u i t=0 = u i0 (x) 0, (1.2)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "u i t=0 = u i0 (x) 0, (1.2)"

Transcript

1 Electronc Journal of Dfferental Euatons, Vol. 8 (8), No. 9, pp. 3. ISSN: URL: or NONEXISTENCE OF GLOBAL SOLUTIONS TO THE SYSTEM OF SEMILINEAR PARABOLIC EQUATIONS WITH BIHARMONIC OPERATOR AND SINGULAR POTENTIAL SHIRMAYIL BAGIROV Communcated by Ludmla S. Pulkna Abstract. In the doman Q R = {x : x > R} (, ) we consder the problem u t u C x u = x σ u, u t= = u (x), u t u C x u = x σ u, u t= = u (x), Z Z Z Z u ds dt, u ds dt, B R B R where σ R, >, C < ( n(n ) ), =,. Suffcent condton for the nonexstence of global solutons s obtaned.the proof s based on the method of test functons.. Introducton Let us ntroduce the followng notaton: x = (x,..., x n ) R n, n >, r = x = x x n, B R = {x; x < R}, B R = {x; x > R}, B R,R = {x; R < x < R }, Q R = B R (; ), Q R = B R (; ), B R = {x; x = R}, u = ( u x,..., u x n ), C, x,t (Q R ) s the set of functons that are four tmes contnuously dfferentable wth respect to x and contnuously dfferentable wth respect to t n Q R. In the doman Q R we consder the system of euatons wth the ntal condton u t u C x u = x σ u u t u C x u = x σ u, (.) u t= = u (x), (.) Mathematcs Subect Classfcaton. 35A, 35B33, 35K5, 35K9. Key words and phrases. System of semlnear parabolc euaton; bharmonc operator; global soluton; crtcal exponent; method of test functons. c 8 Texas State Unversty. Submtted November, 7. Publshed January 6, 8.

2 S. BAGIROV EJDE-8/9 and the condtons B R u dx dt, B R u dx dt, (.3) where n >, >, σ R, C < ( n(n ) ), u (x) C(B R ), u = ( u), u = n u x k k=, =,. We wll study the nonexstence of a global soluton of problem (.)-(.3). By a global soluton of problem (.)-(.3) we understand a par of functons (u, u ) such that u (x, t), u (x, t) C, x,t (Q R ) C3, x,t (B R (; )) C(B R [; )) and satsfy the system (.) at every pont of Q R, the ntal condton (.) and condtons (.3). The problems of nonexstence of global solutons for dfferental euatons and neualtes play a key role n theory and applcatons. Therefore, they have a constant attenton of mathematcans, and a great number of works were devoted to them [,, 3,, 9,, 3, 6,, ]. A survey of such results can be found n the monograph [7]. In the classcal paper [7], Futa consdered the followng ntal value problem u t = u u, (x, t) R n (, ), u t= = u (x), x R n, (.) and proved that postve global solutons of problem (.) do not exst for < < = n. If >, then there are postve global solutons for small u (x). The case = was nvestgated n [, ] and t was proved that n ths case there are no postve global solutons. Pnsky [9] showed the exstence and nonexstence of global solutons n R n (, ) to the euaton u t u = a(x)u, where > and a(x) behaves lke x σ wth σ > for large x. The results of Futa s work [7] aroused great nterest n the problem of the nonexstence of global solutons, and they were expanded n several drectons. For example, varous bounded and unbounded domans were consdered nstead of R n, as well as more general operators than the Laplace operator ncludng dfferent type nonlnear operators were consdered (for more comprehensve treatment of such problems, see [, 7, ] and references there n). Another may of extendng of Futa s result s to nvestgate a system of Futatype reacton-dffuson euatons, and ths s what we do here. For example, many authors have nvestgated the exstence and nonexstence of global and local solutons to the ntal value problem u t = α u t k x σ v, u t= = u (x) (.5) v t = α v t k x σ u, v t= = v (x). Escobedo and Herrero [5] consdered problem (.5) on R n (, ) wth α =,k =, σ =, >, >, =, and proved that f max(, ) n, then for any nontrval ntal functons there are no nonnegatve global solutons. Fla, Levne and Uda [6] consdered problem(.5) on R n (, ) wth α, α =, k =, σ =,, >, =, and studed the exstence of nonnegatve global and non-global solutons. In the case α =, k =, =,,

3 EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 3 Mochzuk and Huang [8] proved the exstence and nonexstence theorems for global solutons and studed asymptotc behavor of the global soluton of problem (.5) on R n (, ). Carst [8] consdered problem (.5) for k, σ R,, > on R n (, ), and nonexstence of global soluton s studed. Levne [5] studed nonnegatve solutons of the ntal boundary value problem for the system of euatons n (.5) for α =, k =, σ =, =, n doman D (, ), where D s a cone or the exteror of a bounded doman. In the present paper we consder a system of semlnear parabolc euatons wth bharmonc operator and sngular potental n the exteror doman Q R. Usng the technue of test functons worked out by Mtder and Pohozaev n [6],[7], we fnd a suffcent condton for nonexstence of global nontrval soluton.. Man result and ts proof The avod complcatons, we ntroduce the followng denotaton: D = ( (n ) C, λ ± n ) = ± D, µ = ( D λ ) λ, µ = ( D λ ) λ, α = λ σ n λ n β = λ σ n λ n θ = σ (σ ) θ = σ (σ ) Let us consder the functons, α = λ σ n λ n,, β = λ σ n λ n, λ n, λ n, =,. ξ (x) = µ x n λ µ x n λ x n λ, =,. It s easy to verfy that ξ (x) are the soluton of the euaton n R n \{} and for x =, u C x u = (.) ξ =, ξ r = D, ξ =, The man result of ths paper reads as follows. ( ξ ) r. (.) Theorem.. Assume that n >, β >, C < ( n(n ) ) and < β, max(θ, θ ), (, ) (α, β ) n case α >, (, ) (β, α ) n case α >, =,. Then there s no nontrval global soluton of (.)-(.3).

4 S. BAGIROV EJDE-8/9 Proof. For smplcty we take R =. Assume that (u (x, t), u (x, t)) s a nontrval soluton of (.)-(.3). Let us consder the followng two functons:, for x ρ, ϕ(x) = ( x ρ )κ, for ρ x ρ, for x ρ,, for t, T ρ (t) = ( ρ t) γ, for t, for t, where κ, γ are large postve, and κ s such number that for x = ρ, ϕ = ϕ r = ϕ r = 3 ϕ =. (.3) r3 We multply the frst euaton by ψ (x, t) = T ρ (t)ξ (x)ϕ(x), the second by ψ (x, t) = T ρ (t)ξ (x)ϕ(x) and ntegrate over. After ntegraton by parts, we obtan the followng relatons = x σ u T ρ (t)ξ (x)ϕ(x) dx dt B,ρ u ξ ϕ dt ρ dt dx dt u T ρ (ξ ϕ) dx dt C x u T ρ ξ ϕ dx dt u (x)ξ (x)ϕ(x)dx B [ ( u ) (ξ ϕ) T ρ (t)dt ξ ϕds u ds B,ρ ν B,ρ ν u ν (ξ ] ϕ)ds u ν (ξ ϕ)ds, B,ρ (.) where ν s a unt vector of external normal to B, ρ,, =,,. In order not to be repeated, n what follows, we wll take nto account that, =,, and n all expressons wll wrte the same constant C, but n fact, n each expresson C ndcates dfferent constants. Usng (.), (.3), we estmate the ntegrals n suare brackets n (.). B,ρ B,ρ (ξ ϕ) u ds = ν ( u ) ξ ϕds =, ν = = x = x = x = (ξ ϕ) u ds ν u ( ξ r ϕ ξ ϕ r )ds ξ u ds, r

5 EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 5 Snce B,ρ u ν (ξ ϕ)ds = u B,ρ B B,ρ u ν ( ξ ϕ ( ξ, ϕ) ξ ϕ)ds u = x = r ξ ds =, ν ( (ξ ϕ))ds = x = = u (x)ξ (x)ϕ(x)dx, x = and u ν ( ξ ϕ)ds ( ξ ) u ds. r T ρ (t)dt, takng nto account that ξ s the soluton of n (.) and usng the above estmates, from (.) we obtan x σ u T ρ (t)ξ (x)ϕ(x) dx dt = n k,m= ρ u ξ ϕ dt ρ dt u ξ ϕ dt ρ dt dx dt dx dt u T ρ C (ξ ϕ) dx dt Q x u T ρ ξ ϕ dx dt u T ρ ϕ( ξ C x ξ ) dx dt u T ρ [( ( ξ ), ϕ) ( ξ, ( ϕ)) ξ ϕ ξ x k x m B u ξ ϕ dt ρ dt ϕ ] dx dt x k x m ρ dx dt u T ρ H (ξ, ϕ) dx dt, B ρ,ρ where H (ξ, ϕ) denotes the expresson n the suare brackets,.e. H (ξ, ϕ) = ( ( ξ ), ϕ) ( ξ, ( ϕ)) ξ ϕ n ξ ϕ. x k x m x k x m k,m= (.5) (.6) Usng the Holder s neualty, we estmate the rght-hand sde of (.5). We can wrte: x σ u T ρ ξ ϕ dx dt ( ( B ) / x σ u T ρ ξ ϕ dx dt B dtρ dt ξ ϕ T ρ x σ( ) ξ ) / dx dt

6 6 S. BAGIROV EJDE-8/9 ( x σ u T ρ ξ ϕ dx dt B ρ,ρ ( H (ξ, ϕ) Bρ,ρ Tρ ) / dx dt x σ( ) ξ ϕ ) / where =. Let us denote the second ntegral n the frst addend above by I, and the second ntegral n the second addend by J. If we wrte separately, then from (.6) we obtan the followng: x σ u T ρ ξ ϕ dx dt ( ( (.7) /[ x σ u / T ρ ξ ϕ dx dt) I ] J /, x σ u T ρ ξ ϕ dx dt /[ x σ u / ρξ ϕ dx dt) I J Usng (.6), from these neualtes we obtan x σ u T ρ ξ ϕ dx dt [( B x σ u T ρ ξ ϕ dx dt) /I / ( x σ u T ρ ξ ϕ dx dt B ρ,ρ x σ u T ρ ξ ϕ dx dt [( B ) /J / x σ u T ρ ξ ϕ dx dt) /I /, ]. (.8) ] /[ / I ] J /, ( ] x σ u T ρ ξ ϕ dx dt) / J /[ / I ] J /. B ρ,ρ Substtutng (.8) n (.7) and (.7) n (.8), we obtan x σ u T ρ ξ ϕ dx dt ( ( ) x σ u [ / T ρ ξ ϕ dx dt I ][ J / / I ] J / /, x σ u T ρ ξ ϕ dx dt ) x σ u [ / T ρ ξ ϕ dx dt I ][ J / / I ] J / /. (.9) (.)

7 EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 7 Hence x σ u T ρ ξ ϕ dx dt ] [ I / J [ / ] I J /, x σ u T ρ ξ ϕ dx dt Makng the substtutons [ ] I / J / [ ] I / J /. t = τ, r = ρs, x = ρy, T (τ) = Tρ ( τ), ξ (y) = ξ (ρy), ϕ(y) = ϕ(ρy), (.) (.) (.3) we estmate the rght-hand sdes of (.) and (.). Frst, we estmate the ntegrals I, =,. where I = ρ ρ dt ρ dt ρ dt ξ B T ρ dt T ρ Cρ ( ) Cρ / Ĩ ( T ) B ϕ dx dt x σ( ) ξ ξ dt dx B x σ( ) ξ Ĩ ( T ) = d T e dτ T dτ B ξ x σ( ) ξ d T e dτ dτ. T ξ x σ( ) ξ dx, dx (.) Snce for x = n the last ntegral (.) there s a sngularty, then we estmate t separately. B ρ = = ξ dx x σ( ) ξ ρ (µ r n λ µ r n λ r n λ ) r n r σ( ) (µ r n λ µ r n λ r n λ ) r λ λ ( ) σ( n ) n (µ µ r λ r λ λ ) dr. (µ µ r λ r λ λ ) dr (.5)

8 8 S. BAGIROV EJDE-8/9 Usng the L Hoptal s rule, we obtan µ µ lm r λ r λ λ r µ µ r λ r λ λ λ = lm µ r λ (λ r λ µ r λ (λ λ )r λ λ λ )r λ λ = λ D λ λ λ λ D λ λ λ Then there exsts r > such that for r < r, = D D. D < µ µ r λ r λ λ D µ µ r λ r λ λ < D D. So, for r < r, µ µ r λ r λ λ < ( D )( µ µ ) D r λ r λ λ. On the other hand, for r r, µ µ r λ r λ λ µ µ r λ r λ λ C(r ). Takng nto account the above two relatons, from (.5) we obtan where B ξ x σ( ) ξ dx C ρ ρ r λ λ ( ) σ( n ) dr (λ = C r λ n σ ( )) dr η ρ, for η > C ln(ρ), for η =, forη <, η = λ λ σ n ( ). Usng (.6), from (.) we obtan Ĩ ( T (η )ρ ), for η > I C ln(ρ)ρ /, for η = ρ /, for η <. To estmate J, =,, we estmate each addend of H (ξ, ϕ) separately. ( ( ξ ), ϕ) 3 ξ r 3 n ξ r r n ξ ϕ r r r Cr n 3 λ ϕ, r (.6) (.7)

9 EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 9 ξ ϕ ξ r n ξ ϕ r r r n ϕ r r Cr n λ ϕ r n ϕ, r r ( ξ ( ϕ)) Cr n λ 3 ϕ r 3 n ϕ r r n ϕ, r r n ξ ϕ x x x x,= n,= n,= ( ξ x x r r ) ( ϕ x r ξ x x r r ξ r (δ x r ) r x x r 3 ) ϕ x x r r ϕ (δ r r x x ) r 3 ( C ξ r )( r ξ r ϕ r ) r ϕ r Cr n ( λ ϕ r ) r ϕ r. Now, takng nto account these relatons and (.3), we estmate J, =, : J = ρ ρ H (ξ, ϕ) Bρ,ρ Tρ dx dt x σ( ) ξ ϕ T ρ dt H (ξ, ϕ) Bρ,ρ dx x σ( ) ξ ϕ n ( Cρ λ ) σ( n ) ( λ )( )n ( d3 eϕ ds d eϕ 3 ds d eϕ ds ) s σ( ) ϕ Cρ ( )λ λ ( ) σ( n ) J ( ϕ) (η = Cρ ) J ( ϕ), ds (.8) where J ( ϕ) denotes the last ntegral. Usng the estmates (.7),(.8), we estmate the rght-hand sdes of (.), (.). It s known that for large κ and γ, the ntegrals Ĩ( T ), J ( ϕ) are bounded [7]. Dependng on the sgn of η, =,, we consder varous varants. I. α >, α >. Ths s euvalent to λ λ σ > and λ λ σ >. (.9) Subect to relaton (.9), we consder the followng cases. (a) η, η or α, α. Then, takng nto account (.7), (.8), from (.), (.) we obtan x σ u T ρ ξ ϕ dx dt

10 S. BAGIROV EJDE-8/9 where Cρ ()[ f Ĩ / f (ρ) = J ] / [ f {, f η < ln(ρ), f η =. When we pass to lmt as ρ, we obtan x σ u T ρ ξ ϕ dx dt. Ĩ J ], Hence u, u. (b) Now let η >, η > or > α, > α. Agan usng (.7), (.8), from (.), (.) we obtan x σ u T ρ ξ ϕ dx dt Assume that Snce Cρ [ Ĩ ((η )η )[ I / ( T ) J ( T ) ]. ( T ) J / ( T ) ] (.) mn{ (η ) η, (η ) η } <. (.) (η ) η = λ λ σ n ( ) λ λ σ n ( ) = ( )θ, then we can wrte (.) as max(θ, θ ) >. For defnteness, we assume (η ) η <. Then for =, from (.) we obtan x σ u T ρ ξ ϕ dx dt Cρ ((η )η )[ Ĩ J / Passng to the lmt as ρ, we obtan x σ u ξ dx dt. ] [ Ĩ / J ] /. Hence u. Then from the second euaton of the system t follows that u. Smlarly, for (η ) η <, we obtan u, u. Now let mn{ (η ) η, (η ) η } = or the same max(θ, θ ) =. For example, take (η ) η =. Then from (.) t follows x σ u T ρ ξ dx dt C.

11 EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS From the propertes of the ntegral, t follows that ρ Then from (.9), by (.) and (.3) we obtan x σ u T ρ ξ ϕ dx dt So, agan [( B ( B x σ u ξ dx dt, (.) B ρ,ρ x σ u ξ dx dt. (.3) B x σ u ξ dx dt) /I / /J ] x σ u / ξ dx dt) /[ / I ] J / Cρ ( (η )η ) [( ( B ρ,ρ x σ u ξ dx dt B ) / x σ u ξ dx dt) Ĩ / J / x σ u ξ dx dt. ] /[Ĩ/ J ] /. Hence u and respectvely u. If (η ) η =, then n the same way, we obtan u, u. (c) Let us consder the case when η, η. At frst, let η, η. As n the prevous cases, from (.), (.) we obtan x σ u ξ dx dt Cρ ( ()η)[ f / Ĩ / J ] / [ Ĩ / J ] /. If η < ( ), then passng to lmt as ρ, from (.) we have x σ u ξ dx dt. (.) Hence u and from the second euaton of the system t follows u. Note that f η <, then for η = ( ), f rom (.) we obtan x σ u ξ dx dt < C. As n the prevous case, we can show agan that u, u. Note that the condton η <, η ( ) s euvalent to the condton < < α, α β,

12 S. BAGIROV EJDE-8/9 and the condton η =, η ( ) to the condton = α, α < β. Now let η, η. Then smlar to the prevous case we obtan that for η <, η ( ) and for η =, η < ( ), u, u. The same condton η <, η ( ) s euvalent to the condton < α, α β, and the condton η =, η < ( ) to the condton = α, α < β. II. α, α >. Herewth, the cases η, η > and η >, η > should be consdered. For η, η > as n the prevous cases, we obtan u, u f η <, η ( ) and η =, η < ( ). From the neualty η ( ) t follows that < β. Snce β = λ σ n λ n, ths case has meanng for λ σ 8 > λ. Now let η >, η >. Then smlar to case (b), we obtan that u, u f > α, > α, max{θ, θ }. III. α >, α. Herewth, t s necessary to consder the case when η >, η and η >, η >. For η >, η, u, u f < α, < β and = α, < < β, and n the case η >, η >, for > α, < < β, max{θ, θ }. Obvously, ths case has meanng for β > or for λ σ 8 > λ. IV. α, α. Here t s necessary to consder the only case when η >, η >. Then u, u, f < < β, < < β and max{θ, θ }. Obvously, ths set s not empty f λ σ 8 > λ, λ σ 8 > λ. Ths completely proves the theorem. Note that remans open the cases = α, = β and = β, = α. References [] D. Andreucc, M. A. Herrero, J. J. L. Velazuez; Louvlle theorems and blow up behavor n semlnear reacton dffuson systems, Ann. Inst. Henr Poncarce, Anal. Non Lnneare, (997), -53. [] Sh. G. Bagyrov; On the exstence of a postve soluton of a nonlnear second-order parabolc euaton wth tme-perodc coeffcents, Dfferentsal nye Uravnenya, 7, Vol. 3, No., pp [3] M. F. Bdaut-Veron, S. Pohozaev; Nonexstence results and estmates for some nonlnear ellptc problems, Anal. Math., 8 (), -9. [] K. Deng, H. A. Levne; The role of crtcal exponents n blow-up theorems: the seuel, J. Math. Anal. Appl., 3 (), no., 856. [5] M. Escobedo, M. A. Herrero; Boundedness and blow up for a semlnear reactondffuson system, J. Dfferental Euatons, 89 (99), 76-.

13 EJDE-8/9 NONEXISTENCE OF GLOBAL SOLUTIONS 3 [6] M. Fla, A. Levne, Y. A. Uda; Futa-type global exstence-global nonexstence theorem for a system of reacton dffuson euatons wth dfferng dffusvtes, Math. Methods Appl. Sc., 7 (99), [7] H. Futa; On the blowng-up of solutons of the Cauchy problem for u t = u u α, J. Fac. Sc. Unv, Tokyo, Sect. I, 3 (966), 9-. [8] Gabrella Carst, Exstence and nonexstence of global solutons of degenerate and sngular parabolc system, Abstr. Appl. Anal., 5 (), no., 65-8 [9] B. Gdas, J. Spruck; Global and local behavor of postve solutons of lnear ellptc euatons, Comm. Pare. Appl. Math.vol 3,pages ,yr 98 [] K. Hayakawa; On nonexstence of global solutons of some sem-lnear parabolc euatons, Proc. Japan. Acad., 9 (973), [] K. Kobayash, T. Saro, H. Tanaka; On the blowng up problem of sem lnear heat euatons, J. Math. Soc. Japan, 9 (977), 7- [] A. A. Kon kov; On solutons of uas-lnear ellptc neualtes contanng terms wth lowerorder dervatves, Nonlnear Anal., 9 (3), pages -3. [3] G. G. Laptev; On nonexstence of solutons of a class of sngular semlnear dfferental neualtes, Tr. MIAN, 3 (), [] H. A. Levne; The role of crtcal exponents n blowup theorems, SIAM Revew, 3 (99), no., [5] H. A. Levne; A Futa type global exstence global nonexstence theorem for a weakly coupled system of reacton-dffuson euatons, Zet. Ang. Math.Phys., (99), 8-3. [6] E. Mtder, S. I. Pohozaev; Absence of postve solutons for uas-lnear ellptc problems on R N, Proc. Steklov Inst. Math., 7 (999), 86-6 (n Russan). [7] E. Mtder, S. I. Pohozaev; A pror estmatons and no solutons of nonlnear partal euatons and neualtes, Proc. of V. A. Steklov Mathematcs Insttute of NAS, 3 (), 9-3. [8] K. Mochzuk, Q. Huang; Exstence and behavor of solutons for a weakly coupled system of reacton-dffuson euatons, Methods Appl. Anal., 5 (998), 9-. [9] R. G. Pnsky; Exstence and nonexstence of global solutons for u t u = a(x)u n R d, Jour. Dff. Euatons, 33 (997), [] A. A. Samarsk, V. A. Galaktonov, S. P. Kurdyumov, A. P. Mkhaylov; Blowup of solutons n problems for uaslnear parabolc euatons, Nauka Pub., Moscow, 987. (In Russan). [] J. Serrn, H. Zou; Nonexstence of postve solutons of Lane-Emden system, Dff. Integr. Euat., 9 (996), pages [] Y. Uda; The crtcal exponent for a weakly coupled system of the generalzed Futa type reacton-dffuson euatons, Z. Angew. Math. Phys., 6 (995), no. 3, Shrmayl Bagrov Insttute of Mathematcs and Mechancs of NAS of Azerbaan, Baku, Azerbaan E-mal address: sh bagrov@yahoo.com

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Supporting information for: Functional Mixed Effects Model for Small Area Estimation Supportng nformaton for: Functonal Mxed Effects Model for Small Area Estmaton Tapabrata Mat 1, Samran Snha 2 and Png-Shou Zhong 1 1 Department of Statstcs & Probablty, Mchgan State Unversty, East Lansng,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian Electronc Journal of Dfferental Equatons, Vol. 2828, No. 2, pp. 43. ISSN: 72-669. URL: http://ejde.ath.txstate.edu or http://ejde.ath.unt.edu ftp ejde.ath.txstate.edu logn: ftp NON-HOMOGENEOUS BOUNDARY-VALUE

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

arxiv: v1 [math.ca] 6 Dec 2012

arxiv: v1 [math.ca] 6 Dec 2012 arxv:.v [math.ca] 6 Dec Pontwse strong approxmaton of almost perodc functons n S W lodzmerz Lensk and Bogdan Szal Unversty of Zelona Góra Faculty of Mathematcs, Computer Scence and Econometrcs 65-56 Zelona

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα