Trace Semantics for Polymorphic References. GaLoP 16 April 3rd 2016

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Trace Semantics for Polymorphic References. GaLoP 16 April 3rd 2016"

Transcript

1 Trace Semantics for Polymorphic References Guilhem Jaber & Nikos Tzevelekos PPS, IRIF, Université Paris Diderot Queen Mary University of London GaLoP 16 April 3rd / 19

2 Goals Build an intensional model for a call-by-value language with Church-style polymorphism and higher-order (nominal) references. No bad variable problems. Fully abstract for a big fragment of the language. 2 / 19

3 Goals Build an intensional model for a call-by-value language with Church-style polymorphism and higher-order (nominal) references. No bad variable problems. Fully abstract for a big fragment of the language. Denotations of terms as set of traces Generated operationally using an LTS. 2 / 19

4 Goals Build an intensional model for a call-by-value language with Church-style polymorphism and higher-order (nominal) references. No bad variable problems. Fully abstract for a big fragment of the language. Denotations of terms as set of traces Generated operationally using an LTS. Using names to represent functional and poylmorphic values Operational Nominal Game Semantics Refresh of names to control the observational power of Opponent. 2 / 19

5 Goals Build an intensional model for a call-by-value language with Church-style polymorphism and higher-order (nominal) references. No bad variable problems. Fully abstract for a big fragment of the language. Denotations of terms as set of traces Generated operationally using an LTS. Using names to represent functional and poylmorphic values Operational Nominal Game Semantics Refresh of names to control the observational power of Opponent. What kind of free theorems can we get for programs with polymorphic references? Some surprise appears: possibility to disclose abstract types, Strachey parametricity seems broken! 2 / 19

6 System ReF v def = x l () n λx.m Λα.M v 1, v 2 pack θ, v... (x Var, α TVar, l Loc, n Z) M, N def = v MN Mθ ref M!M M := N M == N M 1, M 2 π i M pack θ, M unpack M as α, x in N θ, θ def = Unit Int θ θ ref θ θ θ θ + θ α.θ α.θ S def = Loc Val Given a functional type θ and some u, we let the argument and return type of θ be: arg(θ θ) = θ arg( α.θ) = U ret u (θ θ) = θ ret u ( α.θ) = θ{u/α} 3 / 19

7 Operational semantics ((λx.m)v, S) (M{v/x}, S) (ref v, S) (l, S [l v]) (!l, S) (S(l), S) (l := v, S) ((), S[l v]) (l == l, S) (true, S) (l == l, S) (false, S) (π i M 1, M 2, S) (M i, S) ((Λα.M)θ, S) (M{θ/α}, S) (unpack pack θ, v as α, x in N, S) (N{θ/α}{v/x}, S) 4 / 19

8 Type System (Polymorphic Part), α; Σ, Γ M : θ ; Σ, Γ Λα.M : α.θ ; Σ, Γ M : α.θ ; Σ, Γ Mθ : θ{θ /α} ; Σ, Γ M : θ{θ /α} ; Σ, Γ pack θ, M : α.θ ; Σ, Γ M : α.θ, α; Γ, x : θ N : θ ; Σ, Γ unpack M as α, x in N : θ 5 / 19

9 Type System (Reference part) ; Σ, Γ M : θ ; Σ, Γ ref M : ref θ (l, θ) Σ ; Σ, Γ l : ref θ ; Σ, Γ M : ref θ ; Σ, Γ! M : θ ; Σ, Γ M : ref θ ; Σ, Γ N : θ ; Σ, Γ M := N : Unit ; Σ, Γ M : refθ ; Σ, Γ M : refθ ; Σ, Γ M == N : Bool 6 / 19

10 Example I : Fake Identity Is the identity function the only program of type α.α α up to contextual equivalence? 7 / 19

11 Example I : Fake Identity Is the identity function the only program of type α.α α up to contextual equivalence? No: Λα.let count = ref0 in let z = refλ.ω α in λx:α.(if!count = 0 then z := λ.x else ()); count++;!z() 7 / 19

12 Example II : Type Disclosure Interaction between references and polymorphism is complex. Example: α. (refα refint) α 8 / 19

13 Example II : Type Disclosure Interaction between references and polymorphism is complex. Example: α. (refα refint) α What happen when the same location is given as type refα and refint? Λα.λ x, y refα refint. y := 42;!x 8 / 19

14 Example II : Type Disclosure Interaction between references and polymorphism is complex. Example: α. (refα refint) α What happen when the same location is given as type refα and refint? Λα.λ x, y refα refint. y := 42;!x More complex example: Λα.λ x, y refα refint. let x = ref!x, y = ref!y in y++; x := x ; if y =!y then (y := 42;!x) else!x 8 / 19

15 Abstract values and Semantic Types AValues v, u def = () n l f p α u, v where n Z, l Loc, f Fun, p Pol and α TVar. Nominal set A def = Loc Pol Fun TVar 9 / 19

16 Abstract values and Semantic Types AValues v, u def = () n l f p α u, v where n Z, l Loc, f Fun, p Pol and α TVar. Nominal set A def = Loc Pol Fun TVar θ : P(AValues (Loc P(Types))) Unit = {((), ε)} Int = {(n, ε) n Z} refθ = {(l, {(l, refθ)}) l Loc} α = {(p, ε) p Pol α } θ θ = {(f, ε) f Fun θ θ } α.θ = {(f, ε) f Fun α.θ } α.θ = {( α, v, φ) (v, φ) θ{α /α} } θ 1 θ 2 = {( v 1, v 2, φ 1 φ 2 ) (v i, φ i ) θ i } 9 / 19

17 From Values to Abstract Values AVal(v, θ) : P(AValues ((Fun Pol) Values) (Loc P(Types))) AVal(u, ι) def = {(u, ε, )} for ι = Unit or Int and u ι AVal(l, refθ) def = {(l, ε, {(l, refθ)} l Loc} AVal(u, α) def = {(p, [p u], ) p Pol α } {(u, ε, ) u Pol α } AVal(u, θ) def = {(f, [f u], ) f Fun θ } for θ functional AVal( u 1, u 2, θ 1 θ 2 ) def = {( v 1, v 2, γ 1 γ 2, φ 1 φ 2 ) AVal( θ, u, α.θ) def = {( α, v, γ [α θ ], φ) (v i, γ i, φ i ) AVal(u i, θ i )} (v, γ, φ) AVal(u, θ{α /α})} 10 / 19

18 Traces Full moves: triple (m, S, ρ) where m is a move f u, f u, ū or u (f Fun, u AValues), S is a closed abstract store, ρ is a finite map Pol AValues Used to disclose polymorphic values whose type have been disclosed. 11 / 19

19 Traces Full moves: triple (m, S, ρ) where m is a move f u, f u, ū or u (f Fun, u AValues), S is a closed abstract store, ρ is a finite map Pol AValues Used to disclose polymorphic values whose type have been disclosed. Traces: finite sequences of full moves. 11 / 19

20 Configurations A configuration is a tuple E, γ, φ, S, λ with: 12 / 19

21 Configurations A configuration is a tuple E, γ, φ, S, λ with: an evaluation stack E, 12 / 19

22 Configurations A configuration is a tuple E, γ, φ, S, λ with: an evaluation stack E, a typing function φ for locations, 12 / 19

23 Configurations A configuration is a tuple E, γ, φ, S, λ with: an evaluation stack E, a typing function φ for locations, a closed store S, 12 / 19

24 Configurations A configuration is a tuple E, γ, φ, S, λ with: an evaluation stack E, a typing function φ for locations, a closed store S, an environment γ mapping names to values, 12 / 19

25 Configurations A configuration is a tuple E, γ, φ, S, λ with: an evaluation stack E, a typing function φ for locations, a closed store S, an environment γ mapping names to values, an ownership function λ (A {O, P}). 12 / 19

26 Configurations A configuration is a tuple E, γ, φ, S, λ with: an evaluation stack E, a typing function φ for locations, a closed store S, an environment γ mapping names to values, an ownership function λ (A {O, P}). They satisfy: dom(γ) = {a Pol Fun TVar λ(a) = P} dom(φ) = {l Loc dom(λ)} dom(s) for all a ν(e, codom(s), codom(γ))\loc, λ(a) = O 12 / 19

27 LTS generating Traces (Int) (M, θ) :: E, γ, φ, S, λ (M, θ) :: E, γ, φ, S, λ given (M, S) (M, S ). 13 / 19

28 LTS generating Traces (Int) (M, θ) :: E, γ, φ, S, λ (M, θ) :: E, γ, φ, S, λ given (M, S) (M, S ). (PA) (u, θ) :: E, γ, φ, S, λ v,s, ρ E, γ γ, φ φ, S, λ λ given (v, γ v, φ v ) AVal(u, θ) 13 / 19

29 LTS generating Traces (Int) (M, θ) :: E, γ, φ, S, λ (M, θ) :: E, γ, φ, S, λ given (M, S) (M, S ). (PA) (PQ) (u, θ) :: E, γ, φ, S, λ v,s, ρ E, γ γ, φ φ, S, λ λ given (v, γ v, φ v ) AVal(u, θ) (E[f u], θ) :: E, γ, φ, S, λ f v,s, ρ (E, θ θ) :: E, γ γ, φ φ, S, λ λ (v, γ v, φ v ) AVal(u, arg(θ f )), θ = ret v (θ f ) 13 / 19

30 LTS generating Traces (Int) (M, θ) :: E, γ, φ, S, λ (M, θ) :: E, γ, φ, S, λ given (M, S) (M, S ). (PA) (PQ) (OA) (u, θ) :: E, γ, φ, S, λ v,s, ρ E, γ γ, φ φ, S, λ λ given (v, γ v, φ v ) AVal(u, θ) (E[f u], θ) :: E, γ, φ, S, λ f v,s, ρ (E, θ θ) :: E, γ γ, φ φ, S, λ λ (v, γ v, φ v ) AVal(u, arg(θ f )), θ = ret v (θ f ) (E, θ θ) :: E, γ, φ, S, λ v,s, ρ (Ẽ[ṽ], θ) :: Ẽ, γ, φ φ, S[ S ], λ λ given (v, φ v ) θ 13 / 19

31 LTS generating Traces (Int) (M, θ) :: E, γ, φ, S, λ (M, θ) :: E, γ, φ, S, λ given (M, S) (M, S ). (PA) (PQ) (OA) (OQ) (u, θ) :: E, γ, φ, S, λ v,s, ρ E, γ γ, φ φ, S, λ λ given (v, γ v, φ v ) AVal(u, θ) (E[f u], θ) :: E, γ, φ, S, λ f v,s, ρ (E, θ θ) :: E, γ γ, φ φ, S, λ λ (v, γ v, φ v ) AVal(u, arg(θ f )), θ = ret v (θ f ) (E, θ θ) :: E, γ, φ, S, λ v,s, ρ (Ẽ[ṽ], θ) :: Ẽ, γ, φ φ, S[ S ], λ λ given (v, φ v ) θ E, γ, φ, S, λ f v,s, ρ (ũ ṽ, θ) :: Ẽ, γ, φ φ, S[ S ], λ λ (v, φ v ) arg(θ), θ = ret v (θ ) and γ(f ) = u 13 / 19

32 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) 14 / 19

33 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) g α {}}{ (v α, α α α ), γ 1,, ε, λ 1 (α, O) λ 2 14 / 19

34 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) { }} { g α (v α, α α α ), γ 1,, ε, λ 1 (α, O) (λx. π 1 (x), α α α ), γ 1,, ε, λ 2 λ 2 14 / 19

35 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) { }} { g α (v α, α α α ), γ 1,, ε, λ 1 (α, O) (λx. π 1 (x), α α α ), γ 1,, ε, λ 2 f γ 2 {}}{{}}{, γ 1 [f λx. π 1 x],, ε, λ 2 (f, P) λ 3 λ 2 14 / 19

36 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) { }} { g α (v α, α α α ), γ 1,, ε, λ 1 (α, O) (λx. π 1 (x), α α α ), γ 1,, ε, λ 2 f γ 2 {}}{{}}{, γ 1 [f λx. π 1 x],, ε, λ 2 (f, P) f p 1,p 2 {}}{ ((λx. π 1 x) p 1, p 2, α ), γ 2,, ε, λ 3 (p 1, O) (p 2, O) λ 3 λ 2 λ 4 14 / 19

37 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) { }} { g α (v α, α α α ), γ 1,, ε, λ 1 (α, O) (λx. π 1 (x), α α α ), γ 1,, ε, λ 2 f γ 2 {}}{{}}{, γ 1 [f λx. π 1 x],, ε, λ 2 (f, P) f p 1,p 2 {}}{ ((λx. π 1 x) p 1, p 2, α ), γ 2,, ε, λ 3 (p 1, O) (p 2, O) (p 1, α ), γ 2,, ε, λ 4 λ 3 λ 2 λ 4 14 / 19

38 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) { }} { g α (v α, α α α ), γ 1,, ε, λ 1 (α, O) (λx. π 1 (x), α α α ), γ 1,, ε, λ 2 f γ 2 {}}{{}}{, γ 1 [f λx. π 1 x],, ε, λ 2 (f, P) f p 1,p 2 {}}{ ((λx. π 1 x) p 1, p 2, α ), γ 2,, ε, λ 3 (p 1, O) (p 2, O) (p 1, α ), γ 2,, ε, λ 4 λ 3 λ 2 λ 4 p 1, γ 2,, ε, λ 4 14 / 19

39 A Simple Example: Polymorphic projection Consider the term v Λα.λx : α α. π 1 x of type θ = α. α α α. (v, θ), ε,, ε, ε ḡ γ 1 λ 1 {}}{{}}{, [g v],, ε, (g, P) { }} { g α (v α, α α α ), γ 1,, ε, λ 1 (α, O) (λx. π 1 (x), α α α ), γ 1,, ε, λ 2 f γ 2 {}}{{}}{, γ 1 [f λx. π 1 x],, ε, λ 2 (f, P) f p 1,p 2 {}}{ ((λx. π 1 x) p 1, p 2, α ), γ 2,, ε, λ 3 (p 1, O) (p 2, O) (p 1, α ), γ 2,, ε, λ 4 λ 3 λ 2 λ 4 p 1, γ 2,, ε, λ 4 Trace? ḡ g α f f p 1, p 2 p 1 14 / 19

40 Computing Type Disclosure cast relations κ: relations over types. (θ, θ ) κ: we can cast values of type θ to θ. 15 / 19

41 Computing Type Disclosure cast relations κ: relations over types. (θ, θ ) κ: we can cast values of type θ to θ. Atomic casts from typing function of locations φ: {(θ, θ ) l Loc.(refθ, refθ ) φ(l)} cast term: y θ : refθ, y θ : refθ λx θ.let z =!y θ in y θ := x; let z =!y θ in y θ := z; z 15 / 19

42 Computing Type Disclosure cast relations κ: relations over types. (θ, θ ) κ: we can cast values of type θ to θ. Atomic casts from typing function of locations φ: {(θ, θ ) l Loc.(refθ, refθ ) φ(l)} cast term: y θ : refθ, y θ : refθ λx θ.let z =!y θ in y θ := x; let z =!y θ in y θ := z; z Take the closure of κ: to represent all the cast than can be build from these atomic casts Problem on ref types! No global substitution possible. 15 / 19

43 Computing Type Disclosure cast relations κ: relations over types. (θ, θ ) κ: we can cast values of type θ to θ. Atomic casts from typing function of locations φ: {(θ, θ ) l Loc.(refθ, refθ ) φ(l)} cast term: y θ : refθ, y θ : refθ λx θ.let z =!y θ in y θ := x; let z =!y θ in y θ := z; z Take the closure of κ: to represent all the cast than can be build from these atomic casts Problem on ref types! No global substitution possible. Quiz: Suppose f : (refint refint) Unit, g : α. refα refα and? let x, y = ref0 in f (x, y); let u = g Int x in if (u = y) then 1 else 2 =? let x, y = ref0 in f (x, y); let u = g Int x in if (u = y) then 3 else 2 15 / 19

44 An Example with Type Disclosure θ def v def = refα refint α = Λα.λ x, y, z θ. if x = y then (y := 42;!x) else z }{{} M 16 / 19

45 An Example with Type Disclosure θ def = refα refint α v def = Λα.λ x, y, z θ. if x = y then (y := 42;!x) else z }{{} M λ f {}} 1 { (v, α.θ α), ε,, ε, ε, [f v],, ε, (f, P) 16 / 19

46 An Example with Type Disclosure θ def = refα refint α v def = Λα.λ x, y, z θ. if x = y then (y := 42;!x) else z }{{} M λ f {}} 1 { (v, α.θ α), ε,, ε, ε, [f v],, ε, (f, P) f α {}}{ (vα, θ α), γ 1,, ε, λ 1 (α, O) λ 2 16 / 19

47 An Example with Type Disclosure θ def = refα refint α v def = Λα.λ x, y, z θ. if x = y then (y := 42;!x) else z }{{} M λ f {}} 1 { (v, α.θ α), ε,, ε, ε, [f v],, ε, (f, P) f α {}}{ (vα, θ α), γ 1,, ε, λ 1 (α, O) γ {}} 2 { ḡ, γ 1 [g λz θ.m],, ε, λ 2 g l,l,p,s,ρ {}}{{}}{ (M{l/x, y}{p/z}, α), γ 2, {(l, Int),(l, α)}, S, λ 2 (l, O) (p, O)) λ 2 φ 1 λ 3 16 / 19

48 An Example with Type Disclosure θ def = refα refint α v def = Λα.λ x, y, z θ. if x = y then (y := 42;!x) else z }{{} M λ f {}} 1 { (v, α.θ α), ε,, ε, ε, [f v],, ε, (f, P) f α {}}{ (vα, θ α), γ 1,, ε, λ 1 (α, O) γ {}} 2 { ḡ, γ 1 [g λz θ.m],, ε, λ 2 g l,l,p,s,ρ {}}{{}}{ (M{l/x, y}{p/z}, α), γ 2, {(l, Int),(l, α)}, S, λ 2 (l, O) (p, O)) 42,S, γ 1, φ 1, S, λ 3 e.g. for S =[l 9], ρ = [p 7]. λ 2 φ 1 λ 3 16 / 19

49 Soundness M : Set of complete traces generated by the initial configurations of M. 17 / 19

50 Soundness M : Set of complete traces generated by the initial configurations of M. : effective equivalent relation on (set of) traces which substitute disclosed polymorphic names by their concrete values given by the ρ s. 17 / 19

51 Soundness M : Set of complete traces generated by the initial configurations of M. : effective equivalent relation on (set of) traces which substitute disclosed polymorphic names by their concrete values given by the ρ s. Theorem (Soundness) For all terms ; Σ, Γ M 1, M 2 : θ, M 1 M 2 implies M 1 ctx M / 19

52 Full Abstraction SystemReF*: Forbid binders, to appear in the scope of a ref, any type variable α inside a refθ must be reachably inhabited: an abstract value of type α must have been played before. 18 / 19

53 Full Abstraction SystemReF*: Forbid binders, to appear in the scope of a ref, any type variable α inside a refθ must be reachably inhabited: an abstract value of type α must have been played before. Theorem (Completeness) Given SystemReF* terms ; Σ, Γ M 1, M 2 : θ, if M 1 ctx M 2 then M 1 M / 19

54 Full Abstraction SystemReF*: Forbid binders, to appear in the scope of a ref, any type variable α inside a refθ must be reachably inhabited: an abstract value of type α must have been played before. Theorem (Completeness) Given SystemReF* terms ; Σ, Γ M 1, M 2 : θ, if M 1 ctx M 2 then M 1 M 2. A type outside SystemReF* : h : α, α.(ref(α α) ref(α Int) α) α 18 / 19

55 Full Abstraction SystemReF*: Forbid binders, to appear in the scope of a ref, any type variable α inside a refθ must be reachably inhabited: an abstract value of type α must have been played before. Theorem (Completeness) Given SystemReF* terms ; Σ, Γ M 1, M 2 : θ, if M 1 ctx M 2 then M 1 M 2. A type outside SystemReF* : h : α, α.(ref(α α) ref(α Int) α) α let x = ref(λy.1) in let u = h Int Int (x, x, 0) in if u then 1 else 2 =? let x = ref(λy.1) in let u = h Int Int (x, x, 0) in if u then 3 else 2 18 / 19

56 Conclusion On the fragment without refθ: an operational variant of Laird s CBV game model of polymorphism. Link with Levy s Ultimate Patterns and Operational Bisimulations? Next Step: Hindley-Milner (Curry-style) Polymorphism Towards fully abstract model of ML! Deduce reasoning techniques for proof equivalences Examples that cannot be handle by Kripke Logical Relations and Environmental Bisimulations! 19 / 19

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

About these lecture notes. Simply Typed λ-calculus. Types

About these lecture notes. Simply Typed λ-calculus. Types About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

The λ-calculus. Lecturer: John Wickerson. Phil Wadler

The λ-calculus. Lecturer: John Wickerson. Phil Wadler The λ-calculus Lecturer: John Wickerson Phil Wadler A tiny bit of Java expr ::= expr + expr expr < expr x n block ::= cmd { cmd... cmd } cmd ::= expr; if(cmd) block else block; if(cmd) block; try{cmd}

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

Finitary proof systems for Kozen s µ

Finitary proof systems for Kozen s µ Finitary proof systems for Kozen s µ Bahareh Afshari Graham Leigh TU Wien University of Gothenburg homc & cdps 16, Singapore 1 / 17 Modal µ-calculus Syntax: p p φ ψ φ ψ φ φ x µx φ νx φ Semantics: For Kripke

Διαβάστε περισσότερα

Formal Semantics. 1 Type Logic

Formal Semantics. 1 Type Logic Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

CS-XXX: Graduate Programming Languages. Lecture 27 Higher-Order Polymorphism. Matthew Fluet 2012

CS-XXX: Graduate Programming Languages. Lecture 27 Higher-Order Polymorphism. Matthew Fluet 2012 CS-XXX: Graduate Programming Languages Lecture 27 Higher-Order Polymorphism Matthew Fluet 2012 Looking back, looking forward Have defined System F. Metatheory (what properties does it have) What (else)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Type Theory and Coq. Herman Geuvers. Principal Types and Type Checking

Type Theory and Coq. Herman Geuvers. Principal Types and Type Checking Type Theory and Coq Herman Geuvers Principal Types and Type Checking 1 Overview of todays lecture Simple Type Theory à la Curry (versus Simple Type Theory à la Church) Principal Types algorithm Type checking

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Proving with Computer Assistance Lecture 2. Herman Geuvers

Proving with Computer Assistance Lecture 2. Herman Geuvers Proving with Computer Assistance Lecture 2 Herman Geuvers 1 Typed λ calculus as the basis for a Proof Assistant (e.g. Coq) λ-term program proof type specification formula Integrated system for proving

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types

Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types Amal Ahmed Harvard University amal@eecs.harvard.edu March 2006 Abstract We present a proof technique, based on syntactic logical

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application; λρ-calculus Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα