> `type/scalartype`:=proc(x) local st; return member(true,{seq(type(x,st),st=convert(_scalartypes,list))}); end proc: 3.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "> `type/scalartype`:=proc(x) local st; return member(true,{seq(type(x,st),st=convert(_scalartypes,list))}); end proc: 3."

Transcript

1 restart:with(clifford):with(linalg): eval(makealiases(9,'ordered')): eval(makealiases(9,'ordered')): ##read "Walshpackage.m"; ##useproduct(cmulwalsh); _default_clifford_product; Clifford:-cmulRS This worksheet accompanies the following three-part paper: "On the Transposition Anti-Involution in Real Clifford Algebras I: The Transposition Map" by R. Ablamowicz and B. Fauser, 2010 (to appear in Linear and Multilinear Algebra) "On the Transposition Anti-Involution in Real Clifford Algebras II: Stabilizer Groups of Primitive Idempotents" by R. Ablamowicz and B. Fauser, 2010 (to appear in Linear and Multilinear Algebra) "On the Transposition Anti-Involution in Real Clifford Algebras III: The Automorphism Group of the Transposition Scalar Product on Spinor Spaces" by R. Ablamowicz and B. Fauser, 2011 (submitted to Linear and Multilinear Algebra) Rafal Ablamowicz Cookeville, June 17, Procedure "by_dimension" defines a Boolean-valued function which allows to sort a list L with signatures [p,q] according to a total dimension p+q. by_dimension:=proc(l1,l2) local p: options `Copyright (c) by Rafal Ablamowicz and Bertfried Fauser. All rights reserved.`; description `Last revised: June 6, 2011`; if L1[1]+L1[ <= L2[1]+L2[ then return else return false 2. New type needed by tp `type/scalartype`:=proc(x) local st; return member(,{seq(type(x,st),st=convert(_scalartypes,list))}); 3. Procedure tp tp:=proc(xx::{scalartype,clibasmon,climon,clipolynom}) local x,l,p,co,u: if type(xx,scalartype) then return xx x:=clifford:-displayid(xx): if type(x,clibasmon) then if x=id then return Id else p:=op(clifford:-cliterms(x)); L:=Clifford:-extract(p,'integers'): L:=[seq(L[nops(L)-i+1],i=1..nops(L))]; u:=clifford:-cmul(seq(b[l[i],l[i]]*cat(e,l[i]),i=1..nops(l))); return Clifford:-reorder(u) elif type(x,climon) then p:=op(clifford:-cliterms(x)): co:=coeff(x,p); return co*procname(p) elif type(x,clipolynom) then return Clifford:-clilinear(x,procname) matkrepr([2,0],'left'); Cliplus has been loaded. Definitions for type/climon and type/clipolynom now include &C and &C[K]. Type?clip 1

2 rod for help. 1. Transposition of a dfmatrix: e1 =, e2 = dtranspose:=proc(mm) local M1,M2; return cdfmatrix(map(linalg:-transpose,ddfmatrix(mm))); Procedure that multiplies a ddfmatrix by a scalar: scalarmultiply:=proc(lambda,mm) local r,c,l; r,c:=linalg:-rowdim(mm),linalg:-coldim(mm); L:=ddfmatrix(MM): L:=map(evalm,lambda*L); return cdfmatrix(l); Procedure which checks if two ddfmatrices are equal: dequal:=proc(mm,nn) local MM1,MM2,NN1,NN2: MM1,MM2:=op(ddfmatrix(MM)); NN1,NN2:=op(ddfmatrix(NN)); return evalb(linalg:-equal(mm1,nn1) and linalg:-equal(mm2,nn2)); This procedure displays Id in matrices of the type dfmatrix: ddisplayid:=proc(mm::dfmatrix) local M1,M2; M1,M2:=op(ddfmatrix(MM)): M1,M2:=displayid(M1),displayid(M2); return cdfmatrix(m1,m2); This procedure computes a trace of a double filed matrix of type dfmatrix: dtrace:=proc(m::dfmatrix) local M1,M2: M1,M2:=op(ddfmatrix(M)); return [linalg:-trace(m1),linalg:-trace(m2)]; Here we have additional procedures that define: 1. `type/quaternionic` `type/quaternionicentry`:=proc(p::{clipolynom,climon,clibasmon}) local p1,co1,co2,co3,co4,s: p1:=clifford:-displayid(p): match(p1=co1*kfield[1]+co2*kfield[+co3*kfield[3]+co4*kfield[4],kfieldset,'s'); 2. Quaternionic conjugation in a subring of Cl(p,q) isomorphic to quaternions that has been chosen to represent "quaternionic" matrices in the spinor representation of Cl(p,q). This procedure can also act on quaternionic matrices and on matrices of type `dfmatrix` with quaternionic entries. quatconjugation:=proc(p::{quaternionicentry,numeric,array,dfmatrix}) local p1,s,co1,co2,co3,co4:global kfield; if type(p,numeric) then return p if type(p,dfmatrix) then return(clifford:-cdfmatrix(map(procname,clifford:-ddfmatrix(p)))) if type(p,array) then return map(procname,p) end if; p1:=clifford:-displayid(p): 2

3 match(p1=co1*kfield[1]+co2*kfield[+co3*kfield[3]+co4*kfield[4],kfieldset,'s'); subs(s,co1*kfield[1]-co2*kfield[-co3*kfield[3]-co4*kfield[4]); 3. 'quathermitationconjugation' is an anti-involution which is defined as a composition of transpositon and quaternionic conjugation in H = fcl(p,q)f. quathermitianconjugation:=proc(p::{array}) local p1,s,co1,co2: return linalg:-transpose(quatconjugation(p)); 4. 'dquathermitationconjugation' is an anti-involution which is defined as a composition of dtranspositon and quaternionic conjugation in Cl(p,q)f + gradeinv(cl(p,q)f). dquathermitianconjugation:=proc(p::{array}) local M12: M12:=ddfmatrix(dtranspose(p)): cdfmatrix(map(quatconjugation,m12)); stabilizer:=proc(f::idempotent,monomials::list({clibasmon,climon})) local m,p: option remember; P:=[]: for m in monomials do if cmul(m,f,cinv(m))=f then P:=[op(P),m] end do: return P; stabilizer:=proc(f::idempotent,monomials::list({clibasmon,climon})) local m,p,k: option remember; P:=[]: k:=0: for m in monomials do k:=k+1: if cmul(m,f)=cmul(f,m) then P:=[op(P),m]: print(k,m); end do: return P; This way we can check whether 1. The StabilizerGroup[p,q] is NOT Abelian, and, 2. Look for generators of that group. FF:=proc(i,j) local n;global pq,stab; option remember; n:=nops(stab[pq]); if evalb(i<=n and j<=n) then return cmul(stab[pq][i],stab[pq][j]) elif evalb(in and jn) then return procname(i-n,j-n) elif evalb(in and j<=n) then return (-1)*procname(i-n,j) elif evalb(i<=n and jn) then return (-1)*procname(i,j-n) else return "X" This procedure computes order of a group element: order_of_element:=proc(g::{clibasmon,climon}) local flag,k: 3

4 if g=id then return 1 flag:=: k:=1: while flag do k:=k+1: flag:=not evalb(cmul(g$k)=id): end do: return k; ###forget(order_of_element[pq]); order_of_element2:=proc(g::{clibasmon,climon}) local flag1,flag2,flag,k,k,m,co,pq; #option remember; pq:=op(1,procname); if g=id then return 1 if g=-id then return 2 if type(g,climon) then m:=op(cliterms(g)): co:=coeff(g,m)*id; if co=-1 then return lcm(2,procname[pq](m)) flag:=false: k:=1: K:=g: while not flag do k:=k+1: K:=cmul(K,g): flag1:=evalb(k=id): flag2:=evalb(k=-id): flag:=flag1 or flag2: end do: if flag1 then return k end if; if flag2 then return 2*k end if; order_of_element:=proc(g::{clibasmon,climon}) local flag1,flag2,flag,k,k,m,co,pq,mpq;global MONCMUL; ##option remember; Mpq:=op(1,procname); if g=id then return 1 if g=-id then return 2 if type(g,climon) then m:=op(cliterms(g)): co:=coeff(g,m)*id; if co=-1 then return lcm(2,procname['mpq'](m)) ####################################################### MONCMUL:=proc(a::{climon,clibasmon},b::{climon,clibasmon}) local m1,co1,m2,co2,l,sgn,n,i,bpq:global B: Bpq:=op(1,procname): if not type(bpq,diagmatrix) then return Clifford:-cmul[Bpq](a,b) co1,co2:=1,1: if type(a,climon) then m1:=op(clifford:-cliterms(a)): co1:=coeff(a,m1); else m1:=a if type(b,climon) then m2:=op(clifford:-cliterms(b)): 4

5 co2:=coeff(b,m2); else m2:=b if m1<m2 then return co1*co2*clifford:-cmul[bpq](m1,m2) L:=Clifford:-extract(m1,'integer'); n:=nops(l): sgn:=(-1)^(n*(n-1)/2); return sgn*co1*co2*mul(bpq[i,i],i=l)*id; ####################################################### flag:=false: k:=1: K:=g: while not flag do k:=k+1: K:=MONCMUL[Mpq](K,g): flag1:=evalb(k=id): flag2:=evalb(k=-id): flag:=flag1 or flag2: end do: if flag1 then return k end if; if flag2 then return 2*k end if; generategroup:=proc(l::list({climon,clibasmon})) local G,m,i,B:global FLAG_commuting_gens; B:=op(1,procname); if not FLAG_commuting_gens then G:={Id,op(L),op(map(cmul[B]@op,[seq(op(combinat:-permute(L,i)),i=1..(nops(L)))]))}; else G:={Id,op(L),op(map(cmul[B]@op,[seq(op(combinat:-choose(L,i)),i=1..(nops(L)))]))}; end if; G:=[seq(m,m=G),seq(-m,m=G)]; generategroup:=proc(l::list({climon,clibasmon})) local G,m,i,B:global FLAG_commuting_gens; B:=op(1,procname); if not FLAG_commuting_gens then G:={Id,op(L),op(map(cmul[B]@op,[seq(op(combinat:-permute(L,i)),i=1..(nops(L)))]))}; else G:={Id,op(L),op(map(cmul[B]@op,[seq(op(combinat:-choose(L,i)),i=1..(nops(L)))]))}; end if; G:=convert({seq(m,m=G)},list): return convert({seq(m,m=g),seq(-m,m=g)},list); Here we check whether Stab[p,q] = generategroup(gen[pq]) ####<<<<--- NOTE: Stab[p,q] is not a group, it is a list Stab[p,q] = StabilizerGroup[p,q] \cap clibasis NOTE: If not, try to guess for now correct Gen[p,q] using mygens. NOTE: We may not need element -Id to generate Stab[p,q] and StabilizerGroup[p,q] if there is an element of order 4 in Gen[p,q] 5

6 Here we check whether StabilizerGroup[p,q] = generategroup(gen[pq]); NOTE: If not, try to guess for now correct Gen[p,q] using mygens. read "Stab.m"; ####Stab:=table(): ##initialization indices(stab,'nolist'); [ 6, 2 ], [ 2, 4 ], [ 0, 7 ], [ 4, 3 ], [ 2, 0 ], [ 3, 2 ], [ 6, 3 ], [ 5, 0 ], [ 2, 5 ], [ 7, 0 ], [ 2, 6 ], [ 0, 6 ], [ 1, 8 ], [ 7, 2 ], [ 1, 1 ], [ 2, 3 ], [ 0, 4 ], [ 3, 0], [ 1, 2 ], [ 0, 5 ], [ 4, 0 ], [ 4, 1 ], [ 5, 1 ], [ 1, 5 ], [ 3, 3 ], [ 6, 1 ], [ 1, 4 ], [ 3, 6 ], [ 3, 5 ], [ 0, 3 ], [ 5, 4 ], [ 7, 1 ], [ 8, 1 ], [ 0, 9 ], [ 5, 2 ], [ 0, 8], [ 1, 3 ], [ 4, 2 ], [ 3, 4 ], [ 3, 1 ], [ 1, 7 ], [ 5, 3 ], [ 2, 1 ], [ 2, 2 ], [ 9, 0 ], [ 4, 5 ], [ 2, 7 ], [ 4, 4 ], [ 6, 0 ], [ 1, 6 ], [ 8, 0] read "StabilizerGroup.m"; ####StabilizerGroup:=table(): ##initialization indices(stabilizergroup,'nolist'); [ 6, 2 ], [ 2, 4 ], [ 0, 7 ], [ 4, 3 ], [ 2, 0 ], [ 3, 2 ], [ 6, 3 ], [ 5, 0 ], [ 2, 5 ], [ 7, 0 ], [ 2, 6 ], [ 0, 6 ], [ 1, 8 ], [ 7, 2 ], [ 1, 1 ], [ 2, 3 ], [ 0, 4 ], [ 3, 0], [ 1, 2 ], [ 0, 5 ], [ 4, 0 ], [ 4, 1 ], [ 5, 1 ], [ 1, 5 ], [ 3, 3 ], [ 6, 1 ], [ 1, 4 ], [ 3, 6 ], [ 3, 5 ], [ 0, 3 ], [ 5, 4 ], [ 7, 1 ], [ 8, 1 ], [ 0, 9 ], [ 5, 2 ], [ 0, 8], [ 1, 3 ], [ 4, 2 ], [ 3, 4 ], [ 3, 1 ], [ 1, 7 ], [ 5, 3 ], [ 2, 1 ], [ 2, 2 ], [ 9, 0 ], [ 4, 5 ], [ 2, 7 ], [ 4, 4 ], [ 6, 0 ], [ 1, 6 ], [ 8, 0] if pq=[0,3] then F3:=[e1,e2,e3]; ### in [0,3] F3:=convert(convert(generateGroup(F3),set),list); nops(%); matrix(2,nops(f3),(i,j)-if i=1 then order_of_element[pq](f3[j]) else F3[j] end if); save pq,f3,"f3.m"; ### F3 is saved from [0,3] signature ################################################################# elif pq=[5,0] then H3:=[e23,e24,e45]; ### in [5,0] H3:=convert(convert(generateGroup(H3),set),list); nops(%); matrix(2,nops(h3),(i,j)-if i=1 then order_of_element[pq](h3[j]) else H3[j] end if); save pq,h3,"h3.m"; ### H3 is saved from [5,0] signature ################################################################# elif pq=[6,1] then G3:=[e23,e24,e25]; ### in [6,1] G3:=convert(convert(generateGroup(G3),set),list); nops(%); matrix(2,nops(g3),(i,j)-if i=1 then order_of_element[pq](g3[j]) else G3[j] end if); save pq,g3,"g3.m"; ### G3 is saved from [6,1] signature elif pq=[3,6] then I3:=[e67,e68,e89]; ### in [3,6] I3:=convert(convert(generateGroup(I3),set),list); nops(%); matrix(2,nops(i3),(i,j)-if i=1 then order_of_element[pq](i3[j]) else I3[j] end if); save pq,i3,"i3.m"; ### I3 is saved from [3,6] signature elif pq=[7, then J3:=[e45,e57,e67]; ### in [7, J3:=convert(convert(generateGroup(J3),set),list); nops(%); matrix(2,nops(j3),(i,j)-if i=1 then order_of_element[pq](j3[j]) else J3[j] end if); save pq,j3,"j3.m"; ### J3 is saved from [7, signature end if; F3 should be isomorphic to G3: pq03:=[0,3]; 6

7 B03:=diag(1$pq03[1],-1$pq03[): F3gens:=[e1,e2,e3]; ### in [0,3] F3M:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); FLAG_commuting_gens:=type(F3M,symmatrix); ###<<<--- If this is, generators commute F3:=generateGroup['B03'](F3gens); pq03 := [ 0, 3] F3gens := [ e1, e2, e3 ] F3M := F3 := [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123 ] pq61:=[6,1]; B61:=diag(1$pq61[1],-1$pq61[): G3gens:=[e25,e24,e23]; ### in [6,1] G3M:=matrix(nops(G3gens),nops(G3gens),(i,j)-cmul[B61](G3gens[i],G3gens[j])); FLAG_commuting_gens:=type(G3M,symmatrix); ###<<<--- If this is, generators commute G3:=generateGroup['B61'](G3gens); pq61 := [ 6, 1] G3gens := [ e25, e24, e23 ] Id e45 e35 G3M := e45 Id e34 e35 e34 Id G3 := [ Id, e23, e24, e25, e34, e35, e45, e2345, Id, e23, e24, e25, e34, e35, e45, phi:='phi': phi(e1):=e25;phi(e2):=e24;phi(e3):=e23;phi(id):=id;phi(e123):=cmul[b61](phi(e1),phi(e2),p hi(e3)); phi(-e1):=-phi(e1);phi(-e2):=-phi(e2);phi(-e3):=-phi(e3);phi(-id):=-id;phi(-e123):=-cmul[ B61](phi(e1),phi(e2),phi(e3)); φ( e1 ) := e25 φ( e2 ) := e24 φ( e3 ) := e23 φ( Id ) := Id φ( e123 ) := e2345 φ e1 ( ) := e25 φ e2 ( ) := e24 φ e3 ( ) := e23 φ Id ( ) := Id φ e123 ( ) := e2345 for g1 in F3gens do for g2 in F3gens do phi(cmul[b03](g1,g2)):=cmul[b61](phi(g1),phi(g2)); end do; end do; M03:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); M61:=matrix(nops(G3gens),nops(G3gens),(i,j)-cmul[B61](G3gens[i],G3gens[j])); M03 := 7

8 Id e45 e35 M61 := e45 Id e34 e35 e34 Id phim03:=map(phi,evalm(m03)); Id e45 e35 phim03 := e45 Id e34 e35 e34 Id equal(phim03,m61); 'F3'=F3; F3 = [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123] 'G3'=G3; G3 = [ Id, e23, e24, e25, e34, e35, e45, e2345, Id, e23, e24, e25, e34, e35, e45, G33:=map(phi,F3); G33 := [ Id, e25, e24, e23, e45, e35, e34, e2345, Id, e25, e24, e23, e45, e35, e34, evalb(convert(g3,set)=convert(g33,set)); G3:=G33; G3 := [ Id, e25, e24, e23, e45, e35, e34, e2345, Id, e25, e24, e23, e45, e35, e34, matrix(2,nops(f3),[op(f3),op(g3)]); Id e1 e2 e3 e12 e13 e23 e123 Id e1 e2 e3 e12 e13 e23 e123 Id e25 e24 e23 e45 e35 e34 e2345 Id e25 e24 e23 e45 e35 e34 e2345 M03:=matrix(nops(F3),nops(F3),(i,j)-cmul[B03](F3[i],F3[j])): M61:=matrix(nops(G3),nops(G3),(i,j)-cmul[B61](G3[i],G3[j])): equal(map(phi,m03),m61); Is F3 isomorphic to H3? Yes, because H3 can be generated by three anticommuting generators e23, e24, e25. pq03:=[0,3]; B03:=diag(1$pq03[1],-1$pq03[): F3gens:=[e1,e2,e3]; ### in [0,3] F3M:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); FLAG_commuting_gens:=type(F3M,symmatrix); ###<<<--- If this is, generators commute F3:=generateGroup['B03'](F3gens); map(order_of_element[b03],f3); pq03 := [ 0, 3] F3gens := [ e1, e2, e3 ] F3M := F3 := [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123 ] pq50:=[5,0]; B50:=diag(1$pq50[1],-1$pq50[): H3gens:=[e23,e24,e45]; ### in [5,0] H3M:=matrix(nops(H3gens),nops(H3gens),(i,j)-cmul[B50](H3gens[i],H3gens[j])); FLAG_commuting_gens:=type(H3M,symmatrix); ###<<<--- If this is, generators commute H3:=generateGroup['B50'](H3gens); map(order_of_element[b50], H3); pq50 := [ 5, 0] 8

9 H3gens := [ e23, e24, e45 ] Id e34 e2345 H3M := e34 Id e25 e2345 e25 Id H3 := [ Id, e23, e24, e25, e34, e35, e45, e2345, Id, e23, e24, e25, e34, e35, e45, H3gens:=[e25,e24,e23]; ### new generators in [5,0] H3M:=matrix(nops(H3gens),nops(H3gens),(i,j)-cmul[B50](H3gens[i],H3gens[j])); FLAG_commuting_gens:=type(H3M,symmatrix); ###<<<--- If this is, generators commute H33:=generateGroup['B50'](H3gens); map(order_of_element[b50], H33); evalb(convert(h3,set)=convert(h33,set)); H3gens := [ e25, e24, e23 ] Id e45 e35 H3M := e45 Id e34 e35 e34 Id H33 := [ Id, e23, e24, e25, e34, e35, e45, e2345, Id, e23, e24, e25, e34, e35, e45, phi:='phi': phi(e1):=e25;phi(e2):=e24;phi(e3):=e23;phi(id):=id;phi(e123):=cmul[b50](phi(e1),phi(e2),p hi(e3)); phi(-e1):=-e25;phi(-e2):=-e24;phi(-e3):=-e23;phi(-id):=-id;phi(-e123):=-cmul[b50](phi(e1),phi(e2),phi(e3)); φ( e1 ) := e25 φ( e2 ) := e24 φ( e3 ) := e23 φ( Id ) := Id φ( e123 ) := e2345 φ e1 ( ) := e25 φ e2 ( ) := e24 φ e3 ( ) := e23 φ Id ( ) := Id φ e123 ( ) := e2345 for g1 in F3gens do for g2 in F3gens do phi(cmul[b03](g1,g2)):=cmul[b50](phi(g1),phi(g2)); end do; end do; M03:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); M50:=matrix(nops(H3gens),nops(H3gens),(i,j)-cmul[B50](H3gens[i],H3gens[j])); phim03:=map(phi,evalm(m03)); M03 := M50 := Id e45 e35 e45 Id e34 e35 e34 Id 9

10 Id e45 e35 phim03 := e45 Id e34 e35 e34 Id equal(phim03,m50); 'F3'=F3; F3 = [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123] 'H3'=H3; H3 = [ Id, e23, e24, e25, e34, e35, e45, e2345, Id, e23, e24, e25, e34, e35, e45, H33:=map(phi,F3); H33 := [ Id, e25, e24, e23, e45, e35, e34, e2345, Id, e25, e24, e23, e45, e35, e34, evalb(convert(h3,set)=convert(h33,set)); H3:=H33; H3 := [ Id, e25, e24, e23, e45, e35, e34, e2345, Id, e25, e24, e23, e45, e35, e34, matrix(2,nops(f3),[op(f3),op(h3)]); Id e1 e2 e3 e12 e13 e23 e123 Id e1 e2 e3 e12 e13 e23 e123 Id e25 e24 e23 e45 e35 e34 e2345 Id e25 e24 e23 e45 e35 e34 e2345 M03:=matrix(nops(F3),nops(F3),(i,j)-cmul[B03](F3[i],F3[j])): M50:=matrix(nops(H3),nops(H3),(i,j)-cmul[B50](H3[i],H3[j])): equal(map(phi,m03),m50); Is F3 isomorphic to I3? Yes, because I3 can be generated by three anticommuting generators e67, e68, e69. pq03:=[0,3]; B03:=diag(1$pq03[1],-1$pq03[): F3gens:=[e1,e2,e3]; ### in [0,3] F3M:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); FLAG_commuting_gens:=type(F3M,symmatrix); ###<<<--- If this is, generators commute F3:=generateGroup['B03'](F3gens); map(order_of_element[b03],f3); pq03 := [ 0, 3] F3gens := [ e1, e2, e3 ] F3M := F3 := [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123 ] pq36:=[3,6]; B36:=diag(1$pq36[1],-1$pq36[): I3gens:=[e67,e68,e89]; ### in [3,6] I3M:=matrix(nops(I3gens),nops(I3gens),(i,j)-cmul[B36](I3gens[i],I3gens[j])); FLAG_commuting_gens:=type(I3M,symmatrix); ###<<<--- If this is, generators commute I3:=generateGroup['B36'](I3gens); map(order_of_element[b36],i3); pq36 := [ 3, 6] I3gens := [ e67, e68, e89 ] Id e78 e6789 I3M := e78 Id e69 e6789 e69 Id 10

11 I3 := [ Id, e67, e68, e69, e78, e79, e89, e6789, Id, e67, e68, e69, e78, e79, e89, e6789 ] I3gens:=[e67,e68,e69]; ### new generators in [3,6] I3M:=matrix(nops(I3gens),nops(I3gens),(i,j)-cmul[B36](I3gens[i],I3gens[j])); FLAG_commuting_gens:=type(I3M,symmatrix); ###<<<--- If this is, generators commute I33:=generateGroup['B36'](I3gens); map(order_of_element[b36], I33); evalb(convert(i3,set)=convert(i33,set)); 'F3M'=evalm(F3M); I3gens := [ e67, e68, e69 ] Id e78 e79 I3M := e78 Id e89 e79 e89 Id I33 := [ Id, e67, e68, e69, e78, e79, e89, e6789, Id, e67, e68, e69, e78, e79, e89, e6789 ] F3M = phi:='phi': phi(e1):=e67;phi(e2):=e68;phi(e3):=e69;phi(id):=id;phi(e123):=cmul[b36](phi(e1),phi(e2),p hi(e3)); phi(-e1):=-e67;phi(-e2):=-e68;phi(-e3):=-e69;phi(-id):=-id;phi(-e123):=-cmul[b36](phi(e1),phi(e2),phi(e3)); φ( e1 ) := e67 φ( e2 ) := e68 φ( e3 ) := e69 φ( Id ) := Id φ( e123 ) := e6789 φ e1 ( ) := e67 φ e2 ( ) := e68 φ e3 ( ) := e69 φ Id ( ) := Id φ e123 ( ) := e6789 for g1 in F3gens do for g2 in F3gens do phi(cmul[b03](g1,g2)):=cmul[b36](phi(g1),phi(g2)); end do; end do; M03:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); M36:=matrix(nops(I3gens),nops(I3gens),(i,j)-cmul[B36](I3gens[i],I3gens[j])); phim03:=map(phi,evalm(m03)); M03 := M36 := Id e78 e79 e78 Id e89 e79 e89 Id 11

12 Id e78 e79 phim03 := e78 Id e89 e79 e89 Id equal(phim03,m36); 'F3'=F3; F3 = [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123] 'I3'=I3; I3 = [ Id, e67, e68, e69, e78, e79, e89, e6789, Id, e67, e68, e69, e78, e79, e89, e6789 ] I33:=map(phi,F3); I33 := [ Id, e67, e68, e69, e78, e79, e89, e6789, Id, e67, e68, e69, e78, e79, e89, e6789 ] evalb(convert(i3,set)=convert(i33,set)); I3:=I33; I3 := [ Id, e67, e68, e69, e78, e79, e89, e6789, Id, e67, e68, e69, e78, e79, e89, e6789 ] matrix(2,nops(f3),[op(f3),op(i3)]); Id e1 e2 e3 e12 e13 e23 e123 Id e1 e2 e3 e12 e13 e23 e123 Id e67 e68 e69 e78 e79 e89 e6789 Id e67 e68 e69 e78 e79 e89 e6789 M03:=matrix(nops(F3),nops(F3),(i,j)-cmul[B03](F3[i],F3[j])): M36:=matrix(nops(I3),nops(I3),(i,j)-cmul[B36](I3[i],I3[j])): equal(map(phi,m03),m36); Is F3 isomorphic to J3? Yes, because J3 can be generated by three anticommuting generators. pq03:=[0,3]; B03:=diag(1$pq03[1],-1$pq03[): F3gens:=[e1,e2,e3]; ### in [0,3] F3M:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); FLAG_commuting_gens:=type(F3M,symmatrix); ###<<<--- If this is, generators commute F3:=generateGroup['B03'](F3gens); map(order_of_element[b03],f3); pq03 := [ 0, 3] F3gens := [ e1, e2, e3 ] F3M := F3 := [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123 ] pq72:=[7,; B72:=diag(1$pq72[1],-1$pq72[): J3gens:=[e45,e57,e67]; ### in [7, J3M:=matrix(nops(J3gens),nops(J3gens),(i,j)-cmul[B7(J3gens[i],J3gens[j])); FLAG_commuting_gens:=type(J3M,symmatrix); ###<<<--- If this is, generators commute J3:=generateGroup['B72'](J3gens); map(order_of_element[b7,j3); pq72 := [ 7, J3gens := [ e45, e57, e67 ] Id e47 e4567 J3M := e47 Id e56 e4567 e56 Id 12

13 J3 := [ Id, e45, e46, e47, e56, e57, e67, e4567, Id, e45, e46, e47, e56, e57, e67, e4567] J3gens:=[e45,e56,e57]; ### new generators in [7, J3M:=matrix(nops(J3gens),nops(J3gens),(i,j)-cmul[B7(J3gens[i],J3gens[j])); FLAG_commuting_gens:=type(J3M,symmatrix); ###<<<--- If this is, generators commute J33:=generateGroup['B72'](J3gens); map(order_of_element[b7, J33); evalb(convert(j3,set)=convert(j33,set)); 'F3M'=evalm(F3M); J3gens := [ e45, e56, e57 ] Id e46 e47 J3M := e46 Id e67 e47 e67 Id J33 := [ Id, e45, e46, e47, e56, e57, e67, e4567, Id, e45, e46, e47, e56, e57, e67, e4567 ] F3M = phi:='phi': phi(e1):=e45;phi(e2):=e56;phi(e3):=e57;phi(id):=id;phi(e123):=cmul[b7(phi(e1),phi(e2),p hi(e3)); phi(-e1):=-e45;phi(-e2):=-e56;phi(-e3):=-e57;phi(-id):=-id;phi(-e123):=-cmul[b7(phi(e1),phi(e2),phi(e3)); φ( e1 ) := e45 φ( e2 ) := e56 φ( e3 ) := e57 φ( Id ) := Id φ( e123 ) := e4567 φ e1 ( ) := e45 φ e2 ( ) := e56 φ e3 ( ) := e57 φ Id ( ) := Id φ e123 ( ) := e4567 for g1 in F3gens do for g2 in F3gens do phi(cmul[b03](g1,g2)):=cmul[b7(phi(g1),phi(g2)); end do; end do; M03:=matrix(nops(F3gens),nops(F3gens),(i,j)-cmul[B03](F3gens[i],F3gens[j])); M72:=matrix(nops(J3gens),nops(J3gens),(i,j)-cmul[B7(J3gens[i],J3gens[j])); phim03:=map(phi,evalm(m03)); M03 := M72 := Id e46 e47 e46 Id e67 e47 e67 Id 13

14 Id e46 e47 phim03 := e46 Id e67 e47 e67 Id equal(phim03,m72); 'F3'=F3; F3 = [ Id, e1, e2, e3, e12, e13, e23, e123, Id, e1, e2, e3, e12, e13, e23, e123] 'J3'=J3; J3 = [ Id, e45, e46, e47, e56, e57, e67, e4567, Id, e45, e46, e47, e56, e57, e67, e4567 ] J33:=map(phi,F3); J33 := [ Id, e45, e56, e57, e46, e47, e67, e4567, Id, e45, e56, e57, e46, e47, e67, e4567 ] evalb(convert(j3,set)=convert(j33,set)); J3:=J33; J3 := [ Id, e45, e56, e57, e46, e47, e67, e4567, Id, e45, e56, e57, e46, e47, e67, e4567] matrix(2,nops(f3),[op(f3),op(j3)]); Id e1 e2 e3 e12 e13 e23 e123 Id e1 e2 e3 e12 e13 e23 e123 Id e45 e56 e57 e46 e47 e67 e4567 Id e45 e56 e57 e46 e47 e67 e4567 M03:=matrix(nops(F3),nops(F3),(i,j)-cmul[B03](F3[i],F3[j])): M72:=matrix(nops(J3),nops(J3),(i,j)-cmul[B7(J3[i],J3[j])): equal(map(phi,m03),m72); QED 14

cmulwalsh This worksheet accompanies the following three-part paper:

cmulwalsh This worksheet accompanies the following three-part paper: restart:with(linalg):with(clifford):_prolevel:=true: read "Walshpackage.m": useproduct(cmulwalsh); _default_clifford_product; eval(makealiases(9'ordered')): Warning expecting one of the following Clifford

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σχολή Μηχανικής και Τεχνολογίας Πτυχιακή εργασία ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σωτήρης Παύλου Λεμεσός, Μάιος 2018 i ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ Š² ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education GREEK 0543/04 Paper 4 Writing For Examination from 2015 SPECIMEN PAPER Candidates answer on the Question

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ

Διαβάστε περισσότερα

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

GREECE BULGARIA 6 th JOINT MONITORING

GREECE BULGARIA 6 th JOINT MONITORING GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according

Διαβάστε περισσότερα