Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supporting information for: Functional Mixed Effects Model for Small Area Estimation"

Transcript

1 Supportng nformaton for: Functonal Mxed Effects Model for Small Area Estmaton Tapabrata Mat 1, Samran Snha 2 and Png-Shou Zhong 1 1 Department of Statstcs & Probablty, Mchgan State Unversty, East Lansng, MI mat@stt.msu.edu, pszhong@stt.msu.edu and 2 Department of Statstcs, Texas A&M Unversty, College Staton, TX snha@stat.tamu.edu Ths document contans some lemmas and ther proof that are ey n provng Theorems 1 and 2 stated n the man paper. Frst, we re-state some notatons that we have already ntroduced n the man paper. Model (3.3) n the paper s Y = Z F b F + W ν + Υ, where W = (Z R, M 0,, M p ) and ν = (b T R, U T 0, U T 1,, U T p ) T. Denote G = var(ν) = dag(cov(b R ), I n Σ u0,, I n Σ up ) and cov(y ) = Σ. Also, Σ = Σ (δ) = Z F cov(b R )Z T F + cov(u 0 ) + p =1 Dag(X ) cov(u )Dag(X ) + Ω for = 1,..., n. The estmator of b F s bf = (Z T F Σ 1 Z F ) 1 Z T F Σ 1 Y and the predctor of ν s ν = GW T (Y Z F bf ). The covarance matrx Σ(δ) s nvolved wth parameters δ = (σ 2 b 0,, σ 2 b p, ψ 0,, ψ p, ρ 0,, ρ p ) T. Let s = (p + 1)(q + 2) be the number of parameters n δ. These parameters are estmated through restrcted maxmum lelhood method by maxmzng l(δ) = 1 2 log ZT F Z F 1 2 log Σ 1 2 (Y Z F b F ) T (Y Z F bf ). =1 Then there exst some T such that T T Z F = 0 and ran(t ) = mn L 1 (p + 1), and defne P = T (T T ΣT ) 1 T T = Z F (Z T F Z F ) 1 Z T F such that the lelhood can be wrtten as (S1) l(δ) = 1 2 log T T ΣT 1 2 Y T P Y. (S2) and defne the REML estmator δ as the soluton to the score equaton l(δ)/ δ = 0. Now we shall state the lemmas. Lemma 1 s needed for Lemma 2 whch s needed for Theorem 2. Lemmas 3 and 4 are needed for provng Theorems 1 and 2. Lemma 1 Let Σ = Σ (δ ) and Σ = Σ (δ). If max, X <, then tr{(σ Σ ) 2 } C δ δ δ 2, where C δ s a constant and δ δ 2 = (δ δ) T (δ δ). 1

2 Proof: We wrte Σ Σ = J 1 + J 2 + J 3 + J 4 + J 5, where Therefore, J 1 = Z F Dag{(σ b 0 2 σ 2 b 0 )Dag(λ 1 L 1 ),, (σ b p 2 σ 2 b p )Dag(λ 1 L 1 )}Z T F, J 2 = (ψ 0 ψ 0 )A m (ρ 0 ), J 3 = ψ0a m (ρ 0) ψ0a m (ρ 0 ), p J 4 = Dag(X )[ψ{a m (ρ ) A m (ρ )}]Dag(X ), J 5 = =1 p Dag(X ){(ψ ψ )A m (ρ )}Dag(X ). =1 tr{(σ Σ ) T (Σ Σ )} C[tr(J T 1 J 1 ) + tr(j T 2 J 2 ) + tr(j T 3 J 3 ) + tr(j T 4 J 4 ) + tr(j T 5 J 5 )]. We see that tr(j T 1 J 1 ) C p m (σb 2 σb 2 ) 2 =1 {Z ()T F j,l=1 (t j )Dag(λ 2 L 1 )Z () F (t l )} 2. Also, notce that tr(j T 2 J 2 ) = tr{(ψ 0 ψ 0 )A m (ρ 0 )} 2 C(ψ 0 ψ 0 ) 2 tr{a m (ρ 0 )} 2 and tr[{ψ 0A m (ρ 0) ψ 0A m (ρ 0 )} 2 ] = tr { [(ψ 0 ψ 0 ){A m (ρ 0) A m (ρ 0 )} + ψ 0 {A m (ρ 0) A m (ρ 0 )}] 2} Hence, tr(j T 3 J 3 ) C δ δ 2. Next, tr(j T 4 J 4 ) C C 2{(ψ 0 ψ 0 ) 2 + ψ 2 0}tr{A m (ρ 0) A m (ρ 0 )} 2 C{(ψ 0 ψ 0 ) 2 + ψ 2 0} ρ 0 ρ 0 2. p tr { Dag(X )[ψ{a m (ρ ) A m (ρ )}]Dag(X ) } 2 =1 p =1 [ tr { Dag(X )[(ψ ψ ){A m (ρ ) A m (ρ )}]Dag(X ) } 2 +tr { Dag(X )[ψ {A m (ρ ) A m (ρ )}]Dag(X ) } ] 2 p C [(ψ ψ ) 2 tr{a m (ρ ) A m (ρ )} 2 tr{dag(x )} 4 =1 +ψ 2 tr{a m (ρ ) A m (ρ )} 2 tr{dag(x )} 4 ]. If A m (ρ ) has bounded second dervatves wth respect to ρ, then tr{a m (ρ ) A m(ρ )} 2 C ρ ρ. And tr(j T 5 J 5 ) C p =1 (ψ ψ ) 2 tr { Dag(X )A m (ρ )Dag(X ) } 2. In summary, tr{(σ Σ ) 2 } C δ δ δ 2. 2

3 Lemma 2 Let C δ be the constant defned n Lemma 1 and assume that the smallest egenvalue of Σ s bounded below by c 0 > 0. Suppose that δ δ 2 such that 2C δ /c 2 0 < 1 when n s large enough. Then tr{(σ 1 ) 2 } [ ] (1 2c 4 0 Cδ 2 2 ) 1 2tr{( ) 2 } + 2C δ /c 4 0. Proof: By the matrx nverse formula, Σ 1 Σ ), we then have tr{(σ 1 ) 2 } 2tr{( +2tr[{ = Because (Σ Σ )Σ 2 (Σ Σ ) s non-negatve defnte, tr[{ (Σ Σ )Σ 1 (Σ Σ ) (Σ Σ ) + ) 2 } + 2tr[{ (Σ Σ ) } 2 ] (Σ Σ )Σ 1 (Σ (Σ Σ )Σ 1 (Σ Σ ) } 2 ]. (S3) } 2 ] tr 2 { (Σ Σ )Σ 1 (Σ Σ ) } tr{(σ 1 ) 2 }tr[{(σ Σ )Σ 2 (Σ Σ )} 2 ] tr 2 {(Σ Σ )Σ 2 (Σ Σ )} tr{(σ 1 ) 2 }λ 4 mn (Σ )tr 2 {(Σ Σ ) 2 } tr{(σ 1 ) 2 }c 4 0 Cδ 2 2, where the last nequalty follows from Lemma 1 and the assumpton n ths Lemma. In addton, tr{( (Σ Σ ) ) 2 } λ 4 mn (Σ )tr{(σ Σ ) 2 }. Hence, from (S3), tr{(σ 1 ) 2 } (1 2c 4 0 Cδ 2 2 ) 1 (2tr{( ) 2 } + 2C δ /c 4 0). Ths completes the proof of Lemma 2. Lemma 3 Let d 2 = max j, { ( tr(p V P V ), tr P V P V ) (, tr P 2 V P 2 V )} δ δ and d = mn d. Then there exsts δ such that for any 0 < q 0 < 1 and large n, δ δ = A 1 a + o p (d 2q 0 ), where a = l(δ)/ δ and A = E{ 2 l(δ)/ δ 2 }, on the set B wth P (B) convergng to 1. Proof: We wll apply Theorem 2.1 of Das et al. (2004). Let us frst verfy the followng condtons. 3

4 The gth moment of the followng quanttes are bounded for some d and d = mn d, 1 l(δ) 1 2 l(δ), E( δ δ0 d d j δ j δ0 2 l(δ) ) δ j δ0, d M j, d d j d d where M j = sup δ Sδ (δ 0 ) 3 l(δ)/( δ ) wth S γ (δ 0 ) = {δ : δ δ 0 γd /d 1 s}. Usng the lelhood gven n (S2), we obtan the frst dervatve of l(δ) wth respect to δ l(δ) = 1 2 {ɛt P V P ɛ tr(p V )}, (S4) where ɛ = Y Z F b F and V = dag(v 1,, V n ). Let ɛ = Σ 1/2 u and u N(0, I mn ). Then for any g 2, E l(δ) g = 2 g E u T Σ 1/2 P V P Σ 1/2 u E(u T Σ 1/2 P V P Σ 1/2 u) c Σ 1/2 P V P Σ 1/2 g 2 = ctr(v P V P ) g/2. Thus, f we tae d = tr(v P V P ) 1/2, the gth moment of (1/d ) l(δ 0 )/ δ s bounded. Because P / = T (T T ΣT ) 1 T T ( Σ/ )T (T T ΣT ) 1 T T = P ( Σ/ )P = P V j P, we have 2 l(δ) = 1 { ɛ T Q j ɛ + tr(p V j P V ) tr(p V } ), (S5) 2 where Q j = P {V j P V + V P V j ( V / )}P := P K j P. Then we have where E 2 l(δ) E( 2 l(δ) ) g = 2 g E u T Σ 1/2 Q j Σ 1/2 u E(u T Σ 1/2 Q j Σ 1/2 u) c Σ 1/2 Q j Σ 1/2 g 2 = ctr(k j P K j P ) g/2, tr(k j P K j P ) = tr((v j P V + V P V j V )P (V j P V + V P V j V )P ) = 2tr(V j P V P V j P V P ) + 2tr(V P V P V j P V j P ) 2tr(V j P V P V P ) 2tr(V P V j P V P ) + tr( V P V P ) and applyng Lemma 5.2 of Das et al. (2004), we have tr(v j P V P V P ) tr(v P V P V j P V j P ) 1/2 tr( V P V P ) 1/2 ; tr(v P V j P V P ) tr(v P V P V j P V j P ) 1/2 tr( V P V P ) 1/2 ; tr(v j P V P V j P V P ) tr(v P V P V j P V j P ). g g 4

5 Therefore, tr(k j P K j P ) { 2tr(V P V P V j P V j P ) 1/2 + tr( V P V P ) 1/2} 2. Notce that tr(a 2 ) tr 2 (A) for any non-negatve matrx A. Snce P 1/2 V P V P 1/2 s a nonnegatve defnte matrx, we have tr(v P V P V j P V j P ) tr(v P V P V P V P ) 1/2 tr(v j P V j P V j P V j P ) 1/2 tr(p 1/2 V P V P 1/2 )tr(p 1/2 V j P V j P 1/2 ) = tr(v P V P )tr(v j P V j P ). Hence f we tae d = max j [tr(v P V P ) 1/2, tr{ V / )P ( V / )P } 1/2 ] the gth moment of 1 2 l(δ) E( d d j δ j δ0 2 l(δ) ) δ j δ0 s bounded for any g 2. Next, we compute the thrd dervatves, 3 l(δ) δ { = 2 1 ɛ T P V P (V j P V + V P V j V )P + P ( V j δ P V V j P V P V V j P V δ + V δ P V j V P V P V j + V P V j P (V j P V + V P V j + V )P V P } ɛ E(ɛ T R j ɛ) δ = ɛ T (P V P V j P V P + P V P V P V j P + P V P V P V j P )ɛ ɛ T P 2 V δ P ɛ 2 V δ )P ɛ T (P V P V P + P V P V j P + P V j P V P )ɛ + E{ɛ T P (R j + Rj 2 1 )P ɛ}, δ δ δ where R j = V P V j P V + V P V P V j + V P V P V j and R j = V P ( V / ) + V P ( V j / δ ) + V j P ( V / δ ). Consder the frst term n the thrd dervatves. Denote Σ for Σ evaluated at δ and smlarly for Ṽj. Then t can be shown that (T T ΣT ) 1 = (T T ΣT ) 1 + (T T ΣT ) 1 T T (Σ Σ)T (T T ΣT ) 1 and T T Ṽ j T = T T V j T + T T (Ṽj V j )T. For convenence, denote H = (T T ΣT ) 1 and G = T T V T. Further 1 = HT T (Σ Σ)T H, 2j = T T (Ṽj V j )T. It can be seen that 2 V H = H + (δ δ )HG H + ψ0 HT T ( A m (ρ0) I n )T H + 2(p+1) =1 5 p =1 ψ HT T D{ A m (ρ )}T H,

6 where D( A m ) = dag{dag(x 1 ) A m dag(x 1 ),, dag(x n ) A m dag(x n )}, A m (ρ ) = A m (ρ ) A m ( ρ ).For 1 j (p + 1), Ṽ j = V j ; f j = p + 2, V j Ṽj = A m (ρ 0 ) I n ; f p + 3 j 2(p + 2), V j Ṽj = D{ A m (ρ )}; f 2(p + 1) + 1 j 2(p + 1) + q, V j Ṽj = ( A m (ρ 0 )/ ρ 0,j T ) I n wth j = j 2(p + 1) and f 2(p + 1) + ( 1)q + 1 j 2(p + 1) + q, V j Ṽj = D{ ( A m (ρ )/ ρ,j )} wth 2 (p + 1) and j = j 2(p + 1) + ( 1)q. Snce H, A m (ρ ) and A T m(ρ ) are postve defnte, f γ n S γ s small enough such that, (1/2)H H 2H, (1/2)A m (ρ ) A m ( ρ ) 2A m (ρ ) and (1/2)A T m(ρ ) A T m( ρ ) 2A T m(ρ ). Then f p + 1 H 1/2 G HT T ɛ = H 1/2 G HT T ɛ 2 H 1/2 G HT T ɛ 2 H 1/2 G HT T ɛ + 2(p+1) δ j δ j H 1/2 G HG j HT T ɛ + ψ 0 H 1/2 G HT T ( A m (ρ 0 ) I n )T HT T ɛ p + ψ j H 1/2 G HT T D( A m (ρ j ))T HT T ɛ. It can be shown that there exsts some constant C(γ) such that =1 H 1/2 G HT T ( A m (ρ 0 ) I n )T HT T ɛ C(γ) H 1/2 G H G 2p+3 HT T ɛ C(γ) H 1/2 G H 1/2 H 1/2 G2p+3 HT T ɛ, and H 1/2 G HT T D( A m (ρ j ))T HT T ɛ C(γ) H 1/2 G H 1/2 H 1/2 G HT T ɛ for = j+2(p+1)+1. Therefore, for p + 1, H 1/2 G HT T ɛ 2 H 1/2 G HT T ɛ + 2(p+1) 2 δ j δ j H 1/2 G H 1/2 H 1/2 G j HT T ɛ + 2 3(p+1) =2(p+1)+1 C(γ) ψ 2p 3 H 1/2 G H 1/2 H 1/2 G HT T ɛ 2(p+1) 2 H 1/2 G HT T ɛ + 2γd H 1/2 G H 1/2 d 1 j H 1/2 Gj HT T ɛ +2C(γ) H 1/2 G H 1/2 3(p+1) =2(p+1)+1 ψ 2p 3 H 1/2 G HT T ɛ, 6

7 where H 1/2 G H 1/2 = tr(p V P V ) 1/2. For (q + 2)(p + 1) > p + 1, H 1/2 G HT T ɛ 2{1 + C (γ)} H 1/2 G HT T ɛ In summary, defne then It follows that j = 2(p+1) +2γ{1 + C (γ)}d H 1/2 G H 1/2 d 1 j H 1/2 Gj HT T ɛ +2{1 + C (γ)}c(γ) H 1/2 G H 1/2 3(p+1) =2(p+1)+1 { 2γ{1 + C (γ)}d 1 j d H 1/2 G H 1/2 for j p + 1 2C{1 + C (γ)}c(γ) H 1/2 G H 1/2 for p + 1 j s, H 1/2 G HT T ɛ 2(1 + C (γ)) H 1/2 G HT T ɛ + sup H 1/2 G HT T ɛ 2{1 + C (γ)} H 1/2 G HT T ɛ + δ S γ If we tae γ smaller enough such that s j < 1, then ψ 2p 3 H 1/2 G HT T ɛ. s j H 1/2 Gj HT T ɛ. s sup δ S γ H 1/2 G HT T ɛ 2{1 + C (γ)} H 1/2 G HT T ɛ For any g > 4 and some constant C, + 2{1 + C (γ)}(1 s j ) 1 j sup δ S γ H 1/2 Gj HT T ɛ. s j H 1/2 G j HT T ɛ. E H 1/2 G j HT T ɛ g = E ɛ T T HG j HG j HT T ɛ g/2 = E ɛ T P V j P V j P ɛ g/2 Ctr g/2 (P V j P V j ). Hence the frst term n 3 l(δ)/( δ ) can be bounded by (S6) (S7) (S8) ɛ T P Ṽ P Ṽ j P Ṽ P ɛ = ɛ T T H G H Gj H G HT T ɛ λ max ( H 1/2 Gj H1/2 ) H 1/2 G HT T ɛ H 1/2 G HT T ɛ C 1 (γ)λ max (H 1/2 G j H 1/2 ) H 1/2 G HT T ɛ H 1/2 G HT T ɛ. Combnng (S8) and the above two nequalty, t can be seen that ( d ) g E sup ɛ T P Ṽ P Ṽ j P Ṽ P ɛ d d j d δ S γ C g 1(γ)λ g max(h 1/2 G j H 1/2 )E( 1 d d sup δ S γ H 1/2 G HT T ɛ sup δ S γ H 1/2 G HT T ɛ ) g C g 1(γ)λ g max(h 1/2 G j H 1/2 ). 7

8 We choose γ small enough such that C 1 (γ)λ max (H 1/2 G j H 1/2 ) <. The other terms n 3 l(δ)/( δ ) can be bounded smlarly. For example, ɛ T P Ṽ P Ṽ P ɛ H1/2 G HT T ɛ H 1/2 G HT T ɛ, where the bound for the rght hand sde can be obtaned smlarly as of (S8). condton (v) n Theorem 2.1 of Das et al. (2004) holds. Notce that from (S5), (A) j = E( 2 l(δ) { ) = 2 1 tr(q j Σ) tr(p V j P V ) tr(p V } ) = 2 1 tr(p V P V j ). Therefore, Then the (, j)th component of D1 1 AD1 1, where D 1 = Dag(d 1,, d n ), s tr(p V P V j )/(d d j ). Condton () n Das et al. (2004) s equvalent to requre that the smallest egenvalue of (D 1 AD 1 ) must be bounded away from 0 and. (D 1 AD 1 ) s λ mn. Snce λ x T ( D 1 )( A)( D 1 )x mn = nf x 0 x T x we requre that x T D 2 x λ max ( A) nf x 0 x T x Suppose the smallest egenvalue of λ max ( A)(mn (d )) 2 <, λ max ( A) = O(mn d 2 ). (S9) Under condton (S9), condton () of Das et al. (2004) holds. Therefore, condtons ()-(v) n Theorem 2.1 of Das et al. (2004) hold and g can be any nteger greater than 4. Ths fnshes the proof of Lemma 3. Lemma 4 Defne t(δ) = l T bf + m T ν as the BLUP estmator of Y 0 (t m ; δ) for some specfc and δ be the REML estmator of δ. If condtons (a)-(d) hold, then { t(δ) } 2 E{t( δ) t(δ)} 2 = E δ ( δ δ) + o(n 1 ). Proof: For convenence, let us defne ũ := (ũ T 1,, ũ T n) T = Y Z F bf, u = Y Z F b F and ζ T (δ) := m T GW T = (ζ1 T (δ),, ζn T (δ)) where ζ T (δ) = Z T R 0 (t m )cov(b R )Z T R f Z T R 0 (t m )cov(b R )Z T R 0 +Σ (m) u0 + p q=1 X (t m )[Σ uq Dag(X q0 )] (m) f =. where s the area we are nterested n predctng (n the man text, we used nstead of. In ths supplemental, we used ), Σ (m) u0 s the mth row of Σ u0 and [Σ uq Dag(X q0 )] (m) s the 8

9 mth row of Σ uq Dag(X q0 ). Let C 1 and C 2 be constants whch may tae dfferent values n each appearance. By the Taylor expanson of t( δ) around δ, we have where δ δ δ δ. Then t( δ) t(δ) = t(δ) δ ( δ δ) ( δ δ) T 2 t(δ ) δ 2 ( δ δ) E{t( δ) t(δ)} 2 = E{ t(δ) { t(δ) δ ( δ δ)} 2 + E δ ( δ δ)( δ δ) T 2 t(δ ) } ( δ δ) δ { 2 +(1/4)E ( δ δ) T 2 t(δ ) } 2 { t(δ) } 2 ( δ δ) := E δ 2 δ ( δ δ) + R1 + R 2. Frst, we would le to show R 2 = o(n 1 ). Notce that { E ( δ δ) T 2 t(δ ) } 2 { ( δ δ) = E[ tr 2 2 t(δ ) }] ( δ δ)( δ δ) T δ 2 δ ( { 2 E tr ( 2 t(δ ) } ]) ) 2 tr [{( δ δ)( δ δ) T } 2 δ ( { 2 = E tr ( 2 t(δ ) }{ } 2 ) ) 2 ( δ δ) T ( δ δ) δ 2 = s =1 s [ E Because s s a fxed number, we only need to show that [ E The frst dervatve of t(δ) s ( 2 t(δ ) δ δ j t(δ) = l T b F ( 2 t(δ ) δ δ j } 2 ] ) {( δ 2 δ) T ( δ δ). } 2 ] ) {( δ 2 δ) T ( δ δ) = o(n 1 ). (S10) + bt (δ) ũ b T b F (δ)z F, where b F / = (Z T F Σ 1 Z F ) 1 Z T F Σ 1 ( Σ/ ) ũ and the second dervatves of t(δ) s 2 t(δ) T 2 bf = l + 2 ζ T (δ) ũ ζt (δ) b F Z F := J 1 (δ) + J 2 (δ) + J 3 (δ) + J 4 (δ) + J 5 (δ), ζt (δ) b F Z F ζ T 2 bf (δ)z F 9

10 where 2 bf = (ZF T Z F ) 1 Z T 1 Σ F Σ Z F (ZF T Z F ) 1 Z T 1 Σ F Σ Z F ũ (ZF T Z F ) 1 ZF T 1 Σ Σ Z F (ZF T Z F ) 1 Z T 1 Σ F Σ Z F ũ +(ZF T Z F ) 1 ZF T 1 Σ Σ Σ ũ +(ZF T Z F ) 1 ZF T 1 Σ Σ Σ ũ 2 Σ (ZF T Z F ) 1 ZF T ũ := I 1 (δ) + I 2 (δ) + I 3 (δ) + I 4 (δ) + I 5 (δ). Let us loo at J 1 (δ). We can wrte J 1 (δ) = l T {I 1 (δ) + I 2 (δ) + I 3 (δ) + I 4 (δ) + I 5 (δ)}. Snce lt I 1 (δ ) and l T I 2 (δ ) are smlar, we only show that l T I 1 (δ ) s bounded by l T I 1 (δ ) C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ), where C 1 and C 2 are some constants. By the Cauchy- Schwarz nequalty and /2 Z T F (ZT F Σ 1 Z F ) 1 Z F /2 beng an dempotent matrx, we have l T I 1 (δ) = l T (ZF T Z F ) 1 ZF T 1 Σ Σ Z F (ZF T Z F ) 1 Z T 1 Σ F Σ Z F ũ l T (ZF T Z F ) 1 ZF T 1 Σ Σ Σ Z F (ZF T Z F ) 1 l 1/2 ũ T 1 Σ Σ Σ ũ 1/2. Denote d T = l T (Z T F Σ 1 Z F ) 1 Z T F /2 and P 1 (δ) = l T (ZF T Z F ) 1 ZF T 1 Σ Σ Σ Z F (ZF T Z F ) 1 l. Then we can wrte P 1 (δ) = = = d T Σ Σ δ d j =1 [tr(d d T d d T )] 1/2 [tr(/2 Σ =1 (d T d )[tr(/2 Σ =1 (d T d )tr 2 (/2 Σ /2 ) =1 =1 (d T d )tr 2 ( Σ ). Σ /2 )] 1/2 Σ /2 )] 1/2 10

11 Smlar to the proof of Lemma 2, we have tr 2 {Σ 1 ( Σ / δ j )} C 1 tr 2 { ( Σ / )}(1 + C 2 δ δ ) and assumng that max 1n tr 2 { ( Σ / )} <, we have P 1 (δ ) C 1 max 1n tr2 ( Σ )(1 + C 2 δ δ ) = C 1 max 1n tr2 ( Σ )(1 + C 2 δ δ ) d T d = C 1 max 1n tr2 ( Σ )(1 + C 2 δ δ ) l T (ZF T Σ 1 Z F ) 1 l. =1 lt (ZF T Σ 1 Z F ) 1 ZF T Σ 1 Z F (ZF T Σ 1 Z F ) 1 l It can be shown that l T (Z T F Σ 1 Z F ) 1 l = C1 lt (Z T F Σ 1 Z F ) 1 l(1 + C2 δ δ ). Snce ZF T Σ 1 Z F = O(n 1 ) and max 1n tr 2 { ( Σ / } <, P 1 (δ ) C 1 n 1 (1 + C 2 δ δ ). Next, ũ T 1 Σ Σ Σ ũ = Hence ũ T Σ 1 Σ δ =1 =1 [tr(/2 ũ ũ T ũũ T /2 )] 1/2 [tr( Σ Σ ) 2 ] 1/2 ũ T 1 Σ ũtr(σ Σ ) ũ T ũtr 2 ( Σ ). =1 =1 Σ 1 Σ Σ 1 ũ C δ 1 max 1n tr2 ( Σ )(1 + C 2 δ δ ) ũ T Σ 1 ũ C 1 u T u (1 + C 2 δ δ ). (S11) Note that we used the fact that ũ T ũ u T u. It follows that l T I 1 C 1 n 1/2 u T u 1/2 (1+ C 2 δ δ ). Smlarly, l T I 2 C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ). The thrd term n J 1 s l T I 3 = l T (ZF T Z F ) 1 ZF T 1 Σ Σ Σ ũ l T (ZF T Z F ) 1 l 1/2 ũ T 1 Σ Σ Σ Σ Σ ũ 1/2. Applyng the nequalty tr(a 2 ) tr 2 (A) for any nonnegatve matrx A, we have ũ T 1 Σ Σ Σ Σ Σ ũ = ũ T Σ Σ Σ Σ =1 [tr(/2 ũ ũ T ũũ T /2 )] 1/2 [tr( Σ Σ Σ Σ δ )2 ] 1/2 =1 ũ T ũtr 2 ( )2 tr( Σ ) 2 tr( Σ ) 2. =1 11 ũ

12 Hence, ũ T Σ 1 Σ δ C 1 max C 1 max tr 2 ( tr 2 ( Σ 1 Σ δ j Σ 1 Σ δ j )2 max tr( Σ )2 max tr( Σ ) 2 max ) 2 max Σ 1 Σ Σ 1 ũ δ =1 ũ T Σ 1 tr( Σ ) 2 (1 + C 2 δ δ ) tr( Σ ) 2 (1 + C 2 δ δ ) ũ tr 2 (Σ 1 ) 2 tr( Σ =1 =1 ũ T Σ 1 ũ u T u, δ j ) 2 tr( Σ ) 2 δ and t s easy to see that l T (Z T F Σ 1 Z F ) 1 l C1 l T (Z T F Σ 1 Z F ) 1 l (1 + C2 δ δ ). Therefore, l T I 3 (δ ) C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ). Smlarly, we can bound l T I 3 (δ ) and l T I 5 (δ ). So, n summary, J 1 (δ ) C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ). Next, for J 3, we have J 3 = ζt (δ) b F Z F Notng that for = ζt (δ) ζt (δ) Z F (ZF T Z F ) 1 ZF T ζ T (δ) = ZR T 0 (t m )cov(b R )ZR T Σ j Z F (ZF T Z F ) 1 ZF T 1 Σ Σ ũ ζ(δ) 1/2 ũ T 1 Σ Σ Σ ũ 1/2. + ZR T 0 (t m ) cov(b R) Z T R = O(n 1/2 ), where cov(b R )/ = 0 f δ j σb 2 and cov(b R )/ = Dag(0,, Dag(λ 1 L 1 ),..., 0) f δ j = σb 2, and ζ T 0 (δ)/ = O(1) for all δ j. Hence, { ζ T (δ)/ }Z F s of order O(1) for each component. It follows that { ζ T (δ)/ }Z F (Z T F Σ 1 Z F ) 1 Z T F { ζ(δ)/} = O(n 1 ). We have already shown n (S11) that ũ T Σ 1 Σ δ Σ 1 Σ Σ 1 ũ C δ 1 u T u (1 + C 2 δ δ ). Therefore, J 3 (δ ) C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ). Smlarly, we can show the same bound for J 4 (δ ). Now let us chec J 5, the proof s almost the same as J 1, where we replace l by ζ T (δ)z F. Notce that each component of ζ T (δ)z F s O(1). Then ζ T (δ)z F (Z T F Σ 1 Z F ) 1 Z T F ζ(δ) = O(n 1 ). Hence, as we have shown for J 1, t can also be shown that J 5 (δ ) C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ). It remans to show J 2 = O p (1). Notce that for, ζ T (δ) = ZR T 0 (t m ) cov(b R) j ZR T 1 Σ 1 + ZR T 0 (t m )cov(b R )ZR T Σ + Z T R 0 (t m )cov(b R )Z T R + ZR T 0 (t m ) cov(b R) Σ 2 Σ Σ = O(n 1/2 ), 12 ZR T 1 Σ 1 + Z T R 0 (t m )cov(b R )Z T R 1 Σ Σ

13 and { ζ T 0 (δ)/ } = O(1). It follows that J 2 = ζt (δ) ζ T ũ = (δ) ũ ζt (δ) ũ =1 =1 =1 ( ζt (δ) Σ ζ T (δ) ) 1/2 (ũ T ũ) 1/2, where ũ = (ũ 1,, ũ m ) T. It s easy to see that ũ T Σ 1 ũ = O p (1). Hence J 2 (δ ) C 1 n 1/2 u T u 1/2 (1 + C 2 δ δ ). In summary, from J 1 (δ ) J 5 (δ ), 2 t(δ ) δ C 1 n 1/2 (u T u) 1/2 (1 + C 2 δ δ ), δ j where C s some constant. Applyng the Cauchy-Schwarz nequalty, R 2 = E(( 2 t(δ ) 2) ) [( δ 2 δ) T ( δ δ)] 2Cn 1 {E(u T u δ δ 4 ) + E(u T u δ δ 6 )} δ δ j [ 2Cn 1 {E(u T u) 2 } 1/2 {E( δ δ 8 )} 1/2 +{E(u T u) 2 } 1/2 {E( δ δ 12 )} 1/2 ]. Because E(u T u) 2 = O(n 2 ) and E( δ δ 8 ) = O(n 4 ), we have R 2 = o(n 1 ). To show the order of R 1, we would le to now the order of E{ t(δ) s δ ( δ δ)} 2 C {E( t(δ) ) 4 } 1/2 {E( δ δ ) 4 )} 1/2. Now we can rewrte t(δ)/ n the followng form ( t(δ) = f j (δ) ζ(δ)z F (ZF T Z F ) 1 Z T Σ F =1 D + b(δ) ) D ɛ := h j (δ) T ɛ, (S12) where f j (δ) = l T (ZF T Σ 1 Z F ) 1 ZF T ( Σ/)D, D = I Z F (ZF T Σ 1 Z F ) 1 ZF T Σ 1. Defne h (2) j (δ) T = ζ T (δ)z F (ZF T Σ 1 Z F ) 1 ZF T ( Σ/)D and h (3) j (δ) = { ζ T (δ)/ }D. Snce ɛ N(0, Σ), E( t(δ) ) 4 = 3(h j (δ) T Σh j (δ)) 2 6{(f T j (δ)σf j (δ)) 2 + (h (2) j (δ) T Σh (2) j (δ)) 2 + (h (3) j (δ) T Σh (3) j (δ)) 2 }. Defne B = Z F (Z T F Σ 1 Z F ) 1 Z T F. Notce that Σ 1/2 B/2 s an dempotent matrx. Then the frst term on the rght hand sde of (S12) s fj T (δ)σf j (δ) = l T (ZF T Z F ) 1 ZF T Σ DΣD Σ Z F (ZF T Z F ) 1 l = l T (ZF T Z F ) 1 ZF T Σ (Σ B) Σ Z F (ZF T Z F ) 1 l = l T (Z T F Z F ) 1 Z T F =1 Σ Σ Σ Z F (Z T F Z F ) 1 l lt (Z T F Z F ) 1 Z T F Σ Σ Σ Z F (Z T F Z F ) 1 l λ max ( Σ Σ Σ ) lt (ZF T Z F ) 1 ZF T Z F (ZF T Z F ) 1 l, =1 13

14 whch s of order O(n 1 ). Smlarly, the second term of the rght hand sde of (S12) s h (2) j (δ) T Σh (2) j (δ) = ζ(δ)b Σ (Σ B) Σ Bζ T (δ) ζ T (δ)b Σ Σ Σ Bζ(δ) ζ T (δ)σ Σ Σ Σ Σζ(δ) T ζ T Σ Σ (δ)σ Σ Σ ζ (δ). =1 { } If λ 1 L 1 = O(n 1/2 (2) ) and λ max ( Σ / )Σ ( Σ / )Σ <. Then h j (δ) T Σh (2) j (δ) = O(1). Then the thrd term on the rght hand sde of (S12) s h (3) j (δ) T Σh (3) j (δ) = ζt (δ) = ζ(δ) = =1 DΣD T ζ(δ) = ζ(δ) {Σ Z F (ZF T Z F ) 1 ZF T } ζ(δ)t Σ 1/2 {I /2 Z F (ZF T Z F ) 1 ZF T /2 1/2 ζ(δ)t }Σ ζ (δ) ζ (δ) T Σ λ max (Σ ) =1 ζ (δ) ζ (δ) T. ζ(δ) Σ ζ(δ)t If λ max (Σ ) < and λ 1 L 1 = O(n 1/2 ), then ζ (δ)/ = O(n 1/2 ) and hence h (3) j (δ) T Σh (3) j (δ) = O(1). Hence, E {( t(δ)/ ) 4 } = O(1). It follows that E{( t(δ)/ δ)( δ δ)} 2 = O(n 1 ). Agan by the Cauchy-Schwarz nequalty, t s easy to see that R 1 = o(n 1 ). Therefore, we have Ths completes the proof of Lemma 4. E{t( δ) t(δ)} 2 = E{ t(δ) δ ( δ δ)} 2 + o(n 1 ). 14

15 Some addtonal detals n the proof of Theorem 2: For K 1, because m T G m = Z T R 0 (t m )cov(b R )Z R0 + e T m,0(i n Σ u0 )e m,0 + =1 et,x (I n Σ u )e,x, m T ( 2 G/ ) m s a summaton of fxed number functons of varance components δ. Therefore, t can be shown that K1 K 1 C δ δ. For K 2, notce that { 2 γ T (δ) 0 both δ and δ j are σ b 2 s; γ(δ) = δ 2 γ T (δ) 0 j γ (δ) f one of δ and δ j s not σb 2 s, where γ 0 (δ) s the th m-dmensonal subvector of γ T (δ) = (γ T 1 (δ),, γ T m(δ)). Therefore, K2 K 2 tr{γ 0 (δ ) 2 γ T 0 (δ ) Σ 1 } tr{γ 0 (δ) 2 γ T 0 (δ) } tr{(γ 0 (δ ) 2 γ T (δ ) γ 0 (δ) 2 γ T 0 (δ) } δ ) j + tr{γ 0 (δ) 2 γ T 0 (δ) (Σ 1 δ )} j + tr{(γ 0 (δ ) 2 γ T (δ ) γ 0 (δ) 2 γ T 0 (δ) )(Σ 1 )} := K(1) 2 + K (2) 2 + K (3) From Lemma 2 we now tr(σ 1 ) C δ δ, hence to show that K2 K 2 C δ δ, t s enough to show that ( 2 γ (l) (δ )/ )γ () (δ ) ( 2 γ (l) (δ)/ )γ () (δ) C δ δ where subscrpt (l) denotes the lth component. Notce that 2 γ (l) (δ ) γ () (δ ) 2 γ (l) (δ) (δ) C 2 γ (l) (δ ) 2 γ (l) (δ) + C 2 γ (l) (δ ) 2 γ (l) (δ) γ () + C γ () γ () 2. (δ ) γ () (δ) (δ ) γ () (δ). Clearly, γ () (δ ) γ () (δ) C δ δ from the expresson of γ () (δ) and t also easy to show that 2 γ (l) (δ )/ 2 γ (l) (δ)/ C δ δ. It follows that K2 K 2 C δ δ. The dervaton of K 3 to K 7 are smlar, here we only gve the detals for K 4. We frst wrte K 4 K 4 C C =1 =1 γt (δ ) Σ 1 Σ Σ 1 (K () 41 + K () 42 + K () 41 K () 42 ), γ (δ ) γt (δ) Σ δ γ (δ) j where K () 41 = tr[{γ (δ )( γ T (δ )/ ) γ (δ)( γ T (δ)/)} ( Σ / ) ] and K() tr[{σ 1 ( Σ / δ j )Σ 1 ( Σ / ) }γ (δ)( γ T (δ)/)]. It can be seen that K () 41 = tr{(γ (δ ) γ (δ)) γt (δ) + tr{(γ (δ ) γ (δ))( γt (δ ) Σ δ } + tr{γ (δ)( γt (δ ) j γt (δ) 15 ) Σ δ }. j γt (δ) 42 = ) Σ δ } j

16 For, γ (l) (δ ) γ (l) (δ) C λ L 1 1 p =0 σ2 b σb 2 and each element of γ T (δ)/ s of the same order of λ L1 1. Hence, tr{(γ (δ ) γ (δ))( γ T (δ)/) ( Σ / ) } C λ L1 2 δ δ. Smlarly, we can show the other terms are also bounded by C λ L1 2 δ δ. It follows that K () 41 C λ L1 2 δ δ f. By notng that tr(σ 1 )2 C δ δ, tr{( Σ / δ j ) ( Σ / )} 2 C δ δ, γ (δ) and γ T (δ)/ are both O( λ L1 1 ) for, t can be shown that K () 42 C λ L1 2 δ δ for. For =, K () 41 C δ δ and K () 42 C δ δ. In summary, usng the assumpton λ L1 = O(n 1/2 ), we have K 4 K 4 C( λ L ) δ δ C δ δ. Here we show that g 4 (δ)/ = o(n 1/2 ). Observe that g jl 4 (δ) δ = ηt j δ ΣP V j P V l P Ση l + η T j By the Cauchy-Schwarz nequalty, Σ δ P V j P V l P Ση l + η T j ΣP V P P V j P V l P Ση l +η T j ΣP V j δ P V l P Ση l + η T j ΣP V j P V P V l P Ση l + η T j ΣP V j P V l δ P Ση l +η T j ΣP V j P V l P V P Ση l + η T j ΣP V j P V l P Σ δ η l + η j ΣP V j P V l P Σ ηt l δ. η T j ΣP V j δ P V l P Ση l (η T j ΣP V j δ P V j δ P Ση j ) 1/2 (η T l ΣP V l P V l P Ση l ) 1/2 By the defnton of η and h(δ) T Σh(δ) = o(n 3/2 ), we can see that η T j ΣP ( V j / δ )P V l P Ση l = o(n 1/2 ). The order of the other terms of g 4 (δ)/ can be derved smlarly. 16

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1) Appendx Appendx I. Detals used n M-step of Secton 4. Now wrte h (r) and expect ultmately t wll close to zero. and h (r) = [δq(α ; α (r) )/δα ] α =α (r 1) = [δq(α ; α (r) )/δα ] α =α (r 1) δ log L(α (r

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

SUPPLEMENT TO SEQUENTIAL ESTIMATION OF STRUCTURAL MODELS WITH A FIXED POINT CONSTRAINT (Econometrica, Vol. 80, No. 5, September 2012, )

SUPPLEMENT TO SEQUENTIAL ESTIMATION OF STRUCTURAL MODELS WITH A FIXED POINT CONSTRAINT (Econometrica, Vol. 80, No. 5, September 2012, ) Econometrca Supplementary Materal SULEMENT TO SEQUENTIAL ESTIMATION OF STRUCTURAL MODELS WITH A FIXED OINT CONSTRAINT (Econometrca, Vol. 80, No. 5, September 2012, 2303 2319) BY HIROYUKI KASAHARA AND KATSUMI

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα