Bivariate Generalization of the Gauss Hypergeometric Distribution

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Bivariate Generalization of the Gauss Hypergeometric Distribution"

Transcript

1 Applied Mathematical Sciences Vol no HIKARI Ltd Bivariate Generalization of the Gauss Hypergeometric Distribution Daya K. Nagar and Danilo Bedoya-Valencia Instituto de Matemáticas Universidad de Antioquia Calle 67 No Medellín Colombia S.A.) Arjun K. Gupta Department of Mathematics and Statistics Bowling Green State University Bowling Green Ohio Copyright c Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. Abstract The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α 1 1 y α x y) β ξ 1 x + ξ 2 y) γ x > 0 y > 0 x + y < 1 where α i > 0 i = 1 2 β > 0 < γ < and ξ i > 1 i = 1 2 are constants. In this article we study several of its properties such as marginal and conditional distributions joint moments and the coefficient of correlation. We compute the exact forms of Rényi and Shannon entropies for this distribution. We also derive the distributions of X +Y X/X +Y ) V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution. Mathematics Subject Classification: 62H15 62E15 Keywords: Beta function; beta distribution; Dirichlet distribution; Gauss hypergeometric distribution; hypergeometric function; moments; transformation

2 2532 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta 1 Introduction The random variable X is said to have a Gauss hypergeometric distribution with parameters α > 0 β > 0 < γ < and ξ > 1 denoted by X GHα β γ ξ) if its probability density function p.d.f.) is given by where f GH x; α β γ ξ) = Cα β γ ξ) xα 1 1 x) β ξx) γ 0 < x < 1 Cα β γ ξ) = [Bα β) 2 F 1 γ α; α + β; ξ)] 1 Bα β) = Γα)Γβ) Γα + β) and 2 F 1 is the Gauss hypergeometric function Luke [9]). This distribution was suggested by Armero and Bayarri [1] in connection with the prior distribution of the parameter ρ 0 < ρ < 1 which represents the traffic intensity in a M/M/1 queueing system. A brief introduction of this distribution is given in the encyclopedic work of Johnson Kotz and Balakrishnan [8 p. 253]. In the context of Bayesian analysis of unreported Poisson count data while deriving the marginal posterior distribution of the reporting probablity p Fader and Hardie [5] have shown that q = 1 p has a Gauss hypergeometric distribution. The Gauss hypergeometric distribution has also been used by Dauxois [4] to introduce conjugate priors in the Bayesian inference for linear growth birth and death processes. When either γ or ξ equals to zero the Gauss hypergeometric density reduces to a beta type 1 density given by Johnson Kotz and Balakrishnan [8]) f B1 x; α β) = xα 1 1 x) β 1 0 < x < 1. Bα β) Further for γ = α + β and ξ = 1 the Gauss hypergeometric distribution simplifies to a beta type 3 distribution given by the density Cardeño Nagar and Sánchez [3] Sánchez and Nagar [15]) f B3 x; α β) = 2α x α 1 1 x) β 1 0 < x < 1 Bα β)1 + x) α+β where α > 0 and β > 0. The matrix variate generalizations of beta type 1 and beta type 3 distributions have been defined and studied extensively. For example see Gupta and Nagar [67]. For γ = α + β and ξ = 1 λ) the GH distribution slides to a a three parameter generalized beta distribution Libby and Novic [10] Nadarajah [11] Nagar and Rada-Mora [13]) defined by the density f GB1 x; α β; λ) = λ α x α 1 1 x) β 1 0 < x < 1 Bα β)[1 1 λ)x] α+β

3 Bivariate generalization of the Gauss hypergeometric distribution 2533 where α > 0 and β > 0. In this article we present a bivariate generalization of the Gauss hypergeometric distribution and study some of its properties including marginal and conditional distributions joint moments and the coefficient of correlation. Further for different values of parameters we give graphically a variety of forms of the bivariate generalization of the Gauss hypergeometric density. In addition to these results we also derive densities of several basic transformations such as X + Y X/X + Y ) X/Y and XY of two variables X and Y jointly distributed as bivariate Gauss hypergeometric. These results are expressed in terms of first hypergeometric function of Appell and Gauss hypergeometric function. It may also be noted here that bivariate generalization of the Gauss hypergeometric distribution considered here is more general than the Dirichlet distribution a bivariate beta distribution). In Bayesian analysis the Dirichlet distribution is used as a conjugate prior distribution for the parameters of a multinomial distribution. However the Dirichlet family is not sufficiently rich in scope to represent many important distributional assumptions because the Dirichlet distribution has few number of parameters. We in this article provide a generalization of the Dirichlet distribution with added number of parameters. The bivariate distribution defined in this article can also be used in place of bivariate beta distributions applied in several areas; for example in the modeling of the proportions of substances in a mixture brand shares i.e. the proportions of brands of some consumer product that are bought by customers proportions of the electorate voting for the candidate in a two-candidate election and the dependence between two soil strength parameters. 2 The Density Function A bivariate generalization of the Gauss hypergeometric distribution can be defined in the following way. Definition 2.1. The random variables X and Y are said to have a bivariate Gauss hypergeometric distribution with parameters α 1 α 2 β γ ξ 1 ξ 2 ) α i > 0 i = 1 2 β > 0 < γ < and ξ i > 1 i = 1 2 denoted by X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ) if their joint p.d.f. is given by f BGH x y; α 1 α 2 β γ ξ 1 ξ 2 ) = Cα 1 α 2 β γ ξ 1 ξ 2 ) xα 1 1 y α x y) β ξ 1 x + ξ 2 y) γ x > 0 y > 0 x + y < 1 1) where Cα 1 α 2 β γ ξ 1 ξ 2 ) is the normalizing constant.

4 2534 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Integrating the joint p.d.f. of X and Y over the space {x y):x > 0 y > 0 x + y < 1} and using the integral representation of the Appell s first hypergeometric function F 1 given in A.4) the normalizing constant Cα 1 α 2 β γ ξ 1 ξ 2 ) is evaluated as Cα 1 α 2 β γ ξ 1 ξ 2 ) = Γα 1 + α 2 + β) Γα 1 )Γα 2 )Γβ) [F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 )] 1. 2) Note that the Appell s first hypergeometric function F 1 in 2) can be expanded in series form if 1 < ξ i < 1 i = 1 2. However if ξ i > 1 then we use suitably A.6) to rewrite F 1 to have absolute value of both the arguments less than one. That is for the purpose of series expansion we write F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) = 1 + ξ 1 ) γ F 1 γ β α 2 ; α 1 + α 2 + β; ξ < ξ 2 < 1 = 1 + ξ 2 ) γ F 1 γ α 1 β; α 1 + α 2 + β; ξ 2 ξ ξ 2 1 < ξ 1 < 1 ξ 2 1 = 1 + ξ 1 ) α ξ 2 ) α 2 F 1 α 1 + α 2 + β γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 1 ξ 2 1. ξ 1 ξ ) 1 ξ ξ ξ 1 ξ ξ 2 ξ ξ 1 ) ξ ξ 2 In particular when γ = 0 or ξ 1 = ξ 2 = 0 the distribution defined by the density 1) takes the form of a Dirichlet distribution with parameters α 1 α 2 and β defined by the p.d.f. Γα 1 + α 2 + β) Γα 1 )Γα 2 )Γβ) xα 1 1 y α x y) β 1 x > 0 y > 0 x + y < 1 which is a well known bivariate generalization of the beta distribution. In Bayesian probability theory if the posterior distribution is in the same family as the prior probability distribution; the prior and posterior are then called conjugate distributions and the prior is called a conjugate prior. In case of multinomial distribution the usual conjugate prior is the Dirichlet distribution. If ) s1 + s 2 + f P s 1 s 2 f x 1 x 2 ) = x s 1 1 x s x 1 x 2 ) f s 1 s 2 f )

5 Bivariate generalization of the Gauss hypergeometric distribution 2535 and px 1 x 2 ) = Cα 1 α 2 β γ ξ 1 ξ 2 ) xα x α x 1 x 2 ) β ξ 1 x 1 + ξ 2 x 2 ) γ where x 1 > 0 x 2 > 0 and x 1 + x 2 < 1 then px 1 x 2 s 1 s 2 f) = Cα 1 + s 1 α 2 + s 2 β + f γ ξ 1 ξ 2 ) xα 1+s x α 2+s x 1 x 2 ) β+f ξ 1 x 1 + ξ 2 x 2 ) γ. Thus the bivariate family of distributions considered in this article is the conjugate prior for the multinomial distribution. In continuation in Figure 1 we present a few graphs of the density function defined by the expression 1) for different values of parameters. Here one can appreciate the wide range of forms that result from the bivariate Gauss hypergeometric distribution. Next we derive marginal densities of X and Y. Theorem 2.1. Let X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ). Then the marginal density of X is given by K xα x) α 2+β 1 2F 1 + ξ 1 x) γ 1 γ α 2 ; α 2 + β; ξ ) 21 x) 0 < x < ξ 1 x where K 1 = Γα 1)Γα 2 + β) Γα 1 + α 2 + β) F 1γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ). Similarly the marginal density of Y is given by where M yα y) α 1+β ξ 2 y) γ 2F 1 γ α 1 ; α 1 + β; ξ 11 y) 1 + ξ 2 y ) 0 < y < 1 M 1 = Γα 2)Γα 1 + β) Γα 1 + α 2 + β) F 1γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ). Proof. Integrating the density 1) with respect to y the marginal density of X is derived as Cα 1 α 2 β γ ξ 1 ξ 2 ) x α x = Cα 1 α 2 β γ ξ 1 ξ 2 ) xα x) α 2+β ξ 1 x) γ 0 y α2 1 1 x y) β 1 dy 1 + ξ 1 x + ξ 2 y) γ 1 0 z α z) β 1 [1 + 1 x)ξ 2 z/1 + ξ 1 x)] γ dz where we have used the substitution z = y/1 x). Finally using the integral representation of the Gauss hypergeometric function given in A.1) the desired result is obtained. Similarly the marginal density of Y can be derived.

6 2536 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Figure 1: Graphs of the bivariate Gauss hypergeometric density Graph 1 Graph 2 α 1 = 3 α 2 = 1.2 β = 1 γ = 2 ξ 1 = 0.5 ξ 2 = 0.3 α 1 = 1 α 2 = 1.2 β = 1.5 γ = 2 ξ 1 = 0.5 ξ 2 = 0.3 Graph 3 Graph 4 α 1 = 3 α 2 = 1.2 β = 1.5 γ = 2 ξ 1 = 0.5 ξ 2 = 0.2 α 1 = 2 α 2 = 1.2 β = 3.5 γ = 2 ξ 1 = 0.5 ξ 2 = 0.3 Graph 5 Graph 6 α 1 = 2 α 2 = 1.1 β = 1.5 γ = 2 ξ 1 = 0.5 ξ 2 = 0.3 α 1 = 2 α 2 = 2.1 β = 1.5 γ = 2 ξ 1 = 0.5 ξ 2 = 0.3

7 Bivariate generalization of the Gauss hypergeometric distribution 2537 Corollary Suppose X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ). If ξ 2 = 0 then X GHα 1 α 2 + β γ ξ 1 ). Using the marginal density of Y given in the Theorem 2.1 we obtain the conditional density function of the variable X given Y = y 0 < y < 1 as Γα 1 + β) 1 + ξ 2 y) γ x α1 1 1 x y) β ξ 1 x + ξ 2 y) γ Γα 1 )Γβ) 1 y) α 1+β 1 2 F 1 γ α 1 α 1 + β ξ 1 1 y)/1 + ξ 2 y)) where 0 < x < 1 y. By using the integral representation of the first hypergeometric function of Appell given in A.4) the r s)-the joint moment of the variables X and Y having bivariate Gauss hypergeometric distribution can be expressed as EX r Y s ) = Γα 1 + r)γα 2 + s)γα 1 + α 2 + β) Γα 1 )Γα 2 )Γα 1 + α 2 + β + r + s) F 1γ α 1 + r α 2 + s; α 1 + α 2 + β + r + s; ξ 1 ξ 2 ) 3) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) where r and s are for non-negative integers. Substituting appropriately for r and s in 3) we obtain EX) = EY ) = α 1 α 1 + α 2 + β α 2 α 1 + α 2 + β EX 2 ) = F 1 γ α α 2 ; α 1 + α 2 + β + 1; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) F 1 γ α 1 α 2 + 1; α 1 + α 2 + β + 1; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) α 1 α 1 + 1) α 1 + α 2 + β)α 1 + α 2 + β + 1) F 1γ α α 2 ; α 1 + α 2 + β + 2; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) EY 2 ) = α 2 α 2 + 1) α 1 + α 2 + β)α 1 + α 2 + β + 1) F 1γ α 1 α 2 + 2; α 1 + α 2 + β + 2; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) EXY ) = α 1 α 2 α 1 + α 2 + β)α 1 + α 2 + β + 1) F 1γ α α 2 + 1; α 1 + α 2 + β + 2; ξ 1 ξ 2 ). F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 )

8 2538 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Now using the respective definitions we compute VarX) VarY ) and CovX Y) as { α 1 α VarX) = α 1 + α 2 + β α 1 + α 2 + β + 1 and VarY ) = α 1 α 1 + α 2 + β α 2 α 1 + α 2 + β { α 2 α 1 + α 2 + β F 1γ α α 2 ; α 1 + α 2 + β + 2; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) [ ] } 2 F1 γ α α 2 ; α 1 + α 2 + β + 1; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) α α 1 + α 2 + β + 1 F 1γ α 1 α 2 + 2; α 1 + α 2 + β + 2; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) [ ] } 2 F1 γ α 1 α 2 + 1; α 1 + α 2 + β + 1; ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) { α 1 α 2 F1 γ α α 2 + 1; α 1 + α 2 + β + 2; ξ 1 ξ 2 ) CovX Y ) = α 1 + α 2 + β α 1 + α 2 + β + 1)F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) F 1γ α α 2 ; α 1 + α 2 + β + 1; ξ 1 ξ 2 ) α 1 + α 2 + β F } 1γ α 1 α 2 + 1; α 1 + α 2 + β + 1; ξ 1 ξ 2 ) [F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 )] 2. Utilizing the above expressions for variances and covariance the correlation coefficient between X and Y can be calculated using the formula ρ XY = CovX Y ) [VarX)VarY)] 1/2. Table 1 contains numerical values of the correlation between X and Y for different values of parameters. As expected all the values in the table are negative because of the condition X + Y < 1. Further by selecting properly values of parameters it is possible to find values of the correlation close to 0 or 1. Note that for different values of parameters we obtain diverse correlations between X and Y. For example when α 1 or α 2 is big or β is small the value of ρ XY is close to 1 which suggests a considerable linear dependence between these two variables. In Figure 2 several graphs illustrate the behavior of the correlation as a function of one of the parameters. The tendency of a fixed value when values of parameters are considerably big can be observed.

9 Bivariate generalization of the Gauss hypergeometric distribution 2539 ξ 2 α 1 α 2 β γ ξ Table 1: Correlation coefficient between X and Y with joint density 1) for different values of parameters 3 Entropies In this section exact forms of Rényi and Shannon entropies are obtained for the bivariate generalization of the Gauss hypergeometric distribution defined in Section 2. Let X B P) be a probability space. Consider a p.d.f. f associated with P dominated by σ finite measure µ on X. Denote by H SH f) the well-known Shannon entropy introduced in Shannon [16]. It is define by H SH f) = fx) ln fx) dµ. 4) X One of the main extensions of the Shannon entropy was defined by Rényi [14]. This generalized entropy measure is given by where H R η f) = ln Gη) 1 η Gη) = for η > 0 and η 1) 5) X f η dµ. The additional parameter η is used to describe complex behavior in probability models and the associated process under study. Rényi entropy is monotonically decreasing in η while Shannon entropy 4) is obtained from 5) for η 1. For details see Nadarajah and Zografos [12] Zografos [18] and Zografos and Nadarajah [19]. First we give the following lemma useful in deriving these entropies. Lemma 3.1. Let gα 1 α 2 β γ ξ 1 ξ 2 ) = lim η 1 hη) where hη) = d dη F 1ηγ ηα 1 1) + 1 ηα 2 1) + 1; ηα 1 + α 2 + β 3) + 3; ξ 1 ξ 2 ).

10 2540 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Figure 2: Graphs of the correlation coefficient ρ XY α 1 α 2 β γ ξ 1 ξ 2 ) = ρ XY for different values of α 1 α 2 β γ ξ 1 and ξ 2 Ρ Ρ XY XY Α Α ρ XY α ) ρ XY 3 α ) 0.8 Ρ XY Ρ XY Β Γ ρ XY β ) 1.0 ρ XY γ 0 0.2) 0.2 Ρ XY Ξ Ρ XY Ξ ρ XY ξ 1 10) ρ XY ξ 2 ) 1.0 Then for 1 < ξ 1 < 1 1 < ξ 2 < 1 gα 1 α 2 β γ ξ 1 ξ 2 ) α 1 ) j α 2 ) k γ) j+k = α 1 + α 2 + β) j+k j! k! ξ 1) j ξ 2 ) k [α 1 1)ψα 1 + j) j+k=1 + α 2 1)ψα 2 + k) + γψγ + j + k) + α 1 + α 2 + β 3)ψα 1 + α 2 + β) α 1 1)ψα 1 ) α 2 1)ψα 2 ) γψγ) α 1 + α 2 + β 3)ψα 1 + α 2 + β + j + k)] 6)

11 Bivariate generalization of the Gauss hypergeometric distribution 2541 for ξ 1 > 1 1 < ξ 2 < 1 gα 1 α 2 β γ ξ 1 ξ 2 ) = 1 + ξ 1 ) γ β) j α 2 ) k γ) j+k α 1 + α 2 + β) j+k j! k! j+k=1 ξ1 1 + ξ 1 ) j ξ1 ξ ξ 1 [ γ ln1 + ξ 1 ) + β 1)ψβ + j) + α 2 1)ψα 2 + k) + γψγ + j + k) + α 1 + α 2 + β 3)ψα 1 + α 2 + β) β 1)ψβ) α 2 1)ψα 2 ) γψγ) α 1 + α 2 + β 3)ψα 1 + α 2 + β + j + k)] 7) ) k for 1 < ξ 1 < 1 ξ 2 > 1 gα 1 α 2 β γ ξ 1 ξ 2 ) ) j = 1 + ξ 2 ) γ α 1 ) j β) k γ) j+k ξ2 ξ 1 ξ2 α 1 + α 2 + β) j+k j! k! 1 + ξ ξ 2 j+k=1 [ γ ln1 + ξ 2 ) + α 1 1)ψα 1 + j) + β 1)ψβ + k) + γψγ + j + k) + α 1 + α 2 + β 3)ψα 1 + α 2 + β) α 1 1)ψα 1 ) β 1)ψβ) γψγ) α 1 + α 2 + β 3)ψα 1 + α 2 + β + j + k)] 8) ) k and for ξ 1 > 1 ξ 2 > 1 gα 1 α 2 β γ ξ 1 ξ 2 ) = 1 + ξ 1 ) α ξ 2 ) α 2 j+k=1 α 1 ) j α 2 ) k α 1 + α 2 + β γ) j+k α 1 + α 2 + β) j+k j! k! ) j ) k ξ1 ξ2 [ α 1 1) ln1 + ξ 1 ) α 2 1) ln1 + ξ 2 ) 1 + ξ ξ 2 + α 1 1)ψα 1 + j) + α 2 1)ψα 2 + k) + α 1 + α 2 + β γ 3)ψα 1 + α 2 + β γ + j + k) + α 1 + α 2 + β 3)ψα 1 + α 2 + β) α 1 1)ψα 1 ) α 2 1)ψα 2 ) α 1 + α 2 + β γ)ψα 1 + α 2 + β γ) α 1 + α 2 + β 3)ψα 1 + α 2 + β + j + k)] 9) where ψz) = Γ z)/γz) is the digamma function.

12 2542 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Proof. Using the series expansion of F 1 we write hη) = d jk η) ξ 1) j ξ 2 ) k dη j! k! jk=0 [ ] d = dη ξ1 ) j ξ 2 ) k jkη) 10) j! k! jk=0 where jk η) = Γηγ + j + k)γ[ηα 1 1) j]γ[ηα 2 1) k] Γ[ηα 1 + α 2 + β 3) j + k] Γ[ηα 1 + α 2 + β 3) + 3] Γηγ)Γ[ηα 1 1) + 1]Γ[ηα 2 1) + 1]. Now differentiating the logarithm of j η) w.r.t. η we arrive at d dη jkη) = jk η)[α 1 1)ψηα 1 1) j) + α 2 1)ψηα 2 1) k) + γψηγ + j + k) + α 1 + α 2 + β 3)ψηα 1 + α 2 + β 3) + 3) γψηγ) α 1 1)ψηα 1 1) + 1) α 2 1)ψηα 2 1) + 1) α 1 + α 2 + β 3)ψηα 1 + α 2 + β 3) j + k)]. 11) Finally substituting 11) in 10) and taking η 1 we obtain 6). To obtain 7) 8) and 9) we use A.6) to write F 1 ηγ ηα 1 1) + 1 ηα 2 1) + 1; ηα 1 + α 2 + β 3) + 3; ξ 1 ξ 2 ) = 1 + ξ 1 ) ηγ ξ 1 F 1 ηγ ηβ 1) + 1 ηα 2 1) + 1; ηα 1 + α 2 + β 3) + 3; ξ ) 1 ξ ξ ξ 1 = 1 + ξ 2 ) ηγ F 1 ηγ ηα 1 1) + 1 ηβ 1) + 1; ηα 1 + α 2 + β 3) + 3; ξ ) 2 ξ 1 ξ ξ ξ 2 = 1 + ξ 1 ) ηα 1 1) ξ 2 ) ηα 2 1) 1 F 1 ηα 1 + α 2 + β γ 3) + 3 ηα 1 1) + 1 ηα 2 1) + 1; ) ξ 1 ξ 2 ηα 1 + α 2 + β 3) + 3; 1 + ξ ξ 2 and proceed similarly.

13 Bivariate generalization of the Gauss hypergeometric distribution 2543 Theorem 3.1. For the bivariate Gauss hypergeometric distribution defined by the p.d.f. 1) the Rényi and the Shannon entropies are given by H R η f BGH ) = 1 1 η [η ln Cα 1 α 2 β γ ξ 1 ξ 2 ) + ln Γ[ηα 1 1) + 1] + ln Γ[ηα 2 1) + 1] + ln Γ[ηβ 1) + 1] ln Γ[ηα 1 + α 2 + β 3) + 3] and + ln F 1 ηγ ηα 1 1) + 1 ηα 2 1) + 1; ηα 1 + α 2 + β 3) + 3; ξ 1 ξ 2 )] H SH f BGH ) = ln Cα 1 α 2 β γ ξ 1 ξ 2 ) [α 1 1)ψα 1 ) + α 2 1)ψα 2 ) + β 1)ψβ) α 1 + α 2 + β 3)ψα 1 + α 2 + β)] gα 1 α 2 β γ ξ 1 ξ 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ) respectively where gα 1 α 2 β γ ξ 1 ξ 2 ) is given by 6) if 1 < ξ 1 ξ 2 < 1 by 7) if ξ 1 > 1 1 < ξ 2 < 1 by 8) if 1 < ξ 1 < 1 ξ 2 > 1 by 9) if ξ 1 > 1 ξ 2 > 1 and ψz) = Γ z)/γz) is the digamma function. Proof. For η > 0 and η 1 using the density of X Y ) given by 1) we have Gη) = 1 1 x 0 0 [f BGH x y; α 1 α 2 β γ ξ 1 ξ 2 )] η dy dx 1 x 1 = [Cα 1 α 2 β γ ξ 1 ξ 2 )] η x ηα1 1) y ηα2 1) 1 x y) ηβ 1) dy dx ξ 1 x + ξ 2 y) ηγ [Cα 1 α 2 β γ ξ 1 ξ 2 )] η = Cηα 1 1) + 1 ηα 2 1) + 1 ηβ 1) + 1; ηγ ξ 1 ξ 2 ) = [Cα 1 α 2 β γ ξ 1 ξ 2 )] η Γ[ηα 1 1) + 1]Γ[ηα 2 1) + 1]Γ[ηβ 1) + 1] Γ[ηα 1 + α 2 + β 3) + 3] F 1 ηγ ηα 1 1) + 1 ηα 2 1) + 1; ηα 1 + α 2 + β 3) + 3; ξ 1 ξ 2 ) where the last line has been obtained by using 2). Now taking logarithm of Gη) and using 5) we get expression for H R η f BGH ). The Shannon entropy is obtained from the Rényi entropy by taking η 1 and using L Hopital s rule. 4 Some Transformations In this section we obtain expressions for densities of sum quotient and product of two random variables whose joint p.d.f. is given by 1). First we give definitions of beta type 1 and beta type 2 distributions.

14 2544 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Definition 4.1. A random variable X is said to have a beta type 1 distribution with parameters α > 0 and β > 0 denoted by X B1α β) if its p.d.f. is given by f B1 x; α β) = xα 1 1 x) β 1 0 < x < 1. Bα β) Definition 4.2. A random variable Y is said to have a beta type 2 distribution with parameters α > 0 and β > 0 denoted by Y B2α β) if its p.d.f. is given by f B2 y; α β) = yα y) α+β) 0 < x < 1. Bα β) Now we turn our attention to the problem of obtaining distributions of sum quotient and product. Theorem 4.1. Let X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ) and define S = X+Y and U = X/X + Y ). Then the p.d.f. of S is given by where s α 1+α s) β 1 K 1 2F 1 + ξ 2 s) γ 1 γ α 1 ; α 1 + α 2 ; ξ ) 2 ξ ξ 2 s s 0 < s < 1 12) K 1 1 = Bα 1 + α 2 β)f 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ). Further the density of U is given by K 2 u α u) α F 1 γ α 1 + α 2 ; α 1 + α 2 + β; ξ 2 ξ 1 )u ξ 2 ) 13) where 0 < u < 1 and K 1 2 = Bα 1 α 2 ) F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ 1 ξ 2 ). Proof. Making the transformation S = X + Y and U = X/X + Y ) whose Jacobian is Jx y s u) = s in 1) the joint density of S and U is given by Cα 1 α 2 β γ ξ 1 ξ 2 ) sα 1+α s) β 1 u α u) α 2 1 [1 + ξ 1 ξ 2 )su + ξ 2 s] γ 14) where 0 < s < 1 and 0 < u < 1. To compute the marginal density of S we need to integrate the above expression with respect to u to obtain Cα 1 α 2 β γ ξ 1 ξ 2 ) sα 1+α s) β ξ 2 s) γ 1 0 u α u) α 2 1 [1 + ξ 1 ξ 2 )su/1 + ξ 2 s)] γ du

15 Bivariate generalization of the Gauss hypergeometric distribution 2545 where 0 < s < 1. Now evaluating the above integral using A.1) and simplifying we get the desired result. On the other hand to obtain the marginal density of U we integrate the joint density 14) with respect to s to obtain Cα 1 α 2 β γ ξ 1 ξ 2 ) u α u) α s α 1+α s) β 1 [1 + {ξ 1 ξ 2 )u + ξ 2 }s] γ ds where 0 < u < 1. Now evaluation of the above integral by using A.1) yields the desired result. Corollary If X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ) then the p.d.f. of V = X/Y is given by v α 1 1 K v) α 1+α 2 2F 1 γ α 1 + α 2 ; α 1 + α 2 + β; ξ ) 1v + ξ 2 v > 0. 15) 1 + v Proof. We can write X X + Y = X/Y X/Y + 1 which in terms of U = X/X + Y ) and V = X/Y can be written as U = V/1 + V ). Therefore making the transformation U = V/1 + V ) with the Jacobian Ju v) = 1 + v) 2 in the density of U given in 13) we get the density of V. Corollary If X Y ) BGHα 1 α 2 β γ ξ ξ) then X+Y GHα 1 + α 2 β γ ξ) and X/X + Y ) B1α 1 α 2 ). Proof. Substituting ξ 1 = ξ 2 = ξ in 12) and 13) and simplifying the resulting expressions using 2 F 1 γ α 1 ; α 1 + α 2 ; 0) = 1 and F 1 γ α 1 α 2 ; α 1 + α 2 + β; ξ ξ) = 2 F 1 γ α 1 +α 2 ; α 1 +α 2 +β; ξ) the desired result is obtained. Corollary If X Y ) BGHα 1 α 2 β γ ξ ξ) then V = X/Y B2α 1 α 2 ). Proof. Substituting ξ 1 = ξ 2 = ξ in 15) and simplifying the resulting expressions by using F 1 γ α 1 α 2 ; α 1 +α 2 +β; ξ ξ) = 2 F 1 γ α 1 +α 2 ; α 1 +α 2 +β; ξ) we obtain the desired result. The distribution of XY has been studied by several authors especially when X and Y are independent random variables and come from the same family. However there is relatively little work of this kind when X and Y are correlated random variables. For a bivariate random vector X Y ) the distribution of the product XY is of interest in problems in biological and physical sciences econometrics and classification. The following theorem gives partial result on the distribution of the product of two random variables distributed jointly as bivariate Gauss hypergeometric.

16 2546 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta Theorem 4.2. If X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ) ξ 1 0 and ξ 1 ξ 2 1 then the p.d.f. of the random variable Z = XY is given by Cα 1 α 2 β γ ξ 1 ξ 2 ) Bβ β)bα 1+γ α 2 β b a) 2β 1 z α 2 1 ) r b a b p) γ b q) γ b β) rα 2 + β α 1 γ) r 2β) r r! where r=0 F 1 β + r γ γ; 2β + r; b a b p b a b q a = 1 1 4z b = z 2 2 p = 1 1 4ξ 1 ξ 2 z q = ξ1 ξ 2 z. 2ξ 1 2ξ 1 ) z < 1/4 Proof. Consider the transformation X = X and Z = XY. Given that x+y < 1 and y = z/x we have x 2 x + z < 0 and by taking a = 1 1 4z)/2 and b = z)/2 these conditions can be expressed as a < x < b and z < 1/4. Further the Jacobian of this transformation is Jx y x z) = 1/x. Thus substituting appropriately in 1) the joint p.d.f. of X and Z is given by Cα 1 α 2 β γ ξ 1 ξ 2 ) xα 1+γ α 2 β z α 2 1 x 2 + x z) β 1 ξ 1 x 2 + x + ξ 2 z) γ a < x < b z < 1/4 Now integrating with respect to x we get the marginal density of Z as Cα 1 α 2 β γ ξ 1 ξ 2 )z α 2 1 which can be rewritten as b Cα 1 α 2 β γ ξ 1 ξ 2 )z α 2 1 a x α 1+γ α 2 β x 2 + x z) β 1 ξ 1 x 2 + x + ξ 2 z) γ dx z < 1/4 b a x α 1+γ α 2 β [ x a)x b)] β 1 dx [x p)x q)] γ where we have assumed that ξ 1 ξ 2 1 and ξ 1 0 with p = 1 1 4ξ 1 ξ 2 z 2ξ 1 q = ξ1 ξ 2 z 2ξ 1. Since a < x < b we have 0 < x b)/a b) < 1. Further if u = x b)/a b) then x = a b)u + b and dx = a b)du. Furthermore x b) = a b)u and x a = b a)1 u) and the above integral is expressed as b α 1+γ α 2 β b a) 2β 1 b p) γ b q) γ 1 = Bβ β)bα 1+γ α 2 β b a) 2β 1 b p) γ b q) γ F 1 β + r γ γ; 2β + r; b a b p b a b q 0 u β 1 1 u) β 1 [1 b a)u/b] α 1+γ α 2 β {[1 b a)u/b p)][1 b a)u/b q)]} du γ ) r β) r α 2 + β α 1 γ) r b a 2β) r=0 r r! b )

17 Bivariate generalization of the Gauss hypergeometric distribution 2547 where the last line has been obtained by expanding [1 b a)u/b] α 2+β α 1 γ) in power series and applying A.5). Finally substituting appropriately we get the desired result. Corollary If X Y ) BGHα 1 α 2 β γ ξ 1 ξ 2 ) with ξ 1 = ξ 2 = 1 then the p.d.f. of the random variable Z = XY is given by Bβ β)1 4z) β 1/2 z α 2 1 Cα 1 α 2 β γ 1 1) 2 α 1+γ α 2 β z) α 2+β α 1 ) 2 r r β) r α 2 + β α 1 γ) r 1 4z 2β) r=0 r r! z 1 4z F 1 β + r γ γ; 2β + r; z ) 1 4z z < 1/4. Appendix The integral representation of the Gauss hypergeometric function is given as 1 Γc) 2F 1 a b; c; z) = t a 1 1 t) c a 1 1 zt) b dt Γa)Γc a) 0 Rec) > Rea) > 0 arg1 z) < π. A.1) Note that by expanding 1 zt) b zt < 1 in A.1) and integrating t the series expansion for 2 F 1 can be obtained as 2F 1 a b; c; z) = k=0 a) k b) k c) k z k z < 1 A.2) k! where the Pochhammer symbol a) n is defined by a) n = aa + 1) a + n 1) = a) n 1 a + n 1) for n = and a) 0 = 1. From A.2) it can easily be observed that 2F 1 a b; c; z) = 2 F 1 b a; c; z). For properties and further results the reader is referred to Luke [9]. The first hypergeometric function of Appell is defined in a series form as F 1 a b 1 b 2 ; c; z 1 z 2 ) = m=0 n=0 a) m+n b 1 ) m b 2 ) n c) m+n z m 1 z n 2 m!n! A.3) where z 1 < 1 and z 2 < 1.

18 2548 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta The first hypergeometric function of Appell can be expressed as a double integral uv>0 u+v<1 u b 1 1 v b u v) c b 1 b uz 1 vz 2 ) a du dv = Γb 1)Γb 2 )Γc b 1 b 2 ) F 1 a b 1 b 2 ; c; z 1 z 2 ) Γc) for Reb 1 ) > 0 Reb 2 ) > 0 and Rec b 1 b 2 ) > 0. It can also be shown that F 1 a b 1 b 2 ; c; z 1 z 2 ) = = and further using the results a) r1 +r 2 c) r1 +r 2 = r 1 =0 r 2 =0 Γc) Γa)Γc a) where Rec) > Rea) > 0 and a) r1 b 1 ) r1 c) r1 a) r2 b 2 ) r2 c) r2 1 0 z r1 1 r 1! 2 F 1 a + r 1 b 2 ; c + r 1 ; z 2 ) z r2 2 r 2! 2 F 1 a + r 2 b 1 ; c + r 2 ; z 1 ) v a+r 1+r v) c a 1 dv A.4) b i ) ri vz i ) r i r i =0 r i! = 1 vz i ) b i vz i < 1 i = 1 2 in A.3) it is possible to obtain F 1 a b 1 b 2 ; c; z 1 z 2 ) = 1 Γc) v a 1 1 v) c a 1 dv Γa)Γc a) 0 1 vz 1 ) b 1 1 vz2 ) b 2 z 1 < 1 z 2 < 1 A.5) where Rec) > Rea) > 0. The function F 1 reduces to a 2 F 1 in the following cases: F 1 a 0 b 2 ; c; z 1 z 2 ) = F 1 a b 1 b 2 ; c; 0 z 2 ) = 2 F 1 a b 2 ; c; z 2 ) F 1 a b 1 0; c; z 1 z 2 ) = F 1 a b 1 b 2 ; c; z 1 0) = 2 F 1 a b 1 ; c; z 1 ). Further F 1 a b 1 b 2 ; c; z z) = 2 F 1 a b 1 + b 2 ; c; z).

19 Bivariate generalization of the Gauss hypergeometric distribution 2549 Some transformations of the function F 1 that eventually facilitate calculations for different values of the parameters and variables are F 1 a b 1 b 2 ; c; z 1 z 2 ) = 1 z 1 ) b 1 1 z 2 ) b 2 F 1 c a b 1 b 2 ; c; z 1 1 z 1 z 2 = 1 z 1 ) a F 1 a c b 1 b 2 b 2 ; c; z 1 z 1 z 2 1 z 1 1 z 1 = 1 z 2 ) a F 1 a b 1 c b 1 b 2 ; c; z 2 z 1 1 z 2 z 2 1 z 2 1 z ) 2 = 1 z 1 ) c a b 1 1 z 2 ) b 2 F 1 c a c b 1 b 2 b 2 ; c; z 1 z 1 z 2 1 z 2 = 1 z 1 ) b 1 1 z 2 ) c a b 2 F 1 c a b 1 c b 1 b 2 ; c; z 2 z 1 1 z 1 z 2 ) ) ) ). A.6) For several other properties and results on F 1 the reader is referred to Srivastava and Karlsson [17] and Bailey [2]. Acknowledgement The research work of DKN was supported by the Comité para el Desarrollo de la Investigación Universidad de Antioquia research grant no. IN560CE. References [1] C. Armero and M. Bayarri Prior assessments for predictions in queues The Statistician ) no [2] W. N. Bailey Generalized Hypergeometric Series Stechert-Hafner Service Agency New York [3] Liliam Cardeño Daya K. Nagar and Luz Estela Sánchez Beta type 3 distribution and its multivariate generalization Tamsui Oxford Journal of Mathematical Sciences ) no [4] J.-Y. Dauxois Bayesian inference for linear growth birth and death processes Journal of Statistical Planning and Inference ) no [5] Peter S. Fader and Bruce G. S. Hardie A note on modelling underreported Poisson counts Journal of Applied Statistics ) no

20 2550 Daya K. Nagar Danilo Bedoya-Valencia and Arjun K. Gupta [6] A. K. Gupta and D. K. Nagar Matrix Variate Distributions Chapman & Hall/CRC Boca Raton [7] A. K. Gupta and D. K. Nagar Properties of matrix variate beta type 3 distribution International Journal of Mathematics and Mathematical Sciences ) Art. ID pp. [8] N. L. Johnson S. Kotz and N. Balakrishnan Continuous Univariate Distributions-2 Second Edition John Wiley & Sons New York [9] Y. L. Luke The Special Functions and their Approximations Vol. 1 Academic Press New York [10] D. L. Libby and M. R. Novic Multivariate generalized beta distributions with applications to utility assessment Journal of Educational Statistics ) no [11] S. Nadarajah Sums products and ratios of generalized beta variables Statistical Papers ) no [12] S. Nadarajah and K. Zografos Expressions for Rényi and Shannon entropies for bivariate distributions Information Sciences ) no [13] Daya K. Nagar and Erika Alejandra Rada-Mora Properties of multivariate beta distributions Far East Journal of Theoretical Statistics ) no [14] A. Rényi On measures of entropy and information Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability Volume 1: Contributions to the Theory of Statistics University of California Press Berkeley California pp ). [15] Luz Estela Sánchez and Daya K. Nagar Distribution of the product and the quotient of independent beta type 3 variables Far East Journal of Theoretical Statistics ) no [16] C. E. Shannon A mathematical theory of communication Bell System Technical Journal ) [17] H. M. Srivastava and P. W. Karlsson Multiple Gaussian Hypergeometric Series John Wiley & Sons New York 1985.

21 Bivariate generalization of the Gauss hypergeometric distribution 2551 [18] K. Zografos On maximum entropy characterization of Pearson s type II and VII multivariate distributions Journal of Multivariate Analysis ) no [19] K. Zografos and S. Nadarajah Expressions for Rényi and Shannon entropies for multivariate distributions Statistics & Probability Letters ) no Received: February ; Published: March

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Properties of Matrix Variate Hypergeometric Function Distribution

Properties of Matrix Variate Hypergeometric Function Distribution Applied Mathematical Sciences, Vol. 11, 2017, no. 14, 677-692 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7254 Properties of Matrix Variate Hypergeometric Function Distribution Daya

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα