Central exclusive production at RHIC and LHC

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Central exclusive production at RHIC and LHC"

Transcript

1 15th workshop on non-perturbative Quantum Chromodynamics Central exclusive production at RHIC and LHC Antoni Szczurek 1,, Piotr Lebiedowicz 1, Otto Nachtmann 3, 1 Institute of Nuclear Physics PAN Kraków University of Rzeszów 3 Institute für Theoretische Physik, Universität Heidelberg Paris, June 11-13, 18

2 Our works on central production Our recent works on central production: 1. Production of π + π pairs in pp ppπ + π reaction.. Production of K + K pairs in pp ppk + K reaction. 3. Production of two pairs of π + π in pp ppπ + π π + π reaction Three pomeron exchanges (!) 4. Production of φφ final state pp ppk + K K + K reaction in quest for glueballs 5. Production of p p pairs in pp pp(p p) reaction interesting spin effects for Regge-like reactions. 6. Exclusive production of J/ψ meson in pp ppj/ψ and semiexclusive processes. 7. Production of e + e or µ + µ pairs via γγ fusion with photon transverse momenta. 8. Production of W + W pairs via γγ fusion with photon transverse momenta.

3 Regge approach At higher energies s > -3 GeV, meson-exchange approach stops to work. Regge approach was proposed. Exchange of so-called Regge trajectories. In the past rather two-body processes were studied. An example is elastic scattering. pp pp, p p p p π + p π + p, π p π p K + p K + p, K p K p Several Regge trajectories are necessary to describe the two-body reactions: (a) leading trajectory (trajectories): pomeron (C=1), odderon (C=-1) (not clearly identified) (b) subleading trajectories: f a (C=+1), ω ρ (C=-1) One can understand total cross sections in the Regge picture. Extension of the Regge approach to 3, 4, etc, processes possible only now. Not yet tested. Use coupling constants extracted from the elastic scattering and total cross sections.

4 Tensor pomeron model In our recent works all amplitudes are calculated assuming tensor pomeron model proposed by Nachtmann et al., Annals Phys. 34 (14) 31. It is often said that Pomeron has vacuum quantum numbers. This is true for color but not spin degrees of freedom. Often vector pomeron is used in practical calculations. Vector pomeron is inconsistent with Field Theory. Tensor pomeron consistent with so called r 5 observable measured in proton-proton elastic scattering by STAR C. Ewerz, P. Lebiedowicz, O. Nachtmann and A. Szczurek, Phys. Lett. B763 (16) 38. Feynman rules for exchanges of the soft objects have been proposed (vertices, propagators). We keep checking whether it works for different other processes. So far yes! Further tests are needed. Tensor pomeron, see also Chung-I Tan et al. and E. Shuryak et al.

5 Tensor pomeron The propagator of the tensor-pomeron exchange is written as: i (IP) µν,κλ (s, t) = 1 (g µκ g νλ + g µλ g νκ 1 ) 4s g µνg κλ ( isα IP )αip(t) 1 (1) and fulfils the following relations (IP) µν,κλ (s, t) = (IP) νµ,κλ (s, t) = (IP) µν,λκ (s, t) = (IP) κλ,µν (s, t), g µν (IP) µν,κλ (s, t) =, gκλ (IP) µν,κλ (s, t) =. () It gives by construction the same result for pp pp elastic scattering as traditional Regge approach.

6 Exclusive reactions Consider exclusive process pp ppm M (pp ppr or even pp ppm MM M) Calculate (helicity-dependent) amplitude M pp ppm M Calculate differential cross sections: dσ = 1 s M pp ppm M (3) (π) 4 δ 4 (p a + p b p 1 p p 3 p 4 ) d 3 p 1 (π) 3 E 1 d 3 p (π) 3 E d 3 p 3 (π) 3 E 3 d 3 p 4 (π) 3 E 4 (4) Any differential distribution can be calculated Include absorption effects

7 pp ppπ + π p (p a ) p (p 1 ) p (p a ) p (p 1 ) C 1 π + (p 3 ) γ, IP, IR f, f π + (p 3 ) C π (p 4 ) γ, IP, IR π (p 4 ) p (p b ) p (p ) p (p b ) p (p ) The four-body process amplitude written in terms of two-body Regge amplitudes Lebiedowicz, Szczurek, Phys. Rev. D81 () 363.

8 pp ppπ + π The full Born amplitude of π + π production is a sum of continuum amplitude and the amplitudes through the s-channel resonances: M pp ppπ + π = Mππ continuum pp ppπ + π + M ππ resonances pp ppπ + π. (5) Absorption effects should be included in addition

9 Resonances Scalar/pseudoscalar resonances: P. Lebiedowicz, O. Nachtmann and A. Szczurek, Ann. Phys. 344C (14) 31. Tensor resonances: q 1 q IP µν IP κλ f ρσ P. Lebiedowicz, O. Nachtmann and A. Szczurek, Phys. Rev. D9 (16) For tensor meson and tensor pomerons there are 7 possible couplings. We have tried different of them. Only one (!) fits to experimental characteristics.

10 pp ppπ + π p (p a ) p (p 1 ) t 1 p (p a ) p (p 1 ) t 1 γ, IP, IR γ, IP, IR ˆt π + (p 3 ) π (p 4 ) γ, IP, IR γ, IP, IR û π (p 4 ) π + (p 3 ) t p (p b ) p (p ) t p (p b ) p (p ) The two (t- and u-channel) contributions must be added coherently. P. Lebiedowicz, O. Nachtmann and A. Szczurek, Phys. Rev. D9 (16) 5415.

11 pp ppπ + π The IPIP-exchange amplitude can be written as where M (IPIP π+ π ) = M (ˆt) λ aλ b λ 1 λ π + π + M (û) λ aλ b λ 1 λ π + π, (6) M (ˆt) λ aλ b λ 1 λ π + π 3β IPNN (p 1 + p a ) µ1 (p 1 + p a ) ν1 δ λ1 λ a F 1 (t 1 )F M (t 1 ) β IPππ (p t p 3 ) µ 1 (p t p 3 ) ν 1 1 4s 13 ( is 13 α IP) α IP(t 1 ) 1 [ˆF π (p t )] p t m π β IPππ (p 4 + p t ) µ (p 4 + p t ) ν 1 4s 4 ( is 4 α IP) α IP(t ) 1 3β IPNN (p + p b ) µ (p + p b ) ν δ λ λ b F 1 (t )F M (t ), (7) M (û) λ aλ b λ 1 λ π + π 3β IPNN (p 1 + p a ) µ1 (p 1 + p a ) ν1 δ λ1 λ a F 1 (t 1 )F M (t 1 ) β IPππ (p 4 + p u ) µ 1 (p 4 + p u ) ν 1 1 4s 14 ( is 14 α IP) α IP(t 1 ) 1 [ˆF π (p u )] p u m π β IPππ (p u p 3 ) µ (p u p 3 ) ν 1 4s 3 ( is 3 α IP )α IP(t ) 1 3β IPNN (p + p b ) µ (p + p b ) ν δ λ λ b F 1 (t )F M (t ). (8)

12 pp ppπ + π dσ/dm ππ (µb/gev) pp pp π + π s = GeV η < 1, η <, p >.15 GeV π ππ t, π.5 < -t 1, -t <.3 GeV ππ-continuum + f (98) + f (17) j = ππ-continuum dσ/dm ππ (µb/gev) pp pp π + π η < 1, η π - <, p ππ t, π.3 < -t 1, -t s = GeV >.15 GeV <.3 GeV M ππ (GeV) M ππ (GeV) Interesting (negative) interference of f (98) and two-pion continuum.

13 pp ppπ + π (µb/gev) dσ/dm ππ p p pp π + π s = 1.96 TeV η < 1.3, y < 1, p >.4 GeV π ππ t, π CDF data M ππ (GeV) Not completely exclusive data (protons not measured).

14 pp ppπ + π (µb/gev) 4 3 pp pp π + π y <, p >. GeV π t, π CMS preliminary data - s = 7 TeV (µb/gev) 4 3 pp pp π + π y <, π p t, π >. GeV CMS preliminary data - s = 7 TeV dσ/dm ππ dσ/dm ππ M ππ (GeV) M ππ (GeV) The parameters fixed to the CDF data. Warning: Preliminary CMS data

15 Photoproduction at HERA VDM (vector dominance model) mechanism: γ ρ [ω] ρ IP, f IR [a IR ] p p Can be inserted to pp collisions.

16 pp ppπ + π photon induced production of ρ resonances p (p a ) p (p 1 ) p (p a ) p (p 1 ) γ ρ [ω] ρ π + (p 3 ) IP, f IR [a IR ] ρ ρ [ω] π + (p 3 ) π (p 4 ) IP, f IR [a IR ] π (p 4 ) γ p (p b ) p (p ) p (p b ) p (p ) Dominant photoproduction mechanism in the π + π channel. P.Lebiedowicz, O. Nachtmann and A. Szczurek, Phys. Rev. D91 (15) 743.

17 HERA data p) (µb) σ (γp ρ 5 15 low energy data H1 93 ZEUS 9 ZEUS 93 ZEUS 94 set B set A 5 1 W γp total IP f IR (GeV) 3 No freedom for 4 pp ppρ processes.

18 pp ppπ + π (µb/gev) dσ/dm ππ 1 IP/IR-IP/IR pp pp π + π s = 7 TeV y <.5 π p >.1 GeV T, π - (µb/gev) dσ/dm ππ 1 IP/IR-IP/IR pp pp π + π s = 7 TeV η <.9 π p >.1 GeV T, π - -1 γ-ip/ir + IP/IR-γ -1 γ-ip/ir + IP/IR-γ M ππ (GeV) M ππ (GeV) with absorption effects included

19 pp ppπ + π photon induced diffractive continuum p (p a) p (p 1) p (p a) p (p 1) p (p a) p (p 1) π (p t) γ π + (p 3) π (p 4) π (p u) γ π (p 4) π + (p 3) γ π + (p 3) π (p 4) IP, f IR IP, f IR IP, f IR p (p b) p (p ) p (p b) p (p ) p (p b) p (p ) So-called Söding mechanism.

20 Interference effect (µb/gev) dσ/dm ππ 4 3 pp pp π + π s = 7 TeV total ρ (77) continuum interference M ππ (GeV) Modification of the spectral shape (skewdness).

21 pp ppk + K Purely diffractive resonance mechanisms: p (p a ) p (p 1 ) IP, IR IP, IR f, f K + (p 3 ) K (p 4 ) p (p b ) p (p ) P. Lebiedowicz, O. Nachtmann and A. Szczurek, arxiv: , in print in Phys. Rev. D

22 pp ppk + K Purely diffractive continuum mechanism: p (p a ) p (p 1 ) t 1 p (p a ) p (p 1 ) t 1 IP, IR IP, IR ˆt K + (p 3 ) K (p 4 ) IP, IR IP, IR û K (p 4 ) K + (p 3 ) t p (p b ) p (p ) t p (p b ) p (p )

23 pp ppk + K Diffractive photoproduction resonance mechanism: p (p a ) p (p 1 ) p (p a ) p (p 1 ) γ φ φ K + (p 3 ) IP φ φ K + (p 3 ) K (p 4 ) IP K (p 4 ) γ p (p b ) p (p ) p (p b ) p (p )

24 pp ppk + K Diffractive photoproduction continuum mechanism: p (p a) p (p 1) p (p a) p (p 1) p (p a) p (p 1) K (p t) γ IP, IR K + (p 3) K (p 4) K (p u) γ IP, IR K (p 4) K + (p 3) γ IP, IR K + (p 3) K (p 4) p (p b) p (p ) p (p b) p (p ) p (p b) p (p )

25 Results for CMS (µb/gev) 1 s = 13 TeV, η, η <.5, p GeV < p, p y,1,p t,3 t,4 >.1 GeV <.5 GeV y, (µb/gev) 1 pp pp π + π η <.5, p >.1 GeV π t, π - dσ/dm 34 1 dσ/dm ππ M 34 (GeV) M ππ (GeV) CMS rapidity acceptance

26 Resonance decomposition (µb/gev) dσ/dm pp pp K K s = 13 TeV, η, η < total continuum f (98), f (15), f (17) f (17), f (155) M 34 (GeV) Really many resonances may participate. Parameters fixed by detailed knowledge of different reactions.

27 f (98) line shape (µb/gev) 8 s = 13 TeV, η, η < f (98) only m f = 98 MeV = 99 MeV m f (µb/gev) 4 3 s = 13 TeV, η, η < f (98) only m f = 98 MeV, Γ f = MeV dσ/dm dσ/dm M 34 (GeV) M 34 (GeV) left: Γ tot = 7 MeV right: Γ tot = MeV (Achasov-Shestakov) Different position of the peak in π + π and K + K channels. pp ppφ gives contribution at the same M K + K as pp ppf (98) (the first reaction can be smoking-gun for observing effects of gluon saturation)

28 Angular distribution in the KK rest frame (f (15) and f (17)) (µb) r.f. dσ/dcosθ s = 13 TeV, η, η < 1., p 3 4 M 34 (1.45, 1.6) GeV total continuum f (155) f (15),p t,3 t,4 >.1 GeV (µb) r.f. dσ/dcosθ s = 13 TeV, η, η < 1., p 3 4 M 34 (1.65, 1.75) GeV total continuum f (17),p t,3 t,4 >.1 GeV r.f. cosθ r.f. cosθ 3 Not too instructive! Too small range of rapidity? Can CMS measured such distributions?

29 Angular distribution in the KK rest frame (µb) r.f. dσ/dcosθ s = 13 TeV, η, η <.5, p 3 4 M 34 (1.45, 1.6) GeV total continuum f (155) f (15),p t,3 t,4 >.1 GeV r.f. cosθ 3 CMS range of rapidities

30 Predictions for different experiments (µb/gev) 1 s =. TeV, η, η < p, p >. GeV t,3 t,4.3 GeV < -t 1, <.3 GeV - π + π (µb/gev) 1 s = 1.96 TeV, CDF data - π + π η, η < 1.3, y < p, p >.4 GeV t,3 t,4 (µb/gev) 1 s = 13 TeV < η, η < π + π p, p t,3 4 >. GeV t,4 dσ/dm K K dσ/dm K K dσ/dm K K M 34 (GeV) M 34 (GeV) M 34 (GeV) Can one observe φ meson?

31 t t Glueball filter variable distribution dp t = q t,1 q t, = p t, p t,1, dp t = dp t. (9) ) (µb/gev) dσ/d(dp pp pp K K, s = 13 TeV η, η < 1, p, p >.1 GeV 4 3 total t,3 t,4 M 34 (1.45, 1.6) GeV continuum f (15) f (155) ) (µb/gev) dσ/d(dp pp pp K K, s = 13 TeV η, η < 1, p, p >.1 GeV 3 4 t,3 t,4 total M 34 (1.65, 1.75) GeV continuum f (17) (GeV) dp t (GeV) dp t Some difference between continuum and resonances

32 pp ppπ + π π + π Double resonance production: p p p p IP, IR IP, IR σ σ σ π + π π + π IP, IR IP, IR ρ ρ ρ π + π π + π p p p p

33 pp ppπ + π π + π Single resonance production: p p p p IP, IR IP, IR f σ σ π + π π + π IP, IR IP, IR f ρ ρ π + π π + π p p p p Contribution to mechanism of diffractive production of resonances (f (17), f 1 (185), f (15), f (17), f (195)) Contribution to decays and branching fractions.

34 pp ppσσ The amplitude for this process can be written as the following sum: M (σ exchange) pp ppσσ = M (IPIP σσ) + M (IPf IR σσ) + M (firip σσ) + M (f IRf IR σσ) (). For instance, the IPIP-exchange amplitude can be written as M (IPIP σσ) = M (ˆt) λ aλ b λ 1 λ σσ + M(û) λ aλ b λ 1 λ σσ (11) with the ˆt- and û-channel amplitudes M (ˆt) λ aλ b λ 1 λ σσ = ( i)ū(p 1, λ 1 )iγ (IPpp) µ 1 ν 1 (p 1, p a)u(p a, λ a) i (IP) µ 1ν 1,α 1 β 1 (s 13, t 1 ) iγ (IPσσ) α 1 β 1 (p t, p 3 ) i (σ) (p t) iγ (IPσσ) α β (p 4, p t) i (IP) α β,µ ν (s 4, t ) ū(p, λ )iγ µ (IPpp) ν (p, p b )u(p b, λ b ), M (û) λ aλ b λ 1 λ σσ = ( i) ū(p 1, λ 1 )iγ (IPpp) µ 1 ν 1 (p 1, p a)u(p a, λ a) i (IP) µ 1ν 1,α 1 β 1 (s 14, t 1 ) iγ (IPσσ) α 1 β 1 (p 4, p u) i (σ) (p u) iγ (IPσσ) α β (p u, p 3 ) i (IP) α β,µ ν (s 3, t ) ū(p, λ )iγ µ (IPpp) ν (p, p b )u(p b, λ b ). (1) (13)

35 pp ppρ ρ We write the amplitude as M λaλ b λ 1 λ ρρ = ( ) ( ) ǫ (ρ) ρ 3 (λ 3 ) ǫ (ρ) ρ 4 (λ 4 ) M ρ 3 ρ 4 λ aλ b λ 1 λ ρρ, (14) where ǫ (ρ) ρ (λ) are the polarisation vectors of the ρ meson. M (ρ exchange) ρ 3ρ 4 λ aλ b λ 1 λ ρρ (p 1 + p a) µ1 (p 1 + p a) ν1 δ λ1 λ a F 1 (t 1 ) F M (t 1 ) j V ρ 3ρ 1 µ 1 ν 1 (s 13, t 1, p t, p 3 ) (ρ) ρ 1 ρ (p t) V ρ 4ρ µ ν (s 4, t, p t, p 4 ) hˆfρ(p t )i ff + V ρ 4ρ 1 µ 1 ν 1 (s 14, t 1, p u, p 4 ) ρ (ρ) 1 ρ (p u) V ρ 3ρ µ ν (s 3, t, p u, p 3 ) hˆfρ(p u)i (p + p b ) µ (p + p b ) ν δ λ λ b F 1 (t ) F M (t ), where V µνκλ reads as V µνκλ (s, t, k, k 1 ) =Γ () µνκλ (k 1, k ) 1» 3β IPNN a IPρρ ( isα IP 4s )α IP (t) g fir pp M a f IR ρρ ( isα f ) α f (t) 1 IR IR Γ () µνκλ (k 1, k ) 1» 3β IPNN b IPρρ ( isα IP 4s )α IP (t) M g fir pp b f IR ρρ ( isα f IR ) α f IR (t) 1. (15) (16)

36 σσ and ρ ρ production pp pp(σσ π+π-π+π-) pp pp(ρρ π+π-π+π-) IP and IR Y Y Y4 3 IP and IR reggeized s = GeV RY Y 4-1 pp pp(ρρ π+π-π+π-) IP and IR s = GeV RY Y 3 RY Y 4 s = GeV s = GeV Y4 4 - Y Y4

37 pp ppπ + π π + π p (p a ) p (p 1 ) p (p a ) p (p 1 ) IP, IR t 1 π + (p 3 ) IP, IR π + (p 3 ) IP, IR t 34 t 45 π (p 4 ) π + (p 5 ) ρ, σ π (p 4 ) π + (p 5 ) IP, IR t 56 t π (p 6 ) IP, IR π (p 6 ) p (p b ) p (p ) p (p b ) p (p ) Only the first type of diagrams was included R. Kycia, P. Lebiedowicz, A. Szczurek and J. Turnau, Phys. Rev. D95 (17) 94.

38 pp ppπ + π π + π M = 1 ( ) M{3456} + M {5436} + M {3654} + M {5634} + 1 ( ) M{4356} + M {4536} + M {6354} + M {6534} + 1 ( ) M{3465} + M {5463} + M {3645} + M {5643} (17) + 1 ( M{4365} + M {4563} + M {6345} + M {6543} ),

39 pp ppπ + π π + π M {3456} = A πp(s 13, t 1 ) Fπ(t 34) A ππ(s t 34 mπ 45, t 45 ) Fπ(t 56) A πp(s t 56 mπ 6, t ), (18) M {4356} = A πp(s 14, t 1 ) Fπ(t 43) A ππ(s t 43 mπ 35, t 35 ) Fπ(t 56) A πp(s t 56 mπ 6, t ), (19) M {3465} = A πp(s 13, t 1 ) Fπ(t 34) A ππ(s t 34 mπ 46, t 46 ) Fπ(t 65) A πp(s t 65 mπ 5, t ), () M {4365} = A πp(s 14, t 1 ) Fπ(t 43) A ππ(s t 43 mπ 36, t 36 ) Fπ(t 65) A πp(s t 65 mπ 5, t ). (1)

40 pp ppπ + π π + π The subprocess amplitudes with the Regge exchanges are given as A πp (s, t) = A ππ (s, t) = j=ip,f IR η j s C j πp j=ip,f IR η j s C j ππ ( s s ( s s ) αj (t) 1 F j πp(t), () ) αj (t) 1 F j ππ(t), (3) where the signature factors are η IP = i and η fir = i.86.

41 pp ppπ + π π + π dσ [nb/gev] dm 4π s = 7TeV, ATLAS triple-regge σ M 4π [GeV] Large 4π invariant masses Good measurement for CMS (!) ALICE has too narrow range of rapidities and cannot see it.

42 pp ppφφ Observed by WA, no theoretical interpretation Two mechanisms possible a priori continuum ("φ" exchange, reggeization (?) ) f (195) (not yet, TTT structure) glueball candidate(s), below (f (17)) and above threshold Let us start exploration, preliminary results below

43 pp ppφφ, WA data Not yet perfect t (nb/gev) dσ/dm φφ pp pp φφ s = 9.1 GeV WA data φ exchange φ exchange, reggeized Λ off,e = 1.45 GeV ) (nb/gev) dσ/d(dp 15 5 pp pp φφ WA data s = 9.1 GeV φ exchange, reggeized = 1.45 GeV Λ off,e M φφ (GeV) dp t (GeV) (nb) pp dσ/dφ 4 3 pp pp φφ WA data s = 9.1 GeV φ exchange, reggeized = 1.45 GeV Λ off,e dσ/d t (nb/gev ) 5 15 pp pp φφ WA data s = 9.1 GeV φ exchange, reggeized = 1.45 GeV Λ off,e φ (deg) pp t (GeV )

44 pp ppφφ, predictions for the LHC pp pp(φφ K K K s = 13 TeV η <.5 p (µb) 1 K K ) >.1 GeV t,k pp pp(φφ K K K s = 13 TeV η <.5 p (µb) 1 K K ) reggeized >.1 GeV + t,k pp pp(φφ K K K s = 13 TeV η <.5 p (µb) 1 K K ) reggeiz >. GeV + t,k dσ/dy 3 dy 4 3 dσ/dy 3 dy 4 3 dσ/dy 3 dy Y 3 Y 4 Y 3 Y 4 Y 3

45 pp ppp p, predictions for the LHC (µb/gev) dσ/dm 4π pp pp π + π π + π s = 13 TeV η π <.5, p >.1 GeV t,π η π <.5, p >. GeV t,π η π < 1, p >.1 GeV t,π < η π < 4.5, p >. GeV t,π (µb/gev) dσ/dm 4K pp pp K K K K s = 13 TeV η <.5, p >.1 GeV K t,k η <.5, p >. GeV K t,k η < 1, p >.1 GeV K t,k < η < 4.5, p >. GeV K t,k M 4π (GeV) M 4K (GeV)

46 pp ppp p, predictions for the LHC (µb) dσ/dy diff pp pp π + π π + π s = 13 TeV η π <.5, p >.1 GeV t,π η π <.5, p >. GeV t,π η π < 1, p >.1 GeV t,π < η π < 4.5, p >. GeV t,π (µb) dσ/dy diff pp pp K K K K s = 13 TeV η <.5, p >.1 GeV K t,k η <.5, p >. GeV K t,k η < 1, p >.1 GeV K t,k < η < 4.5, p >. GeV K t,k Y diff = Y 3 - Y Y diff = Y 3 - Y 4 One should return to the topic once the data at the LHC are available CMS and LHCb data analysis in progress

47 pp ppp p The continuum (nonresonance) contribution p (p a ) p (p 1 ) t 1 p (p a ) p (p 1 ) t 1 γ, IP, IR γ, IP, IR ˆt p(p 3 ) p(p 4 ) γ, IP, IR γ, IP, IR û p(p 4 ) p(p 3 ) t p (p b ) p (p ) t p (p b ) p (p ) We do Feynman-diagram calculations with well fixed rules (!)

48 pp ppp p The full amplitude for p p production is a sum of continuum amplitude and the amplitudes with the s-channel resonances: M pp pp pp = M p p continuum pp pp pp + M p p resonances pp pp pp. (4) No p p resonances are known (to us) except of η c and χ c () mesons (see PDG).

49 pp ppp p M (IPIP pp) λ aλ b λ 1 λ λ 3 λ 4 = ( i)ū(p 1, λ 1 )iγ µ (IPpp) 1 ν 1 (p 1, p a )u(p a, λ a ) i (IP) µ 1ν 1,α 1 β 1 (s 13, t 1 ) ū(p 4, λ 4 )[iγ (IPpp) α β (p 4, p t ) i (p) (p t )iγ (IPpp) α 1 β 1 (p t, p 3 ) + iγ (IPpp) α 1 β 1 (p 4, p u ) i (p) (p u )iγ (IPpp) α β (p u, p 3 )]v(p 3, λ 3 ) i (IP) α β,µ ν (s 4, t ) ū(p, λ )iγ (IPpp) µ ν (p, p b )u(p b, λ b ). No absorption effects. (5)

50 pp ppp p (µb) dσ/dy s = 13 TeV, no absorption - pp pp π + π + - pp pp K K pp pp pp y 3 (µb) dσ/dy diff s = 13 TeV, no absorption - pp pp π + π + - pp pp K K pp pp pp y = y diff 3 - y 4 Surprising effect of the dip at y diff =. New effect for spin-1/ particles Good separation of t and u contributions.

51 y 3 xy 4 space pp pp π + π s = 13 TeV - pp pp pp s = 13 TeV (µb) 4 (µb) dy 3 1 σ/dy -1 d - 4 dy 3 1 σ/dy -1 d - -3 y y 4-3 y y 4 Completely different character. The dip is everywhere on the diagonal (ATLAS can do it, ALICE not really).

52 M p p -distribution (µb/gev) dσ/dm s = 13 TeV, no absorption - pp pp π + π + - pp pp K K pp pp pp (µb/gev) dσ/dm s = 13 TeV, no absorption - pp pp π + π + - pp pp K K pp pp pp y, y < (GeV) M (GeV) M 34 Different slope for pairs of pseudoscalar and for spin-1/ hadrons. We explicitly include spin degrees of freedom in the Regge calculus.

53 Role of subleading reggeons (µb) dσ/dy 3 3 pp pp pp s = 13 TeV Λ off,e = 1 GeV IP exchange IP, f & a IR exchanges IR (µb) dσ/dy diff 3 pp pp pp s = 13 TeV Λ off,e = 1 GeV IP exchange IP, f & a IR exchanges IR y y = y diff 3 - y 4 Even at s = 13 TeV a sizeable effect of subleading reggeons.

54 M p p xy diff pp pp pp s = 13 TeV (µb/gev) diff σ/dm 34 dy d M (GeV) 5 5 y diff -5 Region inside of the ridge seems promissing in searches for resonances

55 π + π versus p p production (GeV) M pp pp π + π s = 13 TeV, d σ/dm 34 dy (µb/gev) diff 1 (GeV) M 34 pp pp pp s = 13 TeV, d σ/dm 34 dy (µb/gev) diff y diff y diff -3 Different situation for π + π and p p

56 Potential role of resonances with M GeV (µb) dσ/dy diff s = 13 TeV, no absorption pp pp pp, Λ off,e =.8 GeV η, η < p, p >.1 GeV t,3 t,4 total continuum f () y = y - y diff 3 4 resonances may distroy the dip

57 Potential role of resonances with M GeV (GeV) M 34 pp pp pp s = 13 TeV, d σ/dm 34 dy diff (µb/gev) η, η < p, p >.1 GeV t,3 t, y diff -3-4 resonances may distroy (close) the gorge

58 Role of ingredients, ratios 3 η pp pp pp s = 13 TeV R 6 (IP + IR) (η 3, η ) 4 3 η pp pp pp s = 13 TeV R 6 (IP + IR + O) (η 3, η ) LHCb LHCb ATLAS ATLAS η η 4.99 first: role of subleading reggeons second: role of odderon

59 Asymmetry between central p and p In two dimensions (e.g. η 1 η ) we can define the asymmetry: Ã () (η,η ) = d σ dη 3 dη 4 (η,η ) d σ dη 3 dη 4 (η,η) d σ dη 3 dη 4 (η,η ) + d σ dη 3 dη 4 (η,η). (6)

60 Asymmetry between central p and p A = σ(p) σ( p) σ(p) + σ( p) (7) η pp pp pp s = 13 TeV 6 A ~ () (η, η ) LHCb.5 4 ATLAS η.15 Clear asymmetry

61 Asymmetry between central p and p Projection on one-dimension (full phase space) (η) A pp..1 pp pp pp, s = 13 TeV Λ off,e = 1 GeV η

62 Asymmetry between central p and p Projection on one-dimension (experimental cuts) (η) A pp..1 pp pp pp, s = 13 TeV ATLAS kinematics Λ off,e = 1 GeV (η) A pp.1.5 pp pp pp, s = 13 TeV LHCb kinematics Λ off,e = 1 GeV η η

63 Conclusions, pp pph + h The Regge phenomenology was extended in practice to 3, 4 and 6 exclusive processes. The tensor pomeron/reggeon model was applied to many reactions. At lower energies tensor/vector reggeons. The dipion invariant mass has a rich structure which strongly depends on kinematical cuts (continuum, resonances, interference). Disagreement with CMS data due to large dissociation contribution. Purely exclusive data expected from STAR, CMS+TOTEM and ATLAS+ALFA.

64 Conclusions, pp pph + h K + K has also rich invariant mass structure (resonances). Predictions have been done. Some ambiguities in predictions. Search for glueballs requires partial wave analyses and observations in different final states. Four-pion production is also interesting. Double resonances, three-pomeron continuum. Search for single resonances (f (17)). φφ (K + K K + K ) final state at s = 9.1 GeV has been approximately described including continuum contribution. Predictions for LHC were shown. Resonances (glueballs) should be added. p p production has quite different characteristics (dσ/dm and dσ/dy diff (dip)). These are predictions of our approach.

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1 EPS-HEP 5 DOUBLE-SCTTERING MECHNISM OF PRODUCTION OF TWO MESONS IN ULTRPERIPHERL, ULTRRELTIISTIC HEY ION COLLISIONS ntoni Szczurek, Mariola Kłusek-Gawenda Institute of Nuclear Physics PN Kraków University

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

The Θ + Photoproduction in a Regge Model

The Θ + Photoproduction in a Regge Model The Θ + Photoproduction in a Regge Model Herry Kwee College of illiam and Mary Cascade 5 Jefferson Lab December 3, 5 1 1. Introduction. Photoproduction γn Θ + K for spin-1/ Θ + γp Θ + K for spin-1/ Θ +

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC Σ(85) Ξ(5) Production of and measured by ALICE in pp, ppb and PbPb collisions at the LHC for the ALICE Collaboration Pusan National University, OREA Quark Matter 7 in Chicago 7.. QM7 * suppressed, no suppression

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 604Ä616 œ ˆ Š ˆ ˆ ˆ Š ˆŒ CMS LHC ˆ.. ƒμ²êé 1,.. ³ Éμ 1,2, 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö É ² Ò Ê²ÓÉ ÉÒ Ô± ³ É CMS, μ²êî Ò μ μ ÒÌ - μ μ Í ±² μéò LHC

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα