f in R N +, ( v/ x N ) xn = = g xn = for any (f, g) L q (R N + ) H 1 q (R N + ) and it satisfies the estimate: R L(Xq(R N 2 j + ),Wq (R N ) ({(τ τ ) l (λ j/2 x α S 2 (λ) λ Σ ϵ,λ }) C (l =, 1, j =, 1, 2) with X q (R N + ) = L q (R N + ) L q (R N + ) Hq 1 (R N + ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

30 Construction of solution operator in Ω See: Y Shibata, Differential and Integral Equations 27 (3-4) (214), λv Div (µd(u) K(u)I) = f in Ω (µd(u) K(u)I)n = g on Γ Let {φ i } i=1 be a partition of unity on Ω and let {ψ i } i=1 be some suitable sequence of C such that ψ i (x) = 1 on supp φ i Let T (λ)(f 1, F 2, F 3 ) = φ j S j (λ)[ψ j (F 1, F 2, F 3 )] j=1 with solution operators S j for the localized equations Let v = T (λ)(f, λ 1/2 h, h), and then λv Div (µd(v) K(u)I) = (f + U 1 (λ)(f, λ 1/2 h, h)) in Ω, (µd(v) K(v)I)n = h + U 2 (λ)(f, λ 1/2 h, h)) on Γ Let U(λ) = (U 1 (λ), λ 1/2 U 2 (λ), U 2 (λ)) (remainder term) and then, R L(Xq(Ω),Lq(Ω))({(τ τ ) l (λ j/2 2 j S(λ) λ Σ ϵ,λ }) C (l =, 1, j =, 1, 2) functions R L(Xq(Ω))({(τ τ ) l U(λ) λ Σ ϵ,λ }) Cλ 1/2 (l =, 1), with X q (Ω) = L q (Ω) L q (Ω) H 1 q (Ω) Choose λ > so large that (I + U(λ)) 1 (λ Σ ϵ,λ ) exists Let S(λ) = T (λ)(i + U(λ)) 1, and then v = S(λ)(ˆf, λ 1/2 ĥ, ĥ) is a unique solution of the equations: λv Div (µd(u) K(u)I) = f in Ω (µd(u) K(u)I)n = g on Γ and S(λ) satisfies the estimate: YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

31 Global well-posedness, bounded domain closed to ball (11) ( t v + (v )v) Div (µd(v) pi) =, div v = in <t<t Ω t (, t), (µd(v) pi)n t = σh(γ t )n t, V Γt = v n t on <t<t Γ t (, t), v t= = v, Ω t t= = Ω = Ω Let Ω be a reference domain and Γ its boundary Let B R = {x R N x < r} and S R = {x R N x = r} Assumption 1 Ω = B R = R N ω N /n, ω N = S 1 Assumption 2 x dx = Ω Assumption 3 Γ = {x = (R + ρ (Rω))ω ω S 1 } with given small function ρ defined on S R Γ t = {x = (R + ρ(rω, t))ω + ξ(t) ω S 1 } where ρ is a unknown function and ξ(t) is the barycenter point of the domain Ω t defined by ξ(t) = 1 x dx (unknown function) and assume that ξ() = Ω Ω t Let w(ξ, t) be the velocity field in the Lagrange coordinate, and then ξ (t) = d 1 xd dx = d 1 t (ξ + w(ξ, s) ds) dξ = 1 w dξ = 1 v dx dt Ω Ω t dt Ω Ω Ω Ω Ω Ω t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

32 Let H(ξ, t) be a solution to the Dirichlet problem: (1 )H = in B R and H SR = R 1 ρ(, t) Hanzawa transform: x = e h (y, t) = y + H(y, t)y + ξ(t) for y B R (N 1)σ Let u(ξ, t) = v e h, q(ξ, t) = p e h R Ω t = {x = ξ + H(ξ, t)ξ + ξ(t) ξ B R }, Γ t = {x = (R + ρ(rω, t))ω ω S 1 } Moreover, (12) t u Div (µd(u) qi) = F (u, H) in B R (, T ), div u = F d (u, H) = div F d (u, H) in B R (, T ), Π [µd(u)n] = G (u, ρ) in S R (, T ), < µd(u)n, n > q σ Bh = g R 2 n (u, ρ) in S R (, T ), t ρ n P u = G kin (u, ρ) on S R (, T ), (u, ρ) t= = (u, ρ ) on B R S R Here, P u = u B R 1 B R u dy, n = ω S 1, B = (N 1) +, : Laplace-Beltrami operator on S 1 Π [d] = d < d, n > n YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

33 Theorem 2 < p <, N < q <, 2/p + N/q < 1, 1/p + (N + 1)/q < 1 Then, there exists a small number ϵ (, 1) such that for any initial data u B 2 2/p q,p (B R ) and ρ Bq,p 3 1/p 1/q (S R ) satisfying the following conditions: u 2 2/p B q,p (B + ρ R) 3 1/p 1/q B q,p (S ϵ, R) div u = f d (u, h ) = div f d (u, h ) in B R, Π [µd(u )ω] = g (u, h ) on S R, (v, p l ) Ω = (l = 1, M) where, {p l } M l=1 is the orthogonal base of the rigid space: R d = {u D(u) = } = {Ax + b A + A = }, Then, problem (3) with T = admits unique solutions u, q and ρ with u H 1 p((, ), L q (B R )) L p ((, ), H 2 q (B R )), q L p ((, ), H 1 q (B R )), ρ Hp((, 1 ), Wq 2 1/q (S R )) L p ((, ), Wq 3 1/q (S R )) e ηt u t Lp((, ),L q(b R)) + e ηt u Lp((, ),H 2 q (B R)) + e ηt q Lp((, ),L q(b R)) + e ηt t ρ Lp((, ),W 2 1/q q for some positive constants C and η independent of ϵ (S + eηt ρ R)) Lp((, ),W 3 1/q (S Cϵ R)) q YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

34 Derivation of equations in B R x i x i = (1 + H)y i + ξ i (t), = (1 + H)(δ ij + 1 H y i ), y j 1 + H y j det(i + a b) = 1 + a b, (I + a b) 1 = I a b 1 + a b Thus, y x = (1 + H) 1 (δ ij y t = y x x t y i ( H/ y j ) 1 + H + y ( H) = I + Φ, J = det x y = (1 + H)N + (1 + H) N 1 y ( H) = 1 + J = (I + Φ)( H t + ξ (t)) ( ) x y = (1 + H)(I + H y) ( H = H 1 + H ) ( ) ( ) (t, x) (t, y) (t, y)) (t, x)) = 1 1 = x t x y y t y x ( ) 1 I N Thus, x = y + Φ y, t = t < (I + Φ)( H t + ξ (t)), y > (I + Φ) 1 [ t v + v x v µdiv x D(v] + y q = = t u Div (µd(u) qi) = F(u, H) in B R div x v = div u + N j,k=1 Φ kj u j y k (div v, φ) Ωt = (v, φ) Ωt = N N div x v = = (J(δ ji + Φ ji )u i ) = J(div u + y j i,j=1 i,j=1 N ( (J(δ ji + Φ ji )u i ), φ e h ) BR y j i,j=1 Φ ji u i y j ) = in Ω YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

35 Equations on the boundary x = (R + ρ(rω(u), t))ω(u) + ξ(t), n t = (1 + V 1 (ρ))ω V 1 (ρ) = N 1 j=1 1 + V 1 (ρ) R + ρ N 1 (1 + τ(r + ρ) 2 i,j=1 Π Π t [D(v)n t ] = = Π (µd(u)n) = g (u, ρ) on S R S 1 ω = ω(u) (u = (u 1,, u N 1 ) U) local chart gij ρ ω, < n t, ω >= 1 + O(( ρ) 2 ) u i u j N 1 ij ρ ρ g ) 3/2 dτ u i u j i,j=1 ij ρ ρ g = O(( ρ) 2 u i u j N 1 ( ) Let n t = µ(ω + a l τ l ), τ l = ω, and use n t = 1, n t x = (j = 1,, N 1) u l u j l=1 V N =< x t, n t >=< ρ t ω + ξ (t), n t >= ρ t + 1 u(1 + J ) dy +, B R B R ( Thus, V N = u n reads ρ t u 1 ) u dy n = k in (u, ρ) on S R B R B R d = Π Π t d = & < d, n >=, Π t d = d < d, n t > n t, Π d = d < d, n > n µd(v) pi)n t σh(γ t )n t = = Π Π t [D(v)n t ] = & < µd(v)n t, n > p < n t, n > σ < H(Γ)n t, n >= YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

36 N 1 < H(Γ t )n t, n >=< Γt x, n >, Γt f = gt 1 i,j=1 ( g t g ij f ) t u i u j g tij = x u i x u j = ((R + ρ)τ i + ρ u i ) ((R + ρ)τ j + ρ u j ) = (R + ρ) 2 g ij + ρ u i ρ u j, G t = (R + ρ) 2 G(I + (R + ρ) 2 (G 1 ρ) ( ρ)), det G t = (R + ρ) 2N det G(1 + (R + ρ) 2 (G 1 ρ) ( ρ)), G 1 t = (R + ρ) 2 (G 1 ρ) ( ρ) (I (R + ρ) 2 + (G 1 ρ) ( ρ) )G 1 g t = (R + ρ) N g + O(( ρ) 2 ), G 1 t = (R + ρ) 2 G 1 + O(( ρ) 2 ) Using ω ω/ u j =, we have < H(Γ t )n t, ω >=< Γt x, ω > = N 1 i,j=1 g ij t (R + ρ) < 2 N 1 ω, ω > + Γt ρ = (R + ρ) 1 u i u j i,j=1 2 ω g ij <, ω > + 1 u i u j R 2 ρ + O(( ρ) 2 ) < ω,ω>= (N 1) 1 R + ρ = 1 R ρ R 2 + ρ 2 (R + ρ)r 2, thus, < H(Γ t)n t, ω >= N 1 R + N 1 R 2 ρ + 1 R 2 ρ < (µd(v) pi)n t H(Γ t )n, n >=< µd(u)n, n > q < n t, n > + N 1 R N 1 R 2 ρ 1 R 2 ρ + = Since < n t, n > 1 = 1 + O(( ρ) 2 ), dividing the formula by < n t, n >, we have < µd(u)n, n > (q N 1 R ) σ R 2 Bρ = g N(u, ρ) on Γ YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

37 Decay estimate for the linearized equations (13) t u Div (µd(u) pi) = f Note that (x i e j x j e i ) n SR = div u = f div = div f div t h n P u = d in B R (, ), in B R (, ), on S R (, ), (µd(u) pi)n σ Bhn = g on S r 2 R (, ), (u, h) t= = (u, h ) on B R S R B = N 1 +, : Laplace-Beltrami operator of S 1, D(u) = u + u, P u = (u 1 u dx) ω(ω = x/ x S 1 ) B R B r is an eigen-value of of order 1 with eigen-function 1 (N 1) is the first eigen-value of of order N with eigen-functions ω i = x i / x (i = 1,, N) Let φ i (i = 1,, N + 1) be the orthonormal basis of the linear hull [1, ω 1,, ω N ] with respect to the L 2 inner product on S N 1 D(u) = u + u = u = Ax + b where A : anti-symmetric matrix: b: N vector R d = {u D(u) = } = {e i, x i e j x j e i i, j = 1,, N}, e i = (,, ith 1,, ) Let p l (l = 1,, M) be the orthonormal basis of R d with respect to the L 2 inner product on B R YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

38 Decay theorem Theorem Let 1 < p, q < and T > If initial data u Bq,p 2(1 1/p) (B R ), h Bq,p 3 1/p (B R ),and right hand-sides f L p((, T ), L q(b R ) N )), f div L p((, T ), H 1 q (B R )), f div H 1 p((, T ), L q(b R ) N ), d L p((, T ), H 2 q (B R )), g H 1 p((, T ), W 1 q (B R )) L p((, T ), H 1 q (B R ) N ) satisfying the compatibility conditions: (14) div u = div f div t= in B R,, µd(u )n < D(u )n, n > n) = (g < gn, n > n) t= on S R then problem (13) admits a unique solution (u, p, h) with possessing the estimate: u L p((, T ), H 2 q (B R ) N ) H 1 p((, T ), L q(b R ) N ), p L p((, T ), H 1 q (B R )), h L p((, T ), Wq 3 1/q (B R )) Hp((, 1 T ), Wq 2 1/q (B R )) e ηs s(u, h) Lp((,t),Lq(BR) W 2 1/q q C{ u B 2(1 1/p) q,p with some positive constants C and η (SR)) + eηs (u, h) Lp((,t),H q 2 (BR) W 3 1/q (SR)) (BR) + h B 3 1/p (BR) + eηs f Lp((,t),Lq(BR)) q,p + e ηs (f div, g) Lp((,t),H q 1 (BR)) + e ηs s(f div, g) Lp((,t),W q 1 (BR)) + eηs ( sf div, f div ) Lp((,t),Lq(BR)) M ( t ) 1/p N ( + (e ηs (u(, s), p l ) BR ) p t ) 1/p ds + (e ηs (h(, s), φ l ) SR ) p ds l=1 l=1 q YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

39 Proof of Global well-posedness A bootstrap argument is used to continue the local in time solution to (, ) Let (u, h) be solutions of the nonlinear problem defined on time interval (, T ) Let E(u, h) T = e ηs s (u, h) Lp((,T ),L q(b R ) Wq 2 1/q (S R )) + eηs (u, h) Lp((,T ),Hq 2 (B R ) Wq 3 1/q (S R )) Then, by the linear estimate E(u, h) T C{ u 2(1 1/p) B q,p (B R ) + h 3 1/p B q,p (B R ) + E(u, h)2 T M ( t ) 1/p N ( + (e ηs (u(, s), p l ) BR ) p t 1/p ds + (e ηs (h(, s), φ l ) SR ) ds) p l=1 If E(u, h) T C{ u B 2(1 1/p) q,p local solutions are prolonged beyond T provided that u B 2(1 1/p) q,p small enough Thus, the point is to prove that l=1 (B R ) + h 3 1/p B q,p (B R ) + E(u, h)2 T } is obtained, then the (B R ) + h 3 1/p B (B R ) is q,p M ( t ) 1/p N ( (e ηs (u(, s), p l ) BR ) p t 1/p ds + (e ηs (h(, s), φ l ) SR ) ds) p CE(u, h) 2 T l=1 l=1 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

40 Conservation of Mass and Momentum We move from Lagrangian to Eulerian ξ to obtain v p l dx = (l = 1,, M) In fact, N Ωt Conservation of Momentum d v dx = (v t + v v) dξ = (Div S(v) p) dx = (S(v) pi)n t dσ = Γt x dσ = dt Ωt Ω Ωt Γt Γt v dx = v dx = from the assumtion Ωt Ω Conservation of Angular Momentum d i v j x j v i ) dx = dt Ωt(x d t t [ξ i + u i dx)v j (ξ j + u j ds)v i ]J dξ dt Ω = [(u i u j u j u i ) + x i (v jt + v v j ) x j (v it + v v i )]J dξ Ω N = [x i (v jt + v v j ) x j (v it + v v i )]J dξ = [x i k (µd jk δ jk p) x j k (µd k δ ik p)] dx Ωt Ωt k=1 k=1 N = [x i ν k (µd jk δ jk p) x j ν k (µd ik δ ik p)] dσ [(µd ji δ ji p) (µd ij δ ij p)] dx Γt k 1 k 1 Ωt = σ (x i Γt x j x j Γt x i ) dσ = σ t [x i t x j t x j t x i ] dσ = Γt Γt Thus, (x i v j x j v i ) dx = (ξ i v j ξ j v i ) dξ = In particular, Ωt Ω YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

41 Orthogonal condition for the velocity field x = ξ + H(ξ, t)ξ + ξ(t), so that = v dx = uj dξ = u dξ + u(1 J) dξ Ω t B R B R B R = u dξ = u(j 1) dξ B R B R = (x i v j x j v i ) dx = [(ξ i + H(ξ, t)ξ i )u j (ξ j + H(ξ, t)ξ j )u i ]J dξ Ω t B R = (ξ i u j ξ j u i ) dξ = (ξ i u j ξ j u i )(J 1) dξ H(ξ i u j ξ j u i )J dξ B R B R B R Thus, h(, t) L (SR ) 1 = ( t (e ηs (u(, s), p l ) BR ) p ds) 1/p C e η u Lp((,T ),H 2 q (B R )) e ηs h Lp((,T ),W 3 1/q q (S R )) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

42 Orthogonal condition for height function Ω t = {x = ξ + H(ξ, t)ξ + ξ(t) ξ B R }, Γ t = {x = Rω + h(rω, t)ω + ξ(t) ω S 1 } R+h(Rω,t) Conservation of Mass Ω t = Ω = B R = RN N ω N = dx = dω s N 1 ds Ωt ω =1 = 1 N (R + h(rω)) N dω = B R + R N 1 h(rω, t) dω + NC k R N k h(rω, t) k dω N ω =1 ω =1 k=2 ω =1 N = h(ω, t) dω = NC k R k+1 h(ω, t) k dω ω =R k=2 ω =R Conservation of Momentum d x dx = d t (ξ + u(ξ, s) ds) dξ = u(ξ, t) dξ = v dx = dt dt Ωt Ω Ω Ωt ξ(t) = 1 x dx = x dx Ω ξ(t) = (x ξ(t)) dx ( Ω = Ω t = dx) Ω Ωt Ωt Ωt Ωt h(rω,t)+r = (x i ξ i (t)) dx = dω (sω i )s N 1 ds = 1 ω i (R + h(rω, t)) N+1 dω Ωt ω =1 N + 1 ω =1 = RN+1 N+1 ω i dω + R N N+1C k R N+1 k ω i h(rω, t) dω + ω i R N+1 k h(rω, t) k dω N + 1 ω =1 ω =1 N + 1 = k=2 ω =1 N+1 N+1C k R 1 k = ξ i h(ξ, t) dω ξ = ξ i h(ξ, t) k dσ ξ ξ =R N + 1 k=2 ξ =R ( t ) 1/p Thus, (e ηs (h(, s), φ l ) SR ) p ds C e ηs h 2 Lp((,T ),Wq 3 1/q (SR)) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

43 Idea of Proof of Decay Theorem (1) u t Au = f in Ω (, T ), Bu Γ = g, u t= = u To obtain the decay estimate of problem (1), first we consider the shifted equation: v t + λ v Av = f in Ω (, T ), Bv Γ = g, v t= = u with λ >> 1 e γt ( t v, 2 v) Lp((,T ),Lq(Ω)) C(u, f, g) ( 2 v = { x α v α 2}) Let u = v + w, and then w satisfies the equation: w t Aw = λ v in Ω (, T ), Bw Γ =, w t= = Let {T (t)} t be a C semigroup associated with problem (1) t By Duhamel principle w(t) = λ T (t s)v(s) ds Let N = {u Au =, Bu Γ = } = {b 1,, b M }, and then T (t)f Lq(Ω) Ce γt f Lq(Ω) with some positive constants γ and C provided that f N t M Let w(t) = λ T (t s)(v(s) (v(s), b j )b j ) ds, and then, e γt w Lp((,T ),Lq(Ω)) C(u, f, g) j=1 M Moreover, w satisfies w t A w = λ (v (v, b j )b j ) in Ω (, T ), B w Γ =, w t= = j=1 M t N { w = w + (v(s), b j ) dsb j, thus, e γt T 1/p w Lp((,T ),Lq(Ω)) C(u, f, g) + C e pγs (v(s), b j ) ds} p j=1 j=1 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

44 Uniqueness Uniqueness derives the exponential stability of semi-group (2) Div (µd(w) pi) =, div w = in B R, n P w =, (µd(w) pi)n σ R 2 Bρn = on S R = (Div (µd(w) pi), w) Ω = ((µd(w) pi)n, w) Γ + µ 2 D(w) 2 L 2(Ω) = σ R 2 (Bρ, n w) Γ + µ 2 D(w) 2 L 2(Ω) n w = n P w + 1 w dx n = 1 w dx n B R B R B R B R σ N Thus, R 2 (Bρ, n w) σ 1 Γ = R 2 w j dx(bρ, ω j ) Γ = B R B R j=1 Thus, D(u) = Thus, p = in Ω p + σ Bρ = on Γ p is a constant R2 σ(n 1) Recalling that B = N 1 +, ρ = ω i and p =, or ρ = 1 and p = R 2 Thus, if w and p satisfy the null condition (w, p l ) Ω = (l = 1,, M), (ρ, φ i ) Γ = (i = 1,, N + 1), then w =, p =, ρ = (Uniqueness) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

45 Free boundary problem in an exterior domain Ω R N (N 3): exterior domain, Ω = R N \ O (O bounded domain), Ω t : time evolution of Ω, Γ: boundary of Ω, Γ t : boundary of Ω t (15) t v + (v v) Div (µd(v) πi) =, div v = in <t<t Ω t (, t), (νd(v) πi)n t =, V t = n t v on <t<t Γ t (, t), Ω t t= = Ω, v t= = v, in Ω φ C (R N ): φ = 1 for x B R and φ(x) = for x B2R, c where R N \ Ω = O B R/2 B L = {x R N x < L} u : the velocity field in the Lagrange coordinate x = ξ + φ(ξ) x = ξ + φ(ξ) t T u(ξ, s) ds u(ξ, s) ds φ(ξ) t (Modified Lagrange transformation) T u(ξ, s) ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

46 New equations (16) t u J 1 Div S(u, p) = F (u, p), in Ω (, T ), div u = G(u) = G(u) in Ω (, T ), S(u, p)n = H(u) on Γ (, T ), v t= = v, in Ω J 1 Div S(u, p) and div u are linear operators derived from Div (µd(v) qi) and div v by the change of variable: x = ξ + φ(ξ) F (u, p) : nonlinear term consisting of V ( and V 2 ( T G(u) = V 3 ( t T T u(ξ, s) ds u ds) u, V 1 ( t t t t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6 T u ds)( T 2 u ds) u u ds) p with some polyonials V, V 1 and V 2 with V () = V 2 () = T u ds) u, G(u) = V4 ( T t t u ds)u, with some polyonials V 3 and V 4 with V 3 () = V 4 () = H(u) = V 5 ( T u ds) u with some polyonials V 5 with V 5 () =

47 Thoerem Let N 3 and let q 1 and q 2 be exponents such that N < q 2 < and 1/q 1 = 1/q 2 + 1/N and q 1 > 2 Let b, p and p = p/(p 1) be numbers satisfying the conditions: (17) N > b > 1 ( N ) q 1 p, b p > 1, q 1 ( N + 1 p 2q 2 2) < 1, bp > 1, for any T > with some C > independent of ϵ (b N 2q 2 ) p > 1, b > N 2q 1, (b N 2q 2 ) p > 1, N q p < 1 Then, there exists an ϵ > such that u 2(1 1/p) B + u Lq1 ϵ, then q 2,p /2 problem (16) admits a unique solution u with possessing the estimate: T T + + u L p ((, ), W 2 q 2 (Ω) N ) W 1 p ((, ), L q2 (Ω) N ) ((1 + t) b u(, s) W 1 (Ω)) p ds T ((1 + s) (b N ) 2q 1 u(, s) W 1 q1 (Ω)) p ds + ( sup (1 + s) N 2q 1 u(, s) q1 ) p <s<t ((1 + s) (b N 2q 2 ) ( u(, s) W 2 q2 (Ω) + t u(, s) Lq2 (Ω))) p ds Cϵ p YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

48 To explain how to obtain the decay of solutions, we write the equations symbolically as follows: u t Au = f, Bu Γ = g, u t= = u time -shifted equations have the exponential stability: u = v + w, so that v t + λ v Av = f Bv Γ = g, v t= = u w t Aw = λ v Bw Γ =, w t= = YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

49 Let {T (t)} t be semi-group associated with the equations: u t Au = Bu Γ =, u t= = g Then, by the Duhamel principle, the solution u of the equations: u t Au = f Bu Γ =, u t= = is written by u(t) = L q -L p estimate: t T (t s)f(s) ds, T (t)u Lp Ct N 2 ( 1 q 1 p ) u Lq, T (t)u Lp Ct N 2 ( 1 q 1 p ) 1 2 u Lq for any t 1 with 1 < q p and 1 < q < Remark Non-slip condition case: T (t)u Lp Ct N 2 ( 1 q 1 p ) u Lq, T (t)u Lp Ct min( N 2 ( 1 q 1 p ) 1 2, N 2q ) u Lq for any t 1 with 1 < q p and 1 < q < YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

50 Assume that T + ((1 + s) b f(, s) q1 /2) p ds + T Then, we have T ((1 + s) b f(, s) q2 ) p ds ((1 + s) N 2q 1 f(, s) q3 ) p ds = M < (1/q 3 = 1/q 1 + 1/q 2 ) T ((1 + t) b u(, s) W 1 ) p ds + + ( sup + <t<t T T (1 + t) N 2q 1 u(, t) W 1 q1 ) p ((1 + s) (b N 2q 1 ) u(, s) W 1 q1 ) p ds {(1 + s) (b N 2q 2 ) ( u(, s) W 2 q2 + t u(, s) Lq2 )} p ds CM YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

51 L p -L q decay estimate = i u(t) C C + C + C C + C + C t t/2 t 1 t/2 t t 1 t/2 t 1 t/2 t t 1 i T (t s)f(s) ds (t s) N 2 ( 2 1 q 1 ) i 2 f(s) q1 /2 ds (t s) N 2 ( 2 1 q 1 ) i 2 f(s) q1 /2 ds (t s) ( N + i 2q 2 2 +ϵ) f(s) q2 ds (t s) ( N q 1 + i 2 ) f(s) q1 /2 ds (t s) ( N q 1 + i 2 ) f(s) q1 /2 ds (t s) ( N + i 2q 2 2 +ϵ) f(s) q2 ds (i =, 1) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

52 v (t) = thus here t/2 (t s) ( N q 1 + i 2 ) f(, s) q1/2 ds ( ) (t/2) N ( + i t/2 ) 1/p ( t/2 q 1 2 (1 + s) bp ds ((1 + s) b f(, s) q1/2) p ds t ( N q 1 + i 2 T 2 ) 2( N q 1 + i 2 ) (bp 1) 1/p M T ( (t b v (t)) p dt C t N + )p i q 1 2 b dt M 2 ( N + i ) ( N ) q 1 2 b p b p > 1 q 1 ) 1/p thus T 2 (t b v (t)) p dt CM YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

53 v 1 (t) = thus t 1 t/2 (t s) ( ( t 1 ( (t s) t/2 ( t 1 ( (t s) T T t/2 N q + i 1 2 N q + i 1 2 N q + i 1 2 ) f(, s) q1/2 ds ) ) 1/p ds ) f(, s) p q 1/2 ds ) 1/p ( N (v 1 (t)t b ) p dt + i ) p/p q ( t 1 ( (t s) t/2 change the integration order N q + i 1 2 ) ) (s b f(, s) q1/2) p ds dt ( N + i ) p/p T 1 q (s b f(, s) q1/2) p( 2s ( N q 1 + i 2 1 ) pm 1 s+1 ( ) (t s) N q + i 1 2 ) dt ds YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

54 v 2 (t) = t t b v 2 (t) C t 1 t ( (t s) N + i 2q 2 2 ) f(, +ϵ s) q2 ds t 1 t 1 ( (t s) N + i 2q 2 2 )(1 +ϵ + s) b f(, s) q2 ds ( t ( ) C (t s) N + i 2q 2 2 +ϵ ds ( t t 1 ) 1/p ( (t s) N + i 2q 2 2 )((1 +ϵ + s) b f(, s) q2 ) p ds ) 1/p Thus, T 2 (t b v 2 (t)) p dt (1 N i ) p/p T 2q 2 2 ϵ ((1 + s) b f(, s) q2 ) p( s+1 ( (t s) N ) ) + i 2q 2 2 +ϵ) dt ds (1 N i ) p T 2q 2 2 ϵ ((1 + s) b f(, s) q2 ) p ds ( 1 N 2q 2 i 2 ϵ ) pm 1 1 s YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

55 estimate of nonlinear terms (1 + t) b u(, t) u(, t) q1/2 u(, t) q1 u(, t) q1 (1 + t) b N 2q 1 u(, t) W 1 q (1 + t) N 2q 1 u(, t) W 1 q1 T φ 2 u(, t) ((1 + t) b u(, t) u(, t) q1/2) p ds CM 2 T φ 2 u q1/2 t u(, s) ds q1/2 C 2 u(, t) q2 ( T t u(, s) ds t ) 1/p (1 + s) bp ds ( T ((1 + s) b u(, s) W 1 ) p ds t T ) 1/p ( supp φ is compact) T ((1 + t) b φ 2 u(, t) u(, s) ds q1/2) p ds CM 2 t YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

56 L p -L q -decay estimate (18) t u J 1 Div S(u, p) =, div u = in Ω (, ), S(u, p)n = on Γ (, ), u t= = u in Ω Let R > be a fixed number such that R N \ Ω B R/2 Let A = A(x) = (a ij ) be the inverse matrix of x/ y with x = y + with some small positive number σ and some index r (N, ) k=1 T φ(y)u(y, s) ds N u i u j N J(x) = det( x/ y), Dij (u) = (a kj + a ki ), Sij (u, p) = Ja jk ( x j x D ik (u) δ ik p), k div u = N j,k=1 Ja kj u j x k a jk = a jk (x) = δ jk + b jk (x) and J(x) = 1 + J (x) Assumption(a) : b ij (x) =, J (x) = for x 2R, (b ij, J ) L (Ω) + (b ij, J ) Lr(Ω) σ k=1 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

57 L p -L q Decay estimate where q = q/(q 1) Theorem J q (Ω) = {u L q (Ω) N (u, φ) Ω = for any u Ĵp(Ω) and j =, 1, 2 with 1 < p < for any φ Ĥ1 q, (Ω)}, Let N < r < and 1 < q r Then, there exists a σ > such that if assumption (a) holds, then there exists a C analytic semi-group {T (t)} t associated with problem (18) such that for any u Ĵq(Ω) N, u = T (t)u is a unique solution of problem (18) with some pressure term p L p ((, T ), H 1 q (Ω) + Ĥ1 q (Ω)) possessing the estimates: (19) j T (t)u Lq(Ω) C p,q t j 2 N 2 provided that 1 < p q with p Moreover, ( 1 p 1 q ) u Lp(Ω) for any t 1, u Ĵ(Ω) and j =, 1, (2) sup t j/2 j T (t)u Lp(Ω) C p u L p (Ω) <t<2 YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

58 Resolvent problem (21) { λu J 1 Div S(u, p) =, div u = in Ω, S(u, p)n = on Γ Let and then, we have Theorem Σ ϵ = {λ C \ {} arg λ < π ϵ}, Σ ϵ,λ = {λ Σ ϵ λ > λ }, Let N < r <, 1 < q r and < ϵ < π/2 Then, there exist σ >, λ > and a family op operators S(λ) Hol (Σ ϵ,λ, H 2 q (Ω) N ) such that if assumption (a) holds, then for any λ Σ ϵ,λ, f L q (Ω) N, u = S(λ)f is a unique solution of problem (21) with some pressure term p H 1 q (Ω) + Ĥ1 q (Ω) possessing the estimate: (22) (λs(λ)f, λ 1/2 S(λ)f, 2 S(λ)f) Lq(Ω) C q,ϵ,λ f Lq(Ω) with some constant C q,ϵ,λ dependng solely on q, ϵ and λ Moreover, for any p with N < p <, S(λ) Hol (Σ ϵ, L(L p (Ω) N, H 1 (Ω) N ) with (23) (λs(λ)f, λ 1/2 S(λ)f L (Ω) C p,ϵ λ N 2p f Lq(Ω) (λ Σ ϵ ), and for any 1 < q <, S(λ) Hol (Σ ϵ, L(L q (Ω) N, H 1 q (Ω) N ) with (24) (λs(λ)f, λ 1/2 S(λ)f) Lq(Ω) C q,ϵ f Lq(Ω) (λ Σ ϵ ) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

59 Note that J 1 Div S(u, p) = Div S(u, p) and div u = div u for x 2R Let L q, (Ω) N = {f L q (Ω) N f(x) = for x 4R} First, assuming f L q, (Ω) N, we consider λu J 1 Div S(u, p) = f, div u = in Ω, S(u, p)n Γ = Let R (λ)f = F 1 ξ [ P (ξ)ˆf(ξ) ] [ ξ ˆf(ξ) ] λ + ξ 2, Πf = F 1 ξ ξ 2 (P (ξ) = (δ ij ξ i ξ j ξ 2 )) Let v = T f and q = Qf be solutions: J 1 Div S(v, q) = f, div v = in Ω, S(v, q)n Γ =, v S5R = Let φ C (R N ) such that φ(x) = 1 for x 2R and φ(x) = for x 3R, and set Φ(λ)f = (1 φ)r (λ)f + φr 1 f + B[( φ) (R (λ)f T f)], Ψf = (1 φ)π f + φπ 1 f Then, u = Φ(λ)f and p = Ψf satisfy λu J 1 Div S(u, p) = f + S(λ)f, div u = in Ω, S(u, p)n Γ = There exists a σ > such that (I + S(λ)) 1 L(L q, (Ω)) exists YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

60 For general f L q (Ω) N λr (λ)f J 1 Div S(R (λ)f, Πf) = f + R 1 (λ)f, div R (λ)f = g(λ)f in Ω), S(R (λ)f, Πf)n Γ = h(λ)f Let v 1 and q 1 be solutions of the equations: λv 1 J 1 Div S(v 1, q 1 ) = R 1 (λ)f, div v1 = g(λ)f in Ω 5R, S(v 1, q 1 )n Γ = h(λ)f v S5R = R 1 (λ)f, g(λ)f, h(λ)f behaves like λ 1/2 near λ = Let v 2 = R (λ)f + φv 1 B[( φ) v 1 ] and q 2 = Π b ff q 1, and then λv 2 J 1 Div S(v 2, q 2 ) = R 2 (λ)f, div v2 = in Ω, S(v2, q 2 )n Γ = And then, v 2 = Φ(λ)(I + R(λ)) 1 R 2 (λ)f, q 2 = Ψ(I + R ( λ)) 1 R 2 f Thus, we see that v 2 H 1 (Ω) C λ N 2q f Lq(Ω) for N < q <, l v 2 Lq(Ω) C λ 1+ l 2 f Lq(Ω) (l =, 1) for 1 < q < near λ = with arg λ π ϵ ( < ϵ < π/2) YShibata (Waseda) Free Boundary Prob Aug29-Sept2, / 6

L p approach to free boundary problems of the Navier-Stokes equation

L p approach to free boundary problems of the Navier-Stokes equation L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

On a free boundary problem of magnetohydrodynamics in multi-connected domains

On a free boundary problem of magnetohydrodynamics in multi-connected domains On a free boundary problem of magnetohydrodynamics in multi-connected domains V.A.Solonnikov June 212, Frauenhimsee 1 Formulation of the problem Domains 1t : variable domain filled with a liquid, 2t :

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

On the maximal L p -L q regularity of the Stokes problem with first order boundary condition; model problems

On the maximal L p -L q regularity of the Stokes problem with first order boundary condition; model problems c 212 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 64, No. 2 212) pp. 561 626 doi: 1.2969/jmsj/642561 On the maximal L p -L q regularity of the Stokes problem with first order boundary condition;

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R 2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Math 5440 Problem Set 4 Solutions

Math 5440 Problem Set 4 Solutions Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography Nonlinear Fourier transform for the conductivity equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki CoE in Analysis and Dynamics Research What is the non linear

Διαβάστε περισσότερα