Supplementary material for: Efficient moment calculations for variance components in large unbalanced crossed random effects models

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supplementary material for: Efficient moment calculations for variance components in large unbalanced crossed random effects models"

Transcript

1 Supplementay mateal fo: Effcent moment calculaton fo vaance component n lage unbalanced coed andom effect model Katelyn Gao Stanfod Unvety At B Owen Stanfod Unvety Augut 015 Abtact Th a upplementay document contanng poof fo ome eult n the man document The ecton numbe contnue whee that document left off Some contextual mateal epeated fo claty Alo a th a upplementay document, mateal that tadtonally left out a beng tedou algeba ncluded n full detal, makng the numeou tep eae to follow and check 10 Patally obeved andom effect model The andom effect model Y = µ + a + b + e,, N 100 d d d fo a Fa, b Fb and e Fe ndependent of each othe Thee andom vaable have mean 0, vaance σa, σ B, σ E and kutoe κ A, κ B, κ E, epectvely We wll not need the kewnee We ue lette,,, to ndex ow Lette,,, ae ued fo column In ntenet applcaton, the actual ndce may be people atng tem, tem beng ated, cooke, URL, IP addee, quey tng, mage dentfe and o on We mplfy the ndex et to N fo notatonal convenence One featue of thee vaable that we fully expect futue data to bng htheto uneen level That why a countable ndex et appopate We wll want to etmate σa, σ B, σ E and get a fomula fo the vaance of thoe etmate Many, pehap mot, of the Y value ae mng Hee we aume that the mngne not nfomatve Fo futhe dcuon ee Secton 71 of the man document The vaable Z {0, 1} take the value 1 f Y avalable and 0 othewe The total ample ze N = Z We aume that 1 N < We alo need N = Z and N = Z The numbe of unque obeved ow and column ae, epectvely, R 1 N>0, and C 1 N >0 In the um above, only fntely many ummand ae nonzeo When we um ove,,,, the um ove the et { N > 0} Smlaly um ove column ndce,,, ae ove the et { N > 0} Thee ange ae what one would natually get n a pa ove data log howng all ecod We fequently need the numbe of column ontly obeved n two ow uch a and Th Z Z = ZZ T Smlaly, column and ae ontly obeved n Z Z = Z T Z ow The matx Z encode eveal dffeent meauement egme a pecal cae Thee nclude coed degn, neted degn and IID amplng, a follow A coed degn wth an R C matx of completely obeved data can be epeented va Z = 1 1 R 1 1 C If max N = 1 and max N > 1 then the data have a neted tuctue, wth N dtnct ow n column and Z T Z = 0 fo Smlaly 1

2 max N = 1 wth max N > 1 yeld column neted n ow If max N = max N = 1 then we have N IID obevaton We note ome dentte: ZZ T = Z Z = N, and 101 ZZT = Z Z = Z N 10 We need ome notaton fo equalty among ndex et The notaton 1 = mean 1 = 1 = It dffeent fom 1 {,}={,} whch we alo ue Addtonally, 1 mean 1 1 = 11 Weghted U tattc We wll wok wth weghted U-tattc U a = 1 u Z Z Y Y U b = 1 v Z Z Y Y, and U e = 1 w Z Z Y Y, fo weght u, v and w choen below We can wte U a = u N N 1 whee an unbaed etmate of σ B + σ E fom wthn any ow wth N Unde ou model the value n ow ae IID wth mean µ + a and vaance σb + σ E, and o Va = σb + σe N 1 + κb + e N whee κb + e = κ B σ B + κ Eσ E /σ B + σ E the kuto of Y fo the gven and any Thu Va = σ B + σ E N 1 + κ Bσ B N + κ Eσ E N 103 Invee vaance weghtng then ugget that we weght popotonally to a value between N and N 1 Weghtng popotonal to N 1 ha the advantage of zeong out ow wth N = 1 Th condeaton motvate u to take u = 1/N, and mlaly v = 1/N If U e domnated by contbuton fom e then the obevaton ente ymmetcally and thee no eaon to not take w = 1 Even f the e do not domnate, the tattc U e compae moe data pa than the othe It unlkely to be the nfomaton lmtng tattc So w = 1 a eaonable default If the data ae IID then only U e above nonzeo Th appopate a only the um σa + σ B + σ E can be dentfed n that cae Fo data that ae neted but not IID, only two of the U-tattc above ae nonzeo and n that cae only one of σa and σ B can be dentfed epaately fom σ E The U-tattc we ue ae then U a = 1 U b = 1 U e = 1 Z Z Y Y Z Z Y Y, Z Z Y Y Becaue we only um ove wth N > 0 and wth N > 0, ou um neve nclude 0/0 and 10

3 111 Expected U-tattc Hee we fnd the expected value fo ou thee U-tattc Lemma 1 Unde the andom effect model 100, the U-tattc n 10 atfy EU a 0 N R N R σa EU b = N C 0 N C EU e N N N σ B 105 N N N Poof Ft we note that Ea a = σ A1 1 = Eb b = σ B1 1 =, Ee e = σ E1 1 = 1 = Now Y Y = b b + e e, and o EU a = 1 Z Z σ B 1 1 = + σe1 1 = 1 = = σ B + σ E Z Z 1 1 = = σ B + σ E Z 1 1 = and σ E = σ B + σ E N 1 = σ B + σ EN R The ame agument gve EU b = σa + σ E N C The matx n 105 Ou moment baed etmate ae 0 N R N R M N C 0 N C N N N 106 N N N ˆσ A ˆσ B ˆσ E = M 1 They ae only well defned when M nonngula The detemnant of M N R [ N CN N N CN N ] + N R [ N CN N ] U a U b U e 107 = N R [ N C N N ] + N R [ N CN N ] = N RN C[N N N + N] The ft facto potve o long a max N > 1, and the econd facto eque max N > 1 We aleady knew that we needed thee condton n ode to have all thee U-tattc depend on the Y It tll of nteet to know when the thd facto potve It uffcent that no ow o column ha ove half of the data 3

4 1 The vaance Fom equaton 107 we get Va ˆσ A ˆσ B ˆσ E = M 1 Va U a U b U e M 1 whee M gven at 106 So we need the vaance and covaance of the thee U tattc To fnd vaance, we wll wok out EU fo ou U-tattc Thoe nvolve EY Y Y Y = E a a + b b + e e a a + b b + e e [ a = E a + b b + e e + a a b b + a a e e + b b e e a a + b b + e e + a a b b + a a e e + b b e e ] Th expeon nvolve 8 ndce and t ha 36 tem Some of thoe tem mplfy due to ndependence and ome vanh due to zeo mean To hoten ome expeon we ue B A,, Ea a a a D A, Ea a, and, Q A,, Ea a a a wth mnemonc blnea, dagonal and quatc Thee ae mlaly defned tem fo component B Fo the eo tem we have B E,, Ee e e e D E,, Ee e, and, Q E,, Ee e e e The genec contbuton EY Y Y Y to the mean quae of a U-tattc equal Q A,, + Q B,, + Q E,, + D A, D B, + D A, D E,, + D B, D A, + D B, D E,, D E,, D A, + D E,, D B, + B A,, B B,, + B A,, B E,, + B B,, B E,, The othe tem ae zeo 11 Vaance pat Hee we collect expeon fo the quantte appeang n the genec tem of ou quaed U-tattc Lemma In the andom effect model 100, B A,, = A σ 1= 1 = 1 = + 1 =, B B,, = B σ 1= 1 = 1 = + 1 =, and B E,, = E σ 1= 1 = 1 = + 1 =

5 Poof The ft one follow by expandng and ung Ea a = σ A 1 =, et cetea The othe two ue the ame agument Lemma 3 In the andom effect model 100, Poof Take = and = n Lemma D A, = σ A1 1 = D B, = σ B1 1 = D E,, = σ E1 1 = Lemma In the andom effect model 100, Q A,, = 1 1 σ A + κ A + 1 {, } + 1 {, } + 1 {, }={, } Q B,, = 1 1 σ B + κ B + 1 {, } + 1 {, } + 1 {, }={, } Q E,, = 1 1 σ E + κ E + 1 {, } + 1 {, } + 1 {, }={, } Poof We pove the ft one; the othe ae mla Th quantty 0 f = o = When and, thee ae 3 cae to conde: {, } {, } = 0, {, } {, } = 1 and {, } {, } = The kuto defned va κ A = Ea /σ A 3, o Ea = κ A + 3σ A Fo no ovelap, we fnd Fo a ngle ovelap, Fo a double ovelap, Ea 1 a a 3 a = Ea 1 a = σ A Ea 1 a a 1 a 3 = Ea 1 a 1 a + a a 1 a 1 a 3 + a 3 = Ea 1 + 3σ A = σ Aκ A + 6 Ea 1 a = Ea 1 a 1 a 3 + 6a 1a a 3 1a + a = Ea 1 + 6σ A = σ Aκ A + 1 A a eult, σa, {, } {, } = 0, Ea a a a = σa κ A + 6, {, } {, } = 1, σa κ A + 1, {, } {, } =, and o Ea a a a equal 1 1 σa + κ A + 1 {, } + 1 {, } + 1 {, }={, } 1 Vaance of U a We wll wok out EU a and then ubtact EU a Ft we wte U a = 1 Fo EUa we ue the pecal cae = and = of 108, EUa = 1 [ Z Z Z Z Z Z Z Z Y Y Y Y 5

6 = 1 Q A,, + Q B,, + Q E,, + D A, D B, + D A, D E,, + D B, D A, + D B, D E,, + D E,, D A, + D E,, D B, + B A,, B B,, + B A,,B E,, + B B,, B E,, ] [ Z Z Z Z Q B,, } {{ } Tem 1 + Q E,, Tem + D B, D E,, + D E,, D B, + B B,, B E,, Tem 3 Tem Tem 5 afte elmnatng tem that ae alway 0 We handle thee fve um n the next ububecton 11 U a tem 1 1 = σ B Z Z Z Z Q B,, Z Z Z Z κ B + 1 {, } + 1 {, } + 1 {, }={, } = σ B Z Z Z Z 1 1 = 1 1 = + κ B + 1 {, } + 1 {, } + 1 {, }={, } 11 1 and 13 1 Tem 1 now a um of fou tem, 11 though 1 Tem 11 σ B tme 1 = + Z Z Z Z 1 1 = 1 = + 1 = 1 = Z Z Z Z Tem 1 σb κ B + / tme Z Z Z Z Z Z Z Z = N N N N + 1 = N R = Z Z Z Z 1 1 = 1 = + 1 = 1 = 1 {, } Z Z Z Z 1 = + 1 = 1 = 1 = ] 6

7 + = Z Z Z 1 = + 1 = 1 = 1 = ZZ T Z Z Z 1 = Z Z 1 = ZZ T ZZT + ZZ T ZZ T + ZZ T = ZZ T N The expeon ZZT mplfe to N, changng t fom a ow quantty to a column quantty But the othe pat of th expeon ae equvalent to um of tem uch a Z N makng the column veon le convenent to wok wth Tem 13 the ame a tem 1 by ymmety of ndce Tem 1 σb tme = = = = = Z Z Z Z 1 1 = 1 1 = 1 {, }={, } Z Z Z Z {, }={, } Z Z Z Z = 1 = Z Z Z Z 1 Z Z Z Z ZZ T ZZ T Z Z Summng tem 11 though 1 yeld σb N R + κ B + ZZ T N + ZZ T ZZ T 1 1 U a tem 1 = σ E = σ E Z Z Z Z Q E,, Z Z Z Z κ E + 1 {, } + 1 {, } + 1 {, }={, } Z Z Z Z 1 1 7

8 1 + κ E + 1 = 1 {, } + 1 {, } and = 1 {, }={, } Tem 1 σ E tme Z Z Z Z 1 1 = N R by the ame poce that evaluated tem 11 Tem σ E κ E + / tme = Z Z Z Z = 1 {, } N Z Z Z Z 1 {, } + N Z Z Z Z 1 = 1 {, } N Z Z Z Z 1 = 1 {, } N Z Z Z Z 1 = 1 = 1 {, } whch educe to N Z Z Z Z 1 {, } + = N Z Z Z Z 1 = 1 {, } N Z Z Z Z 1 = 1 = N Z Z Z Z 1 = 1 = 1 = N Z Z Z Z 1 = + 1 = 1 = 1 = + = N Z Z Z Z 1 = 1 = + 1 = 1 = 1 = N Z Z Z Z 1 = 1 = N Z Z Z Z 1 = 1 = 1 = N Z Z Z N Z Z N Z Z + N Z Z + N Z N Z = N R R + R + 8

9 = N R + = N 1 The lat expeon eemble the dagonal pat of tem 1 Tem 3 the ame the ame a tem Tem σ E tme Z Z Z Z 1 = {, }={, } Th the ame um a the coeffcent n tem 1 ha except that t ha the addtonal contant = Impong = on that quantty yeld N ZZT N ZZT = 1 Tem thu σ E N R + κ E + N U a tem 3 and Thee tem ae equal by ymmety We evaluate tem 3 = 1 1 Z Z Z Z D B, D E,, Z Z D B, Z Z D E,, Now and by the ame tep σb σ E N R Z Z D B, = σ B = σ B Z Z 1 1 = N 1 = σ BN R Z Z D E,, = σe Z Z 1 1 = = σen R Theefoe tem 3 of EU a equal σ B σ E N R and the um of tem 3 and 1 U a tem 5 The tem equal = Z Z Z Z B B,, B E,, Z Z B B,, Z Z B E,, 9

10 Now Z Z B E,, = σ E Z Z 1= 1 = 1 = + 1 = = σ E Z Z 1= 1 = 1 = + 1 = Tem 5 then σe = σ Eσ B = σ Eσ B σ Eσ B σ Eσ B + σ Eσ B N Z Z Z Z 1= 1 = 1 = + 1 = BB,, N Z Z Z Z 1= 1 = 1 = + 1 = N Z Z Z Z 1 = 1= 1 = 1 = + 1 = N Z Z Z Z 1 = 1= 1 = 1 = + 1 = N Z Z Z Z 1 = 1= 1 = 1 = + 1 = N Z Z Z Z 1 = 1= 1 = 1 = + 1 =, whch we call tem 51, 5, 53 and 5 Next we fnd the coeffcent of σb σ E n thee fou tem Fo tem 51, we get N Z Z Z Z 1 = 1= 1 = 1 = + 1 = = = N 1 = N R N Z Z Z 1 1= 1 = + 1 = Fo tem 5, we get = = N R N Z Z Z Z 1 = 1= 1 = 1 = + 1 = N Z Z Z 1= 1 1 = + 1 = a well Tem 53 and 5 ae alo N 1, by the tep ued fo tem 5 and 51 epectvely A a eult tem 5 equal σb σ E N R 13 Combnaton Combnng the eult of the pevou ecton, we have EUa = σb N R + κ B + ZZ T N + ZZ T ZZ T 1 + σ Bσ EN R + σ Bσ EN R 10

11 + σe N R + κ E + N Subtactng EU a = N R σb + σ E we fnd VaU a = σb κ B + ZZ T 1 + σ Bσ EN R + σ E κ E N + N 1 + ZZ T ZZ T Check We can check ome pecal cae of th fomula 11 Row neted n column If fo ntance ow ae neted wthn column, then N = R, and all N = N = 1 and n th cae U a = 0 The above fomula gve VaU a = 0 fo th cae 1 Column neted n ow If column ae neted n ow, then ZZ T = 1 = N and equaton 109 yeld VaU a = σb κ B + N 1 = N + = + σ Bσ EN R + σ E σ Bκ B + + σ Eκ E + = κ B σ B + κ E σ E κ E + N 1 + N 1 + σe N 1 + σe 1 = N N σ Bσ EN R N σ Bσ EN R = κ B σ B + κ E σ E = κ B σ B + κ E σ E N 1 + σe N 1 + σ Bσ EN R N 1 + N Rσ B + σ E 110 When column ae neted n ow, then U a = N 1 and becaue the ow ae then ndependent, U a ha vaance σb + σe N 1 N 1 + κb 1 + e 11 N The kuto of b + e σ B σ κ B+E = κ B + E σb + κe σ E σb + σ E Theefoe fo column neted n ow VaU a = σb + σe N 1 + N 1 σ B σ κ B + E N σb + κe σ E σb + σ E = σ B + σ E N 1 + κ B σ B + κ E σ E N 1 = N Rσ B + σ E + κ B σ B + κ E σ E N 1, matchng the expeon 110 that come fom equaton 109 fo VaU a 11

12 13 σ B = 0 If σb = 0 then VaU a hould be the ame a t fo column neted n ow In th cae equaton 109 educe to VaU a = σe κ E + N κ E = σ E = σ E κ E N 1 + N 1 + N R N If ntead we ft take the column neted n ow pecal cae fom equaton 110 and then ubttute σb = 0, we get the ame expeon 1 σ E = 0 and κ B = In th pecal cae we take σe = 0 and take b U±1 Then σb = 1 and κ B = Then VaU a = σb ZZ T ZZ T 1 = ZZ T ZZ T 1 In th cae U a = 1 = 1 Z Z b b Z Z b b b + b = Z Z 1 b b = N Z Z b b and o VaU a = VaŨa whee Ũa = Z Z b b We ealy fnd that EŨa = Z Z 1 = = 1 = R To get the vaance of Ũa we need Eb b b b = 1 = 1 = + 1 = 1 = + 1 = 1 = 1 = 1 = 1 = Now EŨ a = = + + Z Z Z Z Eb b b b Z Z Z Z 1 = 1 = Z Z Z Z 1 = 1 = Z Z Z Z 1 = 1 = Z Z Z Z 1 = 1 = 1 = 1

13 = = = R + Z Z + Z Z Z Z Z Z Z Z ZZ T ZZ T ZZ T 1 Z Z ZZ T In th cae we get VaŨa = R + ZZ T ZZ T 1 R matchng the eult fom Coed degn In a coed degn N = C fo all and ZZ T = C fo all and Hee the vaance VaU a = σb κ B + C1 C 1 + C 1 C 1 + σe κ E + C1 C C 1 σ EN R = σb κ B + C1 C C 1 R + σe κ E + C1 C C 1 R σ ER 1C Vaance of U b Th cae exactly ymmetc to the one above wth VaU a gven by 109 Theefoe VaU b = σb κ A + Z T Z N + N 1 Z T Z Z T Z 1 + σ E κ E + N Vaance of U e A befoe, we fnd EUe and then ubtact EU e Now U e = 1 Z Z Z Z Y Y Y Y Fom 108, EU e = 1 Z Z Z Z [ Q A,, Tem 1 + Q B,, Tem + Q E,, Tem 3 + D A, D B, + D A, D E,, + D B, D A, + D B, D E,, Tem Tem 5 Tem 6 Tem 7 + D E,, D A, + D E,, D B, Tem 8 Tem 9 13

14 ] + B A,, B B,, + B A,, B E,, + B B,, B E,, Tem 10 Tem 11 Tem 1 We handle the twelve um n the next ubecton 161 U e Tem 1 A befoe, we plt tem 1 nto fou pat 1 Z Z Z Z Q A,, = 1 Z Z Z Z 1 1 σ A + κ A + 1 {, } + 1 {, } + 1 {, }={, } = σ A Z Z Z Z 1 1 = 1 1 = + κ A + 1 {, } + 1 {, } + 1 {, }={, } 11 1 and 13 1 Fo tem 11, we have σa tme Z Z Z Z 1 1 = 1 = + 1 = 1 = = Z Z Z Z Z Z Z Z Z Z Z Z + Z Z Z Z = N N N N N + N N = N N Tem 1 σa κ A + / tme Z Z Z Z 1 1 = 1 = + 1 = 1 = 1 {, } = Z Z Z Z 1 = + 1 = 1 = 1 = Z Z Z Z 1 = + 1 = 1 = 1 = Z Z Z Z 1 = + Z Z Z Z 1 = = Z Z Z Z + Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z + Z Z Z Z Z Z Z Z + Z Z Z Z = N N + N N N N 3 1

15 N N 3 N N 3 + N N N 3 + N = N N N N 3 + N By ymmety of ndce, tem 13 the ame a tem 1 Fo tem 1, we have σ A tme Z Z Z Z {, }={, } = Z Z Z Z =1 = = Z Z Z Z 1 = N N N N 1 1 = = Summng tem 11 to 1 gve σ A N N N N N + 3 N + σaκ A + N N N N 3 + N N 16 U e Tem We can ue the ymmety of the ole of A and B and the ndce Theefoe, tem equal to N N N + 3 N κ B + N N N N 3 + σ B N N 163 U e Tem 3 A befoe, we plt tem 3 nto fou pat 1 Z Z Z Z Q E,, = 1 Z Z Z Z 1 1 σ E = σ E Z Z Z Z 1 1 = 1 1 = + κ E + 1 {, } + 1 {, } 31 3 and 33 + κ E + 1 {, } + 1 {, } + 1 {, }={, } + 1 {, }={, } 3 15

16 Fo tem 31, we have σe tme Z Z Z Z 1 1 = 1 = + 1 = 1 = = Z Z Z Z Z Z Z Z Z Z + = N N 3 N 3 + N = N N 1 Z Z Tem 3 σ E κ E + / tme Z Z Z Z 1 1 = 1 = + 1 = 1 = 1 {, } = Z Z Z Z 1 = + 1 = 1 =1 = Z Z Z 1 = + 1 = 1 =1 = Z Z Z 1 = + Z Z 1 = = Z Z Z + Z Z Z Z Z Z Z Z Z + Z Z Z + Z = N 3 + N 3 N N N + N N + N = N 3 N + N = NN 1 By ymmety of ndce, tem 33 the ame a tem 3 Fo tem 3, we have σ E tme Z Z Z Z {, }={, } = Z Z Z Z =1 = = Z Z 1 = NN 1 Summng tem 31 to 3, we get σ ENN 1[NN 1 + ] + σ Eκ E + NN 1 16

17 16 U e Tem 1 = 1 Z Z Z Z D A, D B, Z Z D A, Z Z D B, The ft facto Z Z D A, = σ A Z Z 1 1 = = σan Z Z = σ AN N By the ame agument, the econd facto Z Z D B, = σ BN N, and o tem σ Aσ BN N N N 165 U e Tem 5 1 = 1 Z Z Z Z D A, D E,, Z Z D A, Z Z D E,, The ft facto computed n the pevou ecton The econd facto Z Z D E,, = σ E Z Z 1 1 = Thu, tem 5 = σen Z = σenn 1 σ Aσ ENN 1N N 166 U e Tem 6 By ymmety of ndce, th the ame a Tem : σ Aσ BN N N N 17

18 167 U e Tem 7 Th lke tem 5 wth facto A and B ntechanged Thu, tem 7 equal to σ Bσ ENN 1N N 168 U e Tem 8 By ymmety of ndce, th the ame a tem 5: σ Aσ ENN 1N N 169 U e Tem 9 By ymmety of ndce, th the ame a tem 7: σ Bσ ENN 1N N 1610 U e Tem 10 Z Z Z Z B A,, B B,, = σaσ B Z Z Z Z 1= 1 = 1 = + 1 = 1= 1 = 1 = + 1 = = σaσ B Z Z Z Z 1 =1 = 1 = 1 = 1 = 1 = + 1 = 1 = 1 = 1 = + 1 = 1 = + 1 = 1 = 1 = 1 = 1 =1 = + 1 =1 = + 1 =1 = 1 =1 = + 1 = 1 = 1 = 1 = 1 = 1 = + 1 = 1 = = σaσ B Z Z Z Z Z Z Z Z Z Z Z + Z Z Z Z Z Z Z Z + Z Z Z + Z Z Z Z Z Z Z Z Z Z Z Z + Z Z Z Z + Z Z Z Z Z Z Z + Z Z Z Z Z Z Z Z Z Z Z Z + Z Z Z = σaσ B N 3 N Z N N N N N Z + NN N Z N N + N 3 + N N N N N Z N N N Z + N N + N 3 N Z N N + N N N N N Z N Z N N + N 3 = σaσ B N 3 N Z N N + NN 18

19 1611 U e Tem 11 Z Z Z Z B A,, B E,, = σaσ E Z Z Z Z 1= 1 = 1 = + 1 = 1= 1 = 1 = + 1 = = σaσ E 1= 1 = 1 = 1 =1 = + 1 = 1 = Z Z Z Z 1 = 1 = + 1 = + 1 = 1 = 1 = 1 = 1 =1 = + 1 =1 = + 1 = 1 =1 = + 1 = 1 = 1 = 1 = 1 = 1 = + 1 = = σaσ E Z Z Z Z Z Z Z Z Z + Z Z Z Z Z Z + Z Z Z + Z Z Z Z Z Z Z Z Z + Z Z Z + Z Z Z Z Z Z + Z Z Z Z Z Z Z Z Z + Z Z Z = σaσ E Z Z Z Z Z Z = σaσ E N 3 N Z Z Z N Z Z Z Ue Tem 1 We can ue the ymmety wth tem 11, ntechangng ow column Thu, tem 1 σbσ E N 3 N N 17 Combnaton Summng up the eult of the pevou twelve ecton, we have EUe = σan σan N + 3σA N σ A N + σaκ A + N N N N 3 + N σbn N + 3σB N σ B N κ B + N N N N σe N N 3 + 3N N + σeκ E + NN 1 + σaσ BN NN N N N + σ Aσ ENN 1N N + σ Aσ BN N N N σ ENN 1N N + σaσ ENN 1N N σ ENN 1N N + σaσ B N 3 N Z N N + NN + σaσ E N 3 N N + σ B σ E N 3 N N Then, we have VaU e = EU e EU e 19

20 = EU e σ AN N σ BN N σ EN N σ Aσ BN N N N σ Aσ ENN 1N N σ Bσ ENN 1N N = σa N σ A N + σaκ A + N N N N 3 + N N σ B N κ B + N N N N σen N + σeκ E + NN 1 + σaσ B N 3 N Z N N + N N N + σaσ E N 3 N N + σ B σe N 3 N N Next, we mplfy the fom of th expeon The coeffcent of κ A + σ A N N N N 3 + N = N N N and mlaly fo that of κ B The coeffcent of κ E + σe NN 1 The emanng multple of σa N N and mlaly fo σb The emanng multple of σ E NN 1 The coeffcent of σ A σ B N 3 N Z N N + NN = NN NZ N N + N Z becaue N Z = N 3 Theefoe the coeffcent of σ A σ B N N NZ Applyng thee mplfcaton VaU e = σa N N N N + σ ENN 1 + κ A + σa NN N + κ B N N N + κ E + σenn 1 + σaσ B N N NZ + σaσ EN N N + σ B σ EN N The coeffcent of σa σ B a meaue of how cloe to a egula R C gd the data ae 18 Check 181 σ A = σ B = 0 If σ A = σ B = 0 then Y ae IID wth vaance σ E and kuto κ E Then U e = 1 Y Y = NN 1 e 0 N 113

21 whee e the uual ample tandad devaton appled to all N of the Y Thu VaU e = σen N 1 N 1 + κ E = σ N E N N 1 + κ E NN 1 Subttutng σ A = σ B = 0 n VaU e fom Secton 17 yeld σen N + σeκ E + NN 1 = N N 1σE + NN 1 κ E σe whch matche the fomula Equaton 113 become VaU e = σenn 1 + κ E + σenn 1 whch alo matche 18 IID amplng If max N = max N = 1, then the obevaton ae IID wth vaance σ Y = σ A + σ B + σ E and kuto κ Y = κ AσA + κ BσB + κ EσE σy Now U e NN 1 tme the ample tandad devaton of all N obevaton Thu VaU e = N N 1σ Y + NN 1 κ Y σ Y = N N 1σ A + σ B + σ E + σ Aσ B + σ Aσ E + σ Bσ E + NN 1 κ A σ A + κ B σ B + κ E σ E 11 In th cae, the fomula gve σ A + σ B N σ A N σ B N + σaκ A + N N κ B + N + σ EN N + σ Eκ E + NN 1 + σ Aσ B N N N 3 + N N N 3 N N N 3 + N Z N N + N N + σaσ E N 3 N N + σ B σe N 3 N N If we et all potve N = 1 and all potve N = 1 then N = N becaue thee ae now R = N ow n the data Smlaly N 3 and N um to N and thee powe of N alo um to N Next Z N N = Z = N The mot ubtle of thee um N N = 1 = N becaue the ndce un ove all wth N > 0 and all wth N > 0 Makng thee ubttuton we get VaU e = σ AN σ AN + σ Aκ A + N 3 N + N + σ BN σ BN + σ Bκ B + N 3 N + N + σ EN N + σ Eκ E + NN 1 + σ Aσ BN 3 N + N + σaσ EN 3 N σ EN 3 N = σa N N + NN 1 N N + NN 1 + σe NN 1 + NN 1 + σaσ BN N 1 1

22 whch matche equaton 11 Equaton 113 gve VaU e = σ A + σ Aσ EN N 1 + σ Bσ EN N 1 + NN 1 κ A σ A + κ B σ B + κ E σ E = N N 1σA + σe + N N 1 σaσ B + σaσ E + σaσ E + NN 1 κ A σa + κ B σb + κ E σe N N N N + σ ENN 1 + κ A + σa NN N + κ B N N N + κ E + σenn 1 + σaσ B N N NZ + σaσ EN N = σ AN N + σ BN N + σ ENN 1 N + σ B σ EN N + κ A + σ ANN 1 + κ B + σ BNN 1 + κ E + σ ENN 1 + σ Aσ BN N 1 + σ Aσ ENN N + σ Bσ ENN N 183 IID amplng agan If max N = 1 and σb = 0, then once agan the obevaton ae IID and The fomula gve VaU e = σ A VaU e = N N 1σ Y + NN 1 κ Y σ Y = N N 1σ A + σ B + σ E + σ Aσ B + σ Aσ E + σ Bσ E + σ B N + NN 1 κ A σ A + κ B σ B + κ E σ E N = N N 1σ A + σ E + σ Aσ E + NN 1 κ A σ A + κ E σ E 115 σ A N σ B N + σaκ A + N N κ B + N + σ EN N + σ Eκ E + NN 1 + σ Aσ B N N N N N 3 N N 3 + N N 3 + N Z N N + N N + σaσ E N 3 N N + σ B σe N 3 N N = σ A N σ A N + σaκ A + N N N + σ EN N + σ Eκ E + NN 1 + σ Aσ EN 3 N N 3 + N N = σan σan + σaκ A + N 3 N + N + σen N + σeκ E + NN 1 + σaσ EN 3 N = N N 1σA + σe + σaσ E + NN 1 κ A σa + κ E σe, matchng 115

23 13 Covaance of U a and U b We ue the fomula CovU a, U b = EU a U b EU a EU b, o we ut need to compute EU a U b Ung ou pefeed nomalzaton, Then, U a U b = 1 = 1 EU a U b = 1 We conde each tem epaately 131 U a U b Tem 1 Fo 11, we have 1 = σ E Z Z Y Y Z Z Y Y Z Z Z Z Y Y Y Y Z Z Z Z QE,, Tem 1 + D B, D A, + D B, D E,, + D E,, D A, Tem Tem 3 Tem Z Z Z Z Q E,, Z Z Z Z κ E + 1 {, } + 1 {, } + 1 {, }={, } = σ E N 1 Z Z Z Z κ E + 1 {, } + 1 {, } 11 1 and 13 σe = σe Z Z Z Z 1 1 = σe N = σ E N R N C Z Z 1 1 = Z Fo 1, we have σe κ E + / tme Z Z Z Z {, } = = Z Z Z Z = Z Z Z 1 1 N + 1 {, }={, } 1 Z Z 1 1 = Z 3

24 = Z Z Z 1 1 = 1 = + 1 = 1 = = Z Z = Z Z Z Z Z + Z Z Z + Z = Z N Tem 13 the ame a 1 by ymmety of ndce Fo 1, we have σe Z Z Z Z {, }={, } = 0, nce the lat ndcato mple = and = but the econd one 1 Summng up, tem 1 equal to σe N R N C + σ E κ E + Z N = σe N R N C + σ E κ E + N R C + Z 13 U a U b Tem U a U b Tem 3 = 1 = σaσ B Z Z Z Z D B, D A, Z Z Z Z σb1 1 = σa1 1 = = σaσ B N = σ Aσ B N R N C 1 ung the pevou ecton 13 U a U b Tem Z Z 1 1 = Z N Z Z Z Z D B, D E,, = 1 = σbσ E N R N C 1 Z Z 1 1 = Z Z Z Z Z σb1 1 = σe1 1 = Z Z Z Z D E,, D A,

25 ung the pevou ecton = 1 N 1 Z Z Z Z σe1 1 = σa1 1 = = σaσ E N R N C 135 Combnaton Addng up the fou tem, we have EU a U b = σe N R N C + σ E κ E + Z N + σ Aσ B N R N C + σ B σ E N R N C + σ A σ E N R N C, and o CovU a, U b = EU a U b EU a EU b = EU a U b σb + σeσ A + σen RN C = σ Eκ E + Z N Notce that CovU a, U b = 0 when σ E = 0 Th can be vefed by notng that when σ E = 0 then U a a functon only of a whle U b a functon only of b Theefoe U a and U b ae ndependent when σ E = 0 1 Covaance of U a and U e We ue the fomula CovU a, U e = EU a U e EU a EU e, o we ut need to compute EU a U e Ft, U a U e = 1 Z Z Y Y Z Z Y Y = 1 Z Z Z Z Y Y Y Y Then, EU a U e = 1 Z Z Z Z QB,, + Q E,, + D B, D A, + D B, D E,, Tem 1 Tem Tem 3 Tem + D E,, D A, + D E,, D B, + B B,, B E,, Tem 5 Tem 6 Tem 7 We conde each tem epaately 11 U a U e Tem 1 1 Z Z Z Z Q B,, = 1 Tem 11 equal to σb tme Z Z Z Z 1 1 σ B + κ B + 1 {, } + 1 {, } 11 1 and 13 Z Z Z Z {, }={, } 1

26 = Z Z 1 1 = Z Z 1 1 = = N Z N Z Z = N R N N Tem 1 equal to σb κ B + / tme Z Z Z Z {, } = Z Z Z Z = = = Z Z Z Z 1 1 = 1 1 = = N = N Z Z Z Z Z Z Z Z + Z Z Z N N Z Z Z + Z N N Z Z Z Z Z Z Z Z Z N N Z Z Z N + Z N = = Z NN N Z N N N 1 N N + N Tem 13 equal to tem 1 by ymmety of ndce Tem 1 equal to σb tme Z Z Z Z {, }={, } = Z Z Z Z =1 = = Z Z Z Z 1 1 = = Z Z N N = Z N Z Z Z Z N Summng the fou tem, we fnd that tem 1 equal to σb N R N N + σ B Z N Z N + σ Bκ B + Z N N N 1 6

27 1 U a U e Tem Fo 1, we get σ E tme 1 Z Z Z Z Q E,, = 1 Z Z Z Z 1 1 σ E + κ E + 1 {, } + 1 {, } 1 and 3 Fo, we get σe κ E + / tme Z Z Z Z 1 1 = NN 1 Z Z 1 1 = = NN 1 N = NN 1N R Z Z Z Z Z {, } = Z Z Z Z = = = = N Z Z Z 1 1 = 1 1 = + 1 {, }={, } Z Z Z 1 1 = 1 = + 1 = 1 = N N = N NR N + R = N RN 1 Z Z Z + Z Tem 3 the ame a by ymmety of ndce Fo tem, we get σe tme Z Z Z Z {, }={, } = Z Z Z Z =1 = = Z Z 1 = N Z = N R Addng up the fou tem, we fnd that tem equal σ ENN 1N R + σ EN R + σ Eκ E + N RN 1 7

28 13 U a U e Tem 3 1 Z Z Z Z D B, D A, = 1 = σ Aσ B Z Z Z Z σ B1 1 = σa1 1 = Z Z 1 1 = = σaσ B N = σaσ B N R N Z Z Z 1 1 = N Z Z N 1 U a U e Tem 1 Z Z Z Z D B, D E,, = 1 = σ Bσ E 15 U a U e Tem 5 Z Z Z Z σ B1 1 = σe1 1 = 1 = Z Z 1 1 = = σbσ E N R N Z = σbσ E N R N N 1 Z Z Z Z D E,, D A, = 1 = σ Aσ E Z Z 1 1 = 1 = Z Z Z Z σ E1 1 = σa1 1 = Z Z 1 1 = = σaσ E N R N N Z Z 1 1 = ung the eult fo tem 3 16 U a U e Tem 6 1 Z Z Z Z D E,, D B, = 1 = σ Bσ E Z Z Z Z σ E1 1 = σb1 1 = Z Z 1 1 = 8 Z Z 1 1 =

29 = σbσ E N R N Z Z = σbσ E N R N N 17 U a U e Tem 7 Z Z Z Z B B,, B E,, = Z Z Z Z σ B 1= 1 = 1 = + 1 = σe 1= 1 = 1 = + 1 = = σbσ E Z Z Z Z 1 = 1 = 1 = 1 =1 = + 1 = 1 = 1 = 1 = + 1 = + 1 = 1 = 1 = 1 = = σbσ E + = σbσ E N 1 =1 = + 1 =1 = + 1 = 1 =1 = + 1 = 1 = 1 = 1 = 1 = 1 = + 1 = Z Z Z Z Z Z Z Z + Z Z Z + Z Z Z + = σbσ EN N = σbσ ENN R 18 Combnaton Z Z + Z Z Z Z Z N 1 Z Z Z + Z Z Z Z Z Z Z Z Z Z Z Z + Z Z Z Z Z Z Z Z Z Z Z We add up the even tem, eplacng ome N and N expeon by equvalent ung N and N, gettng EU a U e = σb N R N + σ Bκ B + N + σ B Z N N N 1 Z N + σenn 1N R + σen R + σeκ E + N RN 1 + σaσ B N R N N + σ B σ E N R N N N + σaσ E N R N + σ Bσ ENN R N + σ B σe N R N Z N 9

30 Now EU a EU e = N RσB + σe σan N + σ BN N + σen N whch contan tem equallng eveal of thoe n EU a U e above Subtactng thoe tem fom EU a U e yeld CovU a, U e = σ B + σ Bκ B + Z N Z N Z N N N 1 + σ EN R + σ Eκ E + N RN 1 + σ Bσ ENN R 15 Covaance of U b and U e By ntechangng the ole of the ow and column n CovU a, U e, we fnd that CovU b, U e = σ A + σ Aκ A + Z N Z N Z N N N 1 + σ EN C + σ Eκ E + N CN 1 + σ Aσ ENN C 16 Aymptotc appoxmaton: poof of Theoem We uppoe that the followng nequalte all hold N ɛn, N ɛn, R ɛn, C ɛn, N ɛ N, N ɛ N, N ɛn, and N ɛn fo the ame mall ɛ > 0 The ft x nequalte ae aumed n the theoem tatement The lat two follow fom the ft two We alo aume that 0 < m κ A +, κ B +, κ E +, σ A, σ B, σ E m < Note that we can bound σa σ B, σ A σ E, and σ A σ B away fom 0 and unfomly wth thoe othe quantte afte eplacng m by mnm, m and m by maxm, m We alo uppoe that Z N ɛ N, and Z N ɛ N 116 The bound n 116 eem eaonable but t appea that they cannot be deved fom the ft eght bound above We begn wth the coeffcent of σ B κ B + n VaU a fom equaton 1 It ZZ T 1 + = N Z N + Z 30

31 = N 1 + Oɛ The thd, fouth and ffth tem n VaU a ae all Oɛ The econd tem contan ZZ T ZZ T 1 ZZT = Z Z = Z N = Oɛ It follow that VaU a = σb κ B + N 1 + Oɛ Smlaly VaU b = σa κ A + N 1 + Oɛ The expeon fo VaU e contan tem σa κ A +N N +σ B κ B +N N All othe tem ae Oɛ tme thee two, motly though N N, N N The coeffcent of σa σ B contan N Z N N ɛn Z N = ɛn N o t of malle ode than the lead tem, a well a N N ɛn A a eult VaU e = σ Aκ A + N N N + σ Bκ B + N N 1 + Oɛ Tunng to the covaance CovU a, U b = σ Eκ E + Z 1 + = σ Eκ E + N R C + OR = σ Eκ E + N1 + Oɛ Next CovU a, U e contan the tem σb κ B + N Z N = σb κ B + N N The tem appeang afte that one ae ON = OɛN N The laget tem pecedng t domnated by Z N ɛn Z N Z N = ɛn It follow that CovU a, U e = σb κ B + N N 1 + Oɛ and mlaly, CovU b, U e = σa κ A + N N 1 + Oɛ Next, ung 19 Vaˆσ A VaUe = N + VaU a N CovU a, U e N Oɛ = σaκ A + 1 N N1 + Oɛ, and mlaly Vaˆσ B = σbκ B + 1 N N 1 + Oɛ The lat vaance Vaˆσ E VaUa = N + VaU b N + VaU e N N 3 CovU a, U e N 3 CovU b, U e + N CovU a, U b 1 + Oɛ 31

32 = σeκ E Oɛ N Next we vefy that thee vaance etmate ae aymptotcally uncoelated facto we have Covˆσ A, ˆσ B = 1 N VaU e 1 N 3 CovU b, U e 1 N 3 CovU a, U e + 1 N CovU a, U b = 1 N σaκ A + N κ B + N 1 N σ Aκ A + = 1 N σ Eκ E + whch Oɛ tme Vaˆσ A and Vaˆσ B Lkewe N 1 N σ Bκ B + N + 1 N σ Eκ E + Ignong the 1 + Oɛ Covˆσ A, ˆσ E = 1 N 3 CovU a, U e + 1 N 3 CovU b, U e 1 N VaU e 1 N VaU a 1 N CovU a, U b + 1 N 3 CovU a, U e = σbκ B + N N + σaκ A + 1 N N σaκ A + N κ B + 1 N N σbκ B + 1 N N σeκ E + 1 N = σ Eκ E + 1 N whch much malle than Vaˆσ A Smlaly Covˆσ B, ˆσ E = σe κ E + /N, much malle than Vaˆσ B 17 Etmatng Kutoe To etmate the kutoe κ A, κ B and κ E n the above vaance expeon, t uffce to etmate fouth cental moment uch a µ A, = σa κ A + 3 and mlaly defned µ B, and µ E, Gven ˆσ A, ˆσ B, and ˆσ E, we can do th va GMM Conde the followng etmatng equaton and the expectaton, W a = 1 1 Z Z Y Y N W b = 1 1 Z Z Y Y N W e = 1 Z Z Y Y Ung pevou eult, EW a = 1 1 Z Z E[Y Y N = 1 1 Z Z E b b + e e N = 1 = 1 1 N Z Z E b b + 6b b e e + e e 1 N Z Z µb, + 6σB σ E + µ E, + 6σE 1 1= 3

33 = 1 Z Z µb, + 3σB + 1σ N Bσ E + µ E, + 3σ E 1 1= = κb + 3σB + 1σBσ E + κ E + σe + 3σE N 1 = N R µ B, + 3σB + 1σBσ E + µ E, + 3σE By ymmety, EW b = N C µ A, + 3σA + 1σAσ E + µ E, + 3σE Next EW e = 1 Z Z E Y Y = 1 Z Z E a a + b b + e e = 1 Z Z E a a + 6a a b b + 6a a e e + b b + 6b b e e + e e = 1 Z Z µa, + 6σA1 1 = + σaσ B1 1 = 1 1 = + σaσ E1 1 = + µ B, + 6σB1 1 = σ E1 1 = + µ E, + 6σE1 1 = 1 = = µ A, + 3σA + 1σAσ E Z Z 1 1 = + µ B, + 3σB + 1σBσ E Z Z 1 1 = + µ E, + 3σE Z Z 1 1 = 1 = + 1σ AσB Z Z 1 1 = 1 = + 1 = 1 = = µ A, + 3σA + 1σAσ EN Z Z + µ B, + 3σB + 1σBσ EN Z Z + µ E, + 3σ ENN 1 + 1σ Aσ BN Z Z Z Z + N = µ A, + 3σ A + 1σ Aσ EN N + µ B, + 3σ B + 1σ Bσ EN N + µ E, + 3σ ENN 1 + 1σ Aσ BN N N + N Thee expectaton ae all lnea n the fouth moment Theefoe, gven etmate of σa, σ B, and σ E, we can olve anothe thee-by-thee ytem of equaton to get etmate of the fouth moment Lettng M be the matx n equaton 106 we fnd that whee EW a EW b = M EW e µ A, µ B, µ E, 3N RσB + 1N Rσ B σ E + 3N Rσ E + 3N CσA + 1N Cσ A σ E + 3N Cσ E H H = 3σ A + 1σ Aσ EN N + 3σ B + 1σ Bσ EN N + 3σ ENN 1 + 1σ Aσ BN N N + N Fo plug-n method of moment etmato we eplace expected W -tattc by the ample quantte, eplace the vaance component by the etmate and olve the matx equaton gettng ˆµ A, et cetea Then ˆκ A = ˆµ A, /ˆσ A 3 and o on 33

34 18 Bet lnea pedcto Hee we pedct conde lnea pedcton of Y We begn wth pedcton of the fom Ŷ = Ŷλ = λ Z Y Then we conde pedcton of a educed fom that conde only the total n ow, n ow and n the whole data et 181 Poof of Lemma 51 Let Ŷ = Z λ Y and L = EY Ŷ Then L = µ 1 λ Z + VaY + VaŶ CovY, Ŷ Ft VaY = σa + σ B + σ E Next CovY, Ŷ = λ Z σ A 1 = 1 = + σ E1 = 1 = = σa λ Z λ Z + σeλ Z, and fnally VaŶ = λ λ Z Z σ A 1 = 1 = + σe1 = 1 = = σa λ λ Z Z λ λ Z Z + σe λ Z Thu L = µ 1 λ Z + σ A + σe + σa λ λ Z Z λ λ Z Z + σe σa λ Z λ Z + σeλ Z λ Z Now uppoe that we conde the lo L = Eµ + a + b Ŷ To do o we eplace VaŶ and CovY, Ŷ above by Vaa + b and Cova + b, Ŷ epectvely, yeldng 18 Statonay condton L = µ 1 λ Z + σ A + σa λ λ Z Z λ λ Z Z + σe σa λ Z λ Z λ Z The patal devatve of L wth epect to λ µ 1 λ Z Z + σ Eλ Z + σa Z Z λ 1 = + λ 1 = 3

35 Z Z λ 1 = + λ 1 = σa Z 1 = σ B Z 1 = Afte takng account of the ndcato functon we get Z µ 1 λ Z 1 + σeλ + σ A σaz 1 = σbz 1 = Z λ + σ B Z λ We can eplace Z 1 = by 1 = becaue of the leadng facto Z Th and a coepondng change to the coeffcent of σb yeld Z µ 1 λ Z 1 + σeλ + σ A Z λ + σ B Z λ σa1 = σb1 = The mplfed expeon no longe eque the double pme and o we fnd that the patal devatve of L wth epect to λ Z µ λ Z 1 + σeλ + σa Z λ Z λ σa1 = σb1 = 183 Poof of Lemma 5 Hee we conde Ŷ = λ 0 Y + λ a Y + λ b Y whee Y = Z Y, Y = Z Y, and Y = Z Y The mean quaed eo L = EY Ŷ Expandng t we get L = µ 1 λ 0 N + λ a N + λ b N + VaY + λ 0VaY + λ avay + λ bvay λ 0 CovY, Y λ a CovY, Y λ b CovY, Y + λ 0 λ a CovY, Y + λ 0 λ b CovY, Y + λ a λ b CovY, Y A befoe VaY = σa + σ B + σ E We et about fndng the othe tem Ft VaY = σa N N + σen, Second VaY = σ AN + σ BN + σ EN, VaY = σ AN + σ BN + σ EN and CovY, Y = σ AN + σ BN + σ EZ, CovY, Y = σ AN + σ BZ + σ EZ, CovY, Y = σ AZ + σ BN + σ EZ and The emanng tem ue omewhat longe agument CovY, Y = Z Z CovY, Y 35

36 = Z Z 1= σa + 1 = σb + 1 = 1 = σ E = σan Z N + σen, CovY, Y = σa Z N N + σen and then by ymmety Fnally CovY, Y = Combnng thee pece we fnd that Z Z CovY, Y = Z Z σ A 1 = 1 = + σ E1 = 1 = = σa Z Z Z Z + σez = Z σ A N + σ BN + σ E L = µ 1 λ 0 N λ a N λ b N + σ A + σ B + σ E + λ 0 σ A N N + σen + λ a σan N + σen + λ b σan N + σen λ 0 σan N + σez λ a σan Z + σez λ b σaz N + σez + λ 0 λ a σ AN + σ B + λ a λ b Z σ AN + σ BN + σ E Z N + σ EN + λ 0 λ b σ A Z N N + σen Now uppoe we conde ntead L = Eµ + a + b Ŷ Then we mut eplace VaŶ by Vaµ + a + b = σa + σ B and emove the σ E Z tem fom the covaance wth Y The eult L = µ 1 λ 0 N λ a N λ b N + σ A + λ0 σa N N + σen + λ a σan N + σen + λ b σan N + σen λ 0 σan N λ a σan Z λ b σaz N + λ 0 λ a σan Z N + σen + λ 0 λ b σa Z N N + σen + λ a λ b Z σ AN + σ BN + σ E 18 Poof of Theoem 51 Fom the eult of Lemma 5, we ee that L quadatc n λ Snce L bounded below by 0, t follow that L attan t mnmum on R 3, whch would be any oluton of the tatonaty condton λ L = 0 We fnd the component of th gadent 1 L = Nµ λ 0 N + λ a N + λ b N 1 + λ 0 σa N N + σ λ EN σan N 0 + λ a σan Z N + σen + λ b σa Z N N + σen 36

37 1 L = N µ λ 0 N + λ a N + λ b N 1 + λ a λ a + λ 0 σan σan N + σen σan Z Z N + σ EN + λ b Z σ AN + σ BN + σ E, and 1 L = N µ λ 0 N + λ a N + λ b N 1 + λ b σ λ AN N + σen σaz N b + λ 0 σa Z N N + σen + λ a Z σan N + σe whee We wte th a Hλ = c Nµ + σa N N N N N c = N µ + σa N Z = N N Z N µ + σa Z N N Z N and H a ymmetc matx wth uppe tangle H = H 11 H 1 H 13 H H 3 H 33 µ σa σb wth element H 11 = µ N + σa N N + σen H 1 = µ NN + σan Z N + σen H 13 = µ NN + σa Z N N + σen H = µ N + σ AN + σ BN + σ EN H 3 = µ N N + σ AZ N + σ BZ N + σ EZ, H 33 = µ N + σ AN + σ BN + σ EN and Ung T Z N and T Z N ome of thee mplfy: H 1 = µ NN + σ AN + σ BT + σ EN, H 13 = µ NN + σ AT + σ BN + σ EN and 185 Poof of Theoem 5 To begn wth, we note that N = Z N Z ɛn We wte λ 0 = 1 H33 H 13 c1 det H H 31 H 11 c 3 Then λ b det Hλ 0 = H 33 c 1 H 13 c 3 = N µ N + σa N + σenµ + N σb µ NN + σa Z N N + σen N µ = µ µ NN + σann NN + σenn µ NN σan Z N σbn 3 σen 37

38 µ N 3 + σan N 3 + σen µ NN σan Z N σbn 3 σen = µ σann NN + σenn σan Z N σbn 3 σen + σ B µ N 3 + σ AN µ NN σ AN Z N = µ σann + σenn σan Z N σen + σ B σ AN σ AN Z N = µ σ A + σ ENN 1 + Oɛ and det Hλ b = H 11 c 3 H 31 c 1 = µ N + σa N N + σenn µ µ NN + σa Z N N + σen Nµ + N σb = µ µ N N + σan N N N + σenn µ N N σan Z N σbnn σenn µ N N + σan N N N + σenn µ NN σan Z N σbn 3 σen = µ σan N N N σan Z N σbnn µ N N + σan N N N + σenn µ NN σan Z N σbn 3 σen = µ σ BN N 1 + Oɛ Thu Next λ 0 λ b = σ A + σ E σb N 1 + Oɛ det H = H 11 H 33 H13 = µ N + σa N N + σen µ N N + σan + σen µ NN + σa µ N N µ + σ B µ NN = µ N N σ B N Z N + σen A a eult the pedcton fo a new ow n a lage column eentally that column aveage plu O1/N tme the global aveage 38

39 186 Specal cae N = 0 and N = 1 Now uppoe that we have no data n the taget ow and exactly one olde obevaton n the taget column Let be the ngle ow wth Z = 1 Thee ae enough lage ow and column that the uual condton N N N hold but thee ae alo ome lghtly obeved ow and column Then c = N µ σa σb = Nµ + σ B µ + σ B, and H 11 = µ N + σa N N + σen H 13 = µ NN + σa Z N N + σen = µ N + σ AN + σ B + σ E, and H 33 = µ N + σ AN + σ BN + σ EN = µ + σ A + σ B + σ E Then λ 0 1 H33 H λ = 13 Nµ + σ b H 11 H 33 H13 B H 13 H 11 µ The detemnant µ N + σa N N + σen µ + σa + σe µ N + σan + σe µ N µ + σ A + σ B + σ E = µ N σ A + σ B + σ E The numeato fo λ 0 µ N H 33 Nµ + σ B H 13 µ + σ B µ + σ A + σ B + σ ENµ µ Nµ + σ B = σ A + σ ENµ, and o Smlaly, the numeato fo λ b λ 0 1 σa + σ E N σa + σ B + σ E H 13 Nµ + σ B + H 11 µ + σ B µ NNµ + µ N µ + σ B = µ σ BN and o In th cae, the pedcton fo Y σ B λ b σa + σ B + σ E σb Y + σa + σ E Y σa + σ B + σ E 39

40 19 Aymptotc weght: poof of Theoem 53 Hee we have 1 N ɛn, 1 N ɛn, N ɛn, N ɛn, N ɛn, N ɛn, N ɛn, N Z ɛnn, and N Z ɛnn The ft fve follow ealy fom 1 < 1/ɛ N, N ɛn The lat fou follow fom the othe Fo ntance N N ɛn = ɛn, and N Z Z ɛn = ɛn N We alo have 0 < m µ, σa, σ B, σ E M < Then µ N µ NN µ NN H = µ NN µ + σa N µ N N 1 + Oɛ µ NN µ N N µ N and ung ymbolc computaton va Wolfam Alpha, Septembe 6, 015 µ σa + σ B + σ A σ B 1 1 σa σ B µ N σa N N σb N N H 1 = 1 1 σa N N σa N Oɛ 1 1 σb N 0 N σb N The detemnant of H 1 σa σ B µ N N N Oɛ, o we need N 1 and N 1 to make matx nveon a contnuou opeaton Smlaly Nµ c = N µ + σa 1 + Oɛ N µ Thu gnong the Oɛ tem λ 0 = µ σa + σ B + σ A σ B σa σ B µ N Nµ 1 σ A N N N µ + σa 1 σ B N N N µ + σ B = µ σ A + σ B + σ A σ B σ A σ B N µ + σ A σ A N µ + σ B σ B N = µ σ A + σ B + σ A σ B σ A σ B N = 1 N µ σ B + σ A σ B σ A σ B N µ σ A + σ B σ B σ A σ B N The end eult 1/N of the ame ode of magntude a the ognal tem Theefoe λ 0 = 1/N1 + Oɛ Smlaly λ a 1 = σa N N Nµ + 1 σa N N µ + σa = µ σ A N + µ + σa σa N = 1 N and λ b = 1, N and both of thee appoxmaton nvolve multplcaton by 1 + Oɛ In th lmt then whch make ntutve ene a ˆµ + â + ˆµ + ˆb ˆµ Ŷ = Y 1 + Oɛ + Y 1 + Oɛ Y 1 + Oɛ 0

41 0 Smoothng pedcto In ome cae we may want a bette etmate of EY than Y telf Such a pedcto could take the fom Ŷ = Ŷλ = λ 0 Z Y + λ a Z Y + λ b Z Y + λ ab Z Y 117 It put ethe exta o educed weght on Y telf, dependng on the gn of λ ab Th pedcto only ueful when Z = 1, o t doe not apply n the new ow o new column cae ethe It only nontval when ou goal to etmate µ + a + b, not Y telf So we only conde L = EŶ µ a b hee Lemma 5 The MSE fo the lnea pedcto 117 L = µ 1 λ 0 N λ a N λ b N + σ A + λ0 σa N N + σen + λ a σan N + σen + λ b σan N + σen λ 0 σan N λ a σan Z λ b σaz N + λ 0 λ a σan Z N + σen + λ 0 λ b σa Z N N + σen + λ a λ b Z σ AN + σ BN + σ E Poof Th poblem only ae when Z = 1, whch we aume fo the et of th ecton Then EỸ µ + a + b = EŶ + λ ab Y µ + a + b = L + λ abey + λ ab EY Ŷ λ ab EY µ + a + b Now EY µ + a + b = µ + σ A + σ B and EY Ŷ = µ Nλ 0 + N λ a + N λ b + CovY, Ŷ fo CovY, Ŷ = CovY, λ 0 Y + λ a Y + λ b Y = λ 0 σ A N + σ BN + σ EZ + λa σ A N + σ BZ + σ EZ + λb σ A Z + σ BN + σ EZ = λ 0 σ A N + σ BN + σ E + λa σ A N + σ BZ + σ E + λb σ A Z + σ BN + σ E, nce we aume that Z = 1 Theefoe EỸ µ a b equal µ 1 λ 0 N λ a N λ b N + σ A + λ 0 σa N N + σen + λ a σan N + σen + λ b σan N + σen λ 0 σan N λ a σan λ b σa N + λ 0 λ a σan Z N + σen + λ 0 λ b σa Z N N + σen + λ a λ b σan N + σe + λ abµ + σa + σe + λ ab λ 0 σ A N N + σe + λa σ A N + σe + λb σ A N + σe λ ab µ + σ A + σ B + µ λ ab Nλ 0 + N λ a + N λ b Gatheng up the coeffcent of µ we get µ 1 λ 0 N λ a N λ b N λ ab + σ A + σ B + λ 0 1 σ A N N + σen

42 + λ a σan N + σen + λ b σan N + σen λ 0 σan N λ a σan λ b σa N + λ 0 λ a σan Z N + σen + λ 0 λ b σa Z N N + σen + λ a λ b σan N + σe + λ abσa + σe + λ ab λ 0 σ A N N + σe + λa σ A N + σe + λb σ A N + σe λ ab σ A + σ B Half of the devatve of th quaed eo wth epect to λ ab λ ab µ + σa + σe + λ 0 σ A N N + σe + λa σ A N + σe + λb σ A N + σe µ σ A σ B + µ Nλ 0 + N λ a + N λ b We ee that gven the othe λ choce, th devatve deceang at 0 hence we favo potve elf-weght f µ +σ A+σ B > λ 0 Nµ +σ AN +σ BN +σ E +λa N µ +σ AN +σ B +σ E +λb N µ +σ A+σ BN +σ E Futhemoe, the optmal elf-weght, gven the othe λ 1 µ + σ A + σ B + σ E µ + σa λ 0 Nµ + σan N + σe λ a N µ + σ AN + σ B + σ E λb N µ + σ A + σ BN + σ E The pont of th pedcto that we mght expect anothe obevaton to be made late n ow and column Then etmatng µ + a + b a bette way to pedct than epeatng the eale Y To ue Lemma 5 afte a econd pa, one can compute L a the gven quadatc functon n the fou vaable λ 0, λ a, λ b and λ ab The mnmze of that quadatc gve weght to apply n pedcton When σe vey mall then Y aleady cloe to µ + a + b and placng pecal weght on Y wll be advantageou

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Approximate System Reliability Evaluation

Approximate System Reliability Evaluation Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM

SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM Electronc Journal of Dfferental Equaton, Vol. 88, No. 96, pp. 5. ISSN: 7-669. URL: http://ejde.math.txtate.edu or http://ejde.math.unt.edu ftp ejde.math.txtate.edu logn: ftp SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function

Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function Proc Indan Acad Sc Math Sc Vol 2 No 4 November 2002 pp 55 562 Prnted n Inda Certan fractonal dervatve formulae nvolvng the product of a general cla of polynomal and the multvarable -functon R C SONI and

Διαβάστε περισσότερα

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ

ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 2 ου Πανελληνίου Συνεδρίου Στατιστικής (27) σελ 3- ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ Γ Βασιλειάδης Γ Τσακλίδης

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Some Theorems on Multiple. A-Function Transform

Some Theorems on Multiple. A-Function Transform Int. J. Contemp. Math. Scences, Vol. 7, 202, no. 20, 995-004 Some Theoems on Multple A-Functon Tansfom Pathma J SCSVMV Deemed Unvesty,Kanchpuam, Tamlnadu, Inda & Dept.of Mathematcs, Manpal Insttute of

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly Tehnal Appendx (Not fo publaton Gene and Band Advetsng Stateges n a Dynam Duopoly Ths Tehnal Appendx povdes supplementay nfomaton to the pape Gene and Band Advetsng Stateges n a Dynam Duopoly. It s dvded

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Research Article Dirac Equation under Scalar, Vector, and Tensor Cornell Interactions

Research Article Dirac Equation under Scalar, Vector, and Tensor Cornell Interactions Hndaw Publhng Copoaton Advance n Hgh Enegy Phyc Volume 0, Atcle ID 70704, 7 page do:0.55/0/70704 Reeach Atcle Dac Equaton unde Scala, Vecto, and Teno Conell Inteacton H. Haanabad, E. Maghood, S. Zankama,

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008. Relatnhp between tatn ued b ew Grant Applcatn, and Regren Predctr Develpment f Gnzala wth Suggeted Change t Cmmn tatn Baed n Gnzala and Stanek ntrductn Ed Stanek We lt ntatn ued n tw prncpal dcument, wth

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers 2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα