Quasi-Fibonacci Numbers of the Seventh Order

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Quasi-Fibonacci Numbers of the Seventh Order"

Transcript

1 Journal of Integer Sequences, Vol , Article Quasi-Fibonacci Numbers of the Seventh Order Roman Witu la, Damian S lota and Adam Warzyńsi Institute of Mathematics Silesian University of Technology Kaszubsa 23 Gliwice Poland r.witula@polsl.pl d.slota@polsl.pl Abstract In this paper we introduce and investigate the so-called quasi-fibonacci numbers of the seventh order. We discover many surprising relations and identities, and study some applications to polynomials. 1 Introduction Grzymowsi and Witu la [3] discovered and studied the following two identities: 1 ξ ξ 4 n F n1 F n ξ ξ 4, ξ 2 ξ 3 n F n1 F n ξ 2 ξ 3, 1.2 where F n denote the Fibonacci numbers and ξ C is a primitive fifth root of unity i.e., ξ 5 1 and ξ 1. These identities mae it possible to prove many classical relations for Fibonacci numbers as well as to generalize some of them. We may state that these identities mae up an independent method of proving such relations, which is an alternative to the methods depending on the application of either Binet formulas or the generating function of Fibonacci and Lucas numbers. 1

2 1.1 Example of the application of identities 1.1 and 1.2 First, we note that 1 ξ ξ 4 uv F uv1 F uv ξ ξ and 1 ξ ξ 4 uv 1 ξ ξ 4 u 1 ξ ξ 4 v F u1 F u ξ ξ 4 F v1 F v ξ ξ 4 by the identity 1 ξ ξ 2 ξ 3 ξ 4 0 F u1 F v1 F u F v F u F v1 F u1 F v F u F v ξ ξ 4 Replacing u by u r and v by v r in 1.4 we obtain 1 ξ ξ 4 uv F u r1 F vr1 F u r F vr F u1 F v1 F u F v F u F v1 F u 1 F v ξ ξ F u r F vr1 F u r1 F vr F u r F vr ξ ξ We note that the numbers 1 and ξ ξ 4 are linearly independent over Q. Hence comparing the parts without ξξ 4 of 1.3 with 1.4 and 1.4 with 1.5 we get two nown identities see [2, 5] F uv1 F u1 F v1 F u F v and F u1 F v1 F u r1 F vr1 F u r F vr F u F v after the next u r iterations 1 u r1 F r F v ur F 0 F v u2r 1 u r1 F r F v ur. 1.2 The aim of the paper In this paper the relations 1.1 and 1.2 will be generalized in the following way: 1 δξ ξ 6 n A n δ B n δξ ξ 6 C n δξ 2 ξ 5, 1 δξ 2 ξ 5 n A n δ B n δξ 2 ξ 5 C n δξ 3 ξ 4, and 1 δξ 3 ξ 4 n A n δ B n δξ 3 ξ 4 C n δξ ξ 6, where ξ C are primitive seventh roots of unity i.e., ξ 1 and ξ 1, δ C, δ 0. New families of numbers created by these identities {A n δ} n1, {B n δ} n1, and {C n δ} n

3 called here the quasi-fibonacci numbers of order ;δ, δ C, δ 0, are investigated in this paper. The elements of each of the three sequences 1.6 satisfy the same recurrence relation of order three X n3 δ 3X n2 3 2δ 2δ 2 X n1 1 δ 2δ 2 δ 3 X n 0, which enables a direct trigonometrical representation of these numbers see formulas In consequence, many surprising algebraic and trigonometric identities and summation formulas for these numbers may be generated. Also the polynomials connected with the numbers {C n δ} n1 C 1 δx n, n N, are investigated in this paper. 1 2 Minimal polynomials, linear independence over Q Let Ψ n x be the minimal polynomial of cos2π/n for every n N. W. Watins and J. Zeitlin described [10] see also [9] the following identities: T s1 x T s x 2 s d n Ψ d x if n 2s 1 and T s1 x T s 1 x 2 s d n Ψ d x if n 2s, where T s x denotes the s-th Chebyshev polynomial of the first ind. In the sequel, if n 2s 1 is a prime number, we obtain For example, we have T s1 x T s x 2 s Ψ 1 xψ n x. 1 Ψ x 8x 1 T 1 4x T 3 x 8x 1 8x4 4x 3 8x 2 3x 1 1 8x 1 x 3 1 8x 1 2 x2 1 2 x 1 x x2 1 2 x 1 8, Lemma 2.1. If n 3 then the roots of Ψ n x 0 are cos2π/n, for 0 < s and,n 1 where n 2s or n 2s 1 respectively. Below a more elementary proof of this result but only for the polynomial Ψ x, will be presented. Our proof is based only on the following simple fact: } Lemma 2.2. Let q Q and cosqπ Q. Then cosqπ {0, ± 12, ±1. 3

4 Proof. For the elementary proof of this Lemma see, for example, the Appendix to the Russian translation of Niven s boo [6] written by I. M. Yaglom. Lemma 2.3. Let ξ expi2π/. Then the polynomial p x : x ξ ξ 6 x ξ 2 ξ 5 x ξ 3 ξ 4 x 3 x 2 ξ ξ 2 ξ 3 ξ 4 ξ 5 ξ 6 xξ ξ 6 ξ 2 ξ 5 ξ ξ 6 ξ 3 ξ 4 ξ 2 ξ 5 ξ 3 ξ 4 ξ ξ 6 ξ 2 ξ 5 ξ 3 ξ 4 x 3 x 2 2x 1 is a minimal polynomial of the numbers ξ ξ 6 2 cos2π/, ξ 2 ξ 5 2 cos4π/, ξ 3 ξ 4 2 cos6π/. 2.1 Moreover, we have the identity Ψ x 1 8 p 2x. 2.2 Proof. Besides Lemma 2.2, each of the numbers in 2.1 is an irrational number, so the polynomial p x is irreducible over Q. Corollary 2.4. We have p x 1 x 3 2x 2 x 1. See the identity 3.66 below, where the connection of p x 1 with quasi-fibonacci numbers of -th order is presented. Corollary 2.5. The numbers cos2π/, 0, 1, 2 are linearly independent over Q. Proof. If we suppose that for some a,b,c Q, then we also have a b cos2π/ c cos4π/ 0 a b cos2π/ c2 cos 2 2π/ 1 0, i.e., a c b cos2π/ 2c cos 2 2π/ 0 so the degree of cos2π/ is 2, which by Lemma 2.3 means that a b c 0. Corollary 2.6. Every three numbers which belong to the set {1,ξ ξ 6,ξ 2 ξ 5,ξ 3 ξ 4 } are linearly independent over Q. Proof. It follows from the identity 1 ξ ξ 2... ξ 6 0 and from Corollary

5 Corollary 2.. The following decomposition holds: f n X : X 2 cos 2π 2 n X 2 cos 4π 2 n X 3 α n X 2 β n X 1, where α 0 1, β 0 2 and X 2 cos 6π 2 n { αn1 α 2 n 2β n, β n1 β 2 n 2α n, n N. 2.3 For example, we have α 0 1, β 0 2, α 1 5, β 1 6, α 2 13, β 2 26, α 3 11 and β A more general decomposition will be presented later, see Lemma 3.14 a. We note that 13 α n and 13 β n for every n N, n 2. Proof. We have Y 2 2 cos 2π 2 n1 Y 2 2 cos 4π 2 n1 Y 2 2 cos 6π 2 n1 f n Y f n Y Y 3 α n Y 2 β n Y 1Y 3 α n Y 2 β n Y 1 Y 3 β n Y 2 α n Y Y 6 α 2 n 2β n Y 4 β 2 n 2α n Y 2 1. It is obvious that α n 2 cos 2π 2 n 2 cos 4π 2 n 2 cos 6π 2 n and β n 4 cos 2π cos 4π 2 n 4 cos 2π cos 6π 2 n 4 cos 4π cos 6π 2 n for every n N. Moreover, from 2.3, we deduce that which yields α n1 β n1 α n 1 2 βn 1 2 2, α n1 β n1 α n 1 2 βn 1 2 αn β n αn β n 2 α n β n αn βn 1 1 2, n 1 α β n1 α n1 1 2 β 1 n 1 2 α β 1 2 n α β 2. 1 The following extension lemma is the basic technical tool to generating almost all formulas presented in the next sections. 5 1

6 Lemma 2.8. Let a 1,a 2,...,a n R be linearly independent over Q and let f,g Q[δ], 1, 2,...,n. If the identity f δa 1 g δa 1 holds for every δ Q, then f δ g δ for every 1, 2,...,n and δ C. 3 Quasi-Fibonacci numbers of order Lemma 3.1. Let δ,ξ C, ξ 1 and ξ 1. Then the following identities hold: 1 δξ ξ 6 n a n δ b n δξ 1 1 ξ 1 6 c n δξ 2 1 ξ 2 6 d n δξ 3 1 ξ 3 6 a n δ b n δξ ξ 6 c n δξ 2 ξ 5 d n δξ 3 ξ 4 A n δ B n δξ ξ 6 C n δξ 2 ξ 5, δξ 2 ξ 5 n a n δ b n δξ 1 2 ξ 1 5 c n δξ 2 2 ξ 2 5 d n δξ 3 2 ξ 3 5 a n δ b n δξ 2 ξ 5 c n δξ 3 ξ 4 d n δξ ξ 6 A n δ B n δξ 2 ξ 5 C n δξ 3 ξ 4, δξ 3 ξ 4 n a n δ b n δξ 1 3 ξ 1 4 c n δξ 2 3 ξ 2 4 d n δξ 3 3 ξ 3 4 a n δ b n δξ 3 ξ 4 c n δξ ξ 6 d n δξ 2 ξ 5 A n δ B n δξ 3 ξ 4 C n δξ ξ 6, 3.3 where a 0 δ 1, b 0 δ c 0 δ d 0 δ 0, a n1 δ a n δ 2δb n δ, b n1 δ δa n δ b n δ δc n δ, c n1 δ δb n δ c n δ δd n δ, d n1 δ δc n δ 1 δd n δ 3.4 6

7 for every n N and A n1 δ : a n1 δ d n1 δ a n δ 2δb n δ δc n δ 1 δd n δ a n δ d n δ 2δb n δ d n δ δc n δ d n δ A n δ 2δB n δ δc n δ, B n1 δ : b n1 δ d n1 δ δa n δ b n δ δc n δ δc n δ 1 δd n δ δa n δ d n δ b n δ d n δ δa n δ B n δ, C n1 δ : c n1 δ d n1 δ δb n δ c n δ δd n δ δc n δ 1 δd n δ δb n δ d n δ 1 δc n δ d n δ δb n δ 1 δc n δ, i.e., for every n N. A 0 δ 1, B 0 δ C 0 δ 0, A n1 δ A n δ 2δB n δ δc n δ, B n1 δ δa n δ B n δ, C n1 δ δb n δ 1 δc n δ 3.5 Proof. For example, we have 1 δξ ξ 6 n1 1 δξ ξ 6 n 1 δξ ξ 6 a n δ b n δξ ξ 6 c n δξ 2 ξ 5 d n δξ 3 ξ 4 1 δξ ξ 6 a n δ δa n δξ ξ 6 b n δξ ξ 6 δb n δξ 2 2 ξ 5 c n δξ 2 ξ 5 δc n δξ 3 ξ ξ 6 ξ 4 d n δξ 3 ξ 4 δd n δξ 4 ξ 5 ξ 2 ξ 3 a n δ 2δb n δ ξ ξ 6 δa n δ b n δ δc n δ ξ 2 ξ 5 δb n δ c n δ δd n δ ξ 3 ξ 4 δc n δ 1 δd n δ by equality ξ 3 ξ 4 1 ξ ξ 6 ξ 2 ξ 5 a n δ 2δb n δ δc n δ 1 δd n δ ξ ξ 6 δa n δ b n δ 1 δd n δ ξ 2 ξ 5 δb n δ 1 δc n δ d n δ. Definition 3.2. The numbers 3.5 will be called the quasi-fibonacci numbers of order ; δ see Table 1 at the end of the paper. To simplify notation we write a n, b n, c n, d n, A n, B n, C n instead of a n 1, b n 1, c n 1, d n 1, A n 1, B n 1, C n 1 respectively, and these numbers will be called the quasi-fibonacci numbers of the seventh order.

8 Remar 3.3. Note that section III of [8] contains an explicit reference to the sequences A n, B n and C n. This paper is partly based on the properties of p x and p x 1. A n, B n and C n also appear in [4]. Corollary 3.4. Adding equalities we obtain the identity 1 δξ ξ 6 n 1 δξ 2 ξ 5 n 1 δξ 3 ξ 4 n 3A n δ B n δ C n δ. 3.6 Corollary 3.5. There follows from 3.4 and 3.5 two special systems for δ 1 a 0 1, b 0 c 0 d 0 0, a n1 a n 2b n, b n1 a n b n c n, c n1 b n c n d n, d n1 c n 2d n 3. and for every n N see Table 2, A and A in []. A 0 1, B 0 C 0 0, A n1 A n 2B n C n, B n1 A n B n, C n1 B n 3.8 Corollary 3.6. Another system may also be derived from 3.5 for δ 1 A 0 1 1, B 0 1 C 0 1 0, A n1 1 A n 1 2B n 1 C n 1, B n1 1 A n 1 B n 1, C n1 1 B n 1 2C n 1 for every n N see Table 3 and A in []. Corollary 3.. If δ 0 then from 3.5 the following identities can be generated: hence, we obtain δb n δ C n1 δ 1 δc n δ, 3.9 δa n δ B n1 δ B n δ, 3.10 δ 2 A n δ δb n1 δ δb n δ 3.11 C n2 δ 1 δc n1 δ C n1 δ 1 δc n δ C n2 δ 2 δc n1 δ 1 δc n δ, A n1 δ A n δ 2δB n δ δc n δ C n1 δ 21 δc n δ δc n δ 2C n1 δ 2 δc n δ, δ 2 A n1 δ δ 2 A n δ 2δ 2 C n1 δ 2δ 2 δ 3 C n δ

9 On the other hand, by 3.11 we obtain δ 2 A n1 δ δ 2 A n δ C n3 δ 2 δc n2 δ 1 δc n1 δ C n2 δ 2 δc n1 δ 1 δc n δ C n3 δ 3 δc n2 δ 3 2δC n1 δ δ 1C n δ From 3.13 and 3.14 we obtain the final recurrence identities for numbers C n δ C n3 δ δ 3C n2 δ 3 2δ 2δ 2 C n1 δ 1 δ 2δ 2 δ 3 C n δ Remar 3.8. We note that the elements of each of the sequences {A n δ} and {B n δ} also satisfy this recurrence relation which follows from 3.9 and Lemma 3.9. The characteristic polynomial p X;δ of 3.15 has the following decomposition: p X;δ : X 3 δ 3X 2 3 2δ 2δ 2 X 1 δ 2δ 2 δ 3 where ξ expi2π/. So the relation X 1 δξ ξ 6 X 1 δξ 2 ξ 5 X 1 δξ 3 ξ C n δ α1 δξ ξ 6 n β1 δξ 2 ξ 5 n γ1 δξ 3 ξ 4 n holds for every n N and for some α,β,γ R. Remar To find α,β,γ, from Lemma 3.9, it is sufficient to solve the following linear system: C 1 δ 0 α1 δξ ξ 6 β1 δξ 2 ξ 5 γ1 δξ 3 ξ 4, C 2 δ δ 2 α1 δξ ξ 6 2 β1 δξ 2 ξ 5 2 γ1 δξ 3 ξ 4 2, C 3 δ 3δ 2 δ 3 α1 δξ ξ 6 3 β1 δξ 2 ξ 5 3 γ1 δξ 3 ξ 4 3. After some calculations we obtain the identities C n δ ξ 2 1 ξ 2 6 ξ 3 1 ξ δξ ξ 6 n 3.1 ξ 2 2 ξ 2 5 ξ 3 2 ξ δξ 2 ξ 5 n ξ 2 3 ξ 2 4 ξ 3 3 ξ δξ 3 ξ 4 n ξ 2 ξ 5 ξ 3 ξ 4 1 δξ ξ 6 n ξ 3 ξ 4 ξ ξ 6 1 δξ 2 ξ 5 n ξ ξ 6 ξ 2 ξ 5 1 δξ 3 ξ 4 n 2 cos 4 π cos π 1 2δ cos 2π n 2 cos π cos 2 π 1 2δ cos 4π n 2 cos 2π cos 4π 1 2δ cos 6π n. 9

10 Hence, by 3.9 we get and by 3.10 B n δ 1 δ C n1δ 1 δc n δ 3.18 ξ 1 1 ξ 1 6 ξ 3 1 ξ δξ ξ 6 n ξ 1 2 ξ 1 5 ξ 3 2 ξ δξ 2 ξ 5 n ξ 1 3 ξ 1 4 ξ 3 3 ξ δξ 3 ξ 4 n ξ ξ 6 ξ 3 ξ 4 1 δξ ξ 6 n ξ 2 ξ 5 ξ ξ 6 1 δξ 2 ξ 5 n ξ 3 ξ 4 ξ 2 ξ 5 1 δξ 3 ξ 4 n 2 cos 2π cos π 1 2δ cos 2π n 2 cos 4π cos 2π 1 2δ cos 4π n 2 cos π cos 4π 1 2δ cos 6π n A n δ 1 δ B n1δ B n δ ξ 0 1 ξ 0 6 ξ 3 1 ξ δξ ξ 6 n ξ 0 2 ξ 0 5 ξ 3 2 ξ δξ 2 ξ 5 n ξ 0 3 ξ 0 4 ξ 3 3 ξ δξ 3 ξ 4 n 2 ξ 3 ξ 4 1 δξ ξ 6 n 2 ξ ξ 6 1 δξ 2 ξ 5 n 2 ξ 2 ξ 5 1 δξ 3 ξ 4 n 2 1 cos π 1 2δ cos 2π n 2 1 cos 2π 1 2δ cos 4π n 2 1 cos 4π 1 2δ cos 6π n Remar In the sequel, for δ 1, we obtain from 3.15 C n3 2C n2 C n1 C n for every n N. Of course, the elements of the sequences {B n } and {A n } satisfy the identity The characteristic polynomial of 3.20 has the following decomposition: see Corollary 2.4 X 3 2X 2 X 1 X 1 ξ ξ 6 X 1 ξ 2 ξ 5 X 1 ξ 3 ξ 4, where ξ expi2π/. Moreover, the decompositions of C n there are cyclic transformations of the sums ξ ξ 6, ξ 2 ξ 5 and ξ 3 ξ 4 in elements of the first equality follows immediately from 3.1 C n ξ 2 ξ 5 ξ 3 ξ 4 1 ξ ξ 6 n ξ 3 ξ 4 ξ ξ 6 1 ξ 2 ξ 5 n ξ ξ 6 ξ 2 ξ 5 1 ξ 3 ξ 4 n ξ ξ 6 ξ 3 ξ 4 1 ξ ξ 6 n 1 ξ 2 ξ 5 ξ ξ 6 1 ξ 2 ξ 5 n 1 for every n 1, 2, 3, ξ 3 ξ 4 ξ 2 ξ 5 1 ξ 3 ξ 4 n

11 Lemma The following summation formulas for the elements of the sequences {C n δ}, {B n δ} and {A n δ} hold: hence, from 3.12 we obtain δ δ N A n δ B N1 δ δ; 3.22 n1 N B n δ C N1 δ δ n1 N C n δ; 3.23 n1 i.e., N N N A N1 δ A 1 δ 2δ B n δ δ C n δ 2C N1 δ δ C n δ, 3.24 n1 n1 n1 N δ C n δ 1 A N1 δ 2C N1 δ; 3.25 n1 δ N C n δ C N1 δ B N1 δ 3.26 n1 3 2 A N1 δ 2 δ δ A N2δ; N δ 3 C n δ C N3 δ δ 2C N2 δ 1 δ 2δ 2 C N1 δ δ 2 and n1 C N2 δ δ 2C N1 δ δ 3 2δ 2 δ 1C N δ δ 2 ; 3.2 δ N B n δ 1 A N1 δ C N1 δ 3.28 n1 N δ 3 B n δ C N3 δ δ 2C N2 δ 1 δ δ 2 C N1 δ δ n1 Definition We define A n δ : 3A n δ B n δ C n δ, δ C, n N. Moreover, we set A n : A n 1 see Table and A in []. Lemma From identities the following special identities can be deduced: a A 2 n A 2n 2ξ ξ 6 n 2ξ 2 ξ 5 n 2ξ 3 ξ 4 n A 2n 2 2 cos 2π n 2 2 cos 4π n 2 2 cos 6π n 11

12 or 2 cos 2π and 4 cos 2π cos 4π n 2 cos 4π n 2 cos 6π n 1 2 A2 n A 2n, n 4 cos 2π cos 6π n 4 cos 4π cos 6π n 1 n[ 1 ξ ξ 6 n 1 ξ 2 ξ 5 n 1 ξ 3 ξ 4 n] 1 n A n. Consequently, we get the following decomposition: X 2 cos 2π n X 2 cos 4π n X 2 cos 6π n X A2 n A 2n X 2 1 n A n X 1; b 1 2 n A n 2 cos π 2n cos 2π 2n cos 3π 2n; c A 3 n A 3n 6 1 n 3A n 1 3ξ ξ 6 ξ 2 ξ 5 1 n 3ξ 3 ξ 4 ξ ξ 6 1 n 3ξ 2 ξ 5 ξ 3 ξ 4 1 n ; d e C n1 A n C n A n1 1 ξ 3 ξ 4 4ξ 2 ξ 5 ξ 3 ξ 4 n 1 ξ 2 ξ 5 4ξ ξ 6 ξ 2 ξ 5 n 1 ξ ξ 6 4ξ 3 ξ 4 ξ ξ 6 n 1 2 cos 6π 8 cos 4π 2 cos 6π n 1 2 cos 4π 8 cos 2π 2 cos 4π n ; for n 2, 4; 1 2 cos 2π 8 cos 6π 2 cos 2π n ; for n 6; 0; for n 8; 14; for n 1; A n1/2 ; for n 3, 5, ; B n1 C n1 2A n1 A n B n C n B n C n 2A n A n1 B n1 C n1 8 3ξ 2 ξ 5 ξ ξ 6 n 8 3ξ ξ 6 ξ 3 ξ 4 n 8 3ξ 3 ξ 4 ξ 2 ξ 5 n 8 6 cos 4π 2 cos 2π n 8 6 cos 2π 2 cos 6π n 8 6 cos 6π 2 cos 4π n 14; for n 1; 49; for n 2; 56; for n 3, 12

13 and a more general identity f αa n1 βb n1 γc n1 εa n ωb n ϕc n αa n βb n γc n εa n1 ωb n1 ϕc n1 α 0 β 0 ξ ξ 6 γ 0 ξ 2 ξ 5 1 ξ ξ 6 n1 α 0 β 0 ξ 2 ξ 5 γ 0 ξ 3 ξ 4 1 ξ 2 ξ 5 n1 α 0 β 0 ξ 3 ξ 4 γ 0 ξ ξ 6 1 ξ 3 ξ 4 n1 ε 0 ω 0 ξ ξ 6 ϕ 0 ξ 2 ξ 5 1 ξ ξ 6 n where ε 0 ω 0 ξ 2 ξ 5 ϕ 0 ξ 3 ξ 4 1 ξ 2 ξ 5 n ε 0 ω 0 ξ 3 ξ 4 ϕ 0 ξ ξ 6 1 ξ 3 ξ 4 n α 0 β 0 ξ ξ 6 γ 0 ξ 2 ξ 5 1 ξ ξ 6 n α 0 β 0 ξ 2 ξ 5 γ 0 ξ 3 ξ 4 1 ξ 2 ξ 5 n α 0 β 0 ξ 3 ξ 4 γ 0 ξ ξ 6 1 ξ 3 ξ 4 n ε 0 ω 0 ξ ξ 6 ϕ 0 ξ 2 ξ 5 1 ξ ξ 6 n1 ε 0 ω 0 ξ 2 ξ 5 ϕ 0 ξ 3 ξ 4 1 ξ 2 ξ 5 n1 ε 0 ω 0 ξ 3 ξ 4 ϕ 0 ξ ξ 6 1 ξ 3 ξ 4 n1 A ξ ξ 6 B ξ 2 ξ 5 C ξ ξ 6 n A ξ ξ 6 C ξ 3 ξ 4 B ξ 3 ξ 4 n A ξ 2 ξ 5 B ξ 3 ξ 4 C ξ 3 ξ 5 n A 2 cos 2π B 2 cos 4π C 2 cos 2π n A 2 cos π B 2 cos 2π C 2 cos π n A 2 cos 4π B 2 cos π C 2 cos 4π n, A : 5ε 0 β 0 5α 0 ω 0 α 0 ϕ 0 ε 0 γ 0 2ω 0 γ 0 2β 0 ϕ 0, B : 5α 0 ω 0 ε 0 β 0 3ε 0 γ 0 3α 0 ϕ 0 γ 0 ω 0 β 0 ϕ 0, C : 2ε 0 β 0 2α 0 ω 0 2β 0 ϕ 0 2γ 0 ω 0 ε 0 γ 0 α 0 ϕ 0, α 0 : 3α β γ, β 0 : α 2β γ, γ 0 : α β 2γ, ε 0 : 3ε ω ϕ, ω 0 : ε 2ω ϕ, ϕ 0 : ε ω 2ϕ. Proof. The identity b follows from

14 Remar The sequence { 1 2 A2 n A 2n } n1 see Table is an accelerator sequence for Catalan s constant see [1]. The generating function of these numbers has the form see also A in []. 3 2x 2x 2 1 x 2x 2 x 3 Some applications of identities will be presented now. 3.1 Reduction formulas for indices Lemma The following identities hold: Proof. First, we note that A mn δ A m δa n δ 2B m δb n δ C m δc n δ 3.30 B m δc n δ B n δc m δ, B mn δ C m δc n δ A m δb n δ A n δb m δ, 3.31 C mn δ B m δb n δ C m δc n δ A m δc n δ 3.32 A n δc m δ B m δc n δ B n δc m δ. 1 δξ ξ 6 mn A mn δ B mn δξ ξ 6 C mn δξ 2 ξ 5. On the other hand, we have 1δξ ξ 6 mn 1 δξ ξ 6 m 1 δξ ξ 6 n A m δ B m δξ ξ 6 C m δξ 2 ξ 5 A n δ B n δξ ξ 6 C n δξ 2 ξ 5 A m δa n δ B m δb n δξ 2 ξ 5 2 C m δc n δξ 4 ξ 3 2 A m δb n δξ ξ 6 A m δc n δξ 2 ξ 5 A n δb m δξ ξ 6 A n δc m δξ 2 ξ 5 B m δc n δξ ξ 6 ξ 2 ξ 5 B n δc m δξ ξ 6 ξ 2 ξ 5 we have ξ ξ 6 ξ 2 ξ 5 ξ 3 ξ 6 ξ ξ 4 1 ξ 2 ξ 5 A m δa n δ 2B m δb n δ C m δc n δ B m δc n δ B n δc m δ ξ ξ 6 A m δb n δ A n δb m δ C m δc n δ ξ 2 ξ 5 B m δb n δ C m δc n δ A m δc n δ A n δc m δ B n δc m δ B m δc n δ hence by linear independence of 1, ξ ξ 6 2 cos 2π, ξ2 ξ 5 2 cos 4π Lemma 2.8 the reduction formulas follow. over Q and by 14

15 Corollary 3.1. We have A 2n δ A 2 nδ B 2 nδ B n δ C n δ 2, 3.33 B 2n δ 2A n δb n δ C 2 nδ, 3.34 C 2n δ B 2 nδ C 2 nδ 2C n δa n δ B n δ Remar Which comes from [], sequence A Let u, v, w be defined by u1 1, v1 0, w1 0 and Then we have u 1 u v w, v 1 u v, w 1 u. un 1 A n, vn 1 B n, wn 1 B n C n ; for every n N {0}. So, according to Table 2 we get {un} 1, 1, 3, 6, 14, 31,..., {vn} 0, 1, 2, 5, 11, 25,..., and {wn} {un} Benoit Cloitre abcloitre@wanadoo.fr, Apr Moreover u 2 v 2 w 2 u2 Gary Adamson, Dec The n-th term of the sequence {un} is the number of paths for a ray of light that enters two layers of glass, and then is reflected exactly n times before leaving the layers of glass. One such path with 2 plates of glass and 3 reflections might be...\.../ \/\.../ \/

16 Corollary We have A 3n δ A n δa 2n δ B n δc 2n δ B 2n δc n δ B n δb 2n δ C n δc 2n δ A 3 nδ B 3 nδ 6A n δb 2 nδ 3A n δc 2 nδ 3B n δc 2 nδ 3B 2 nδc n δ 6A n δb n δc n δ, B 3n δ A 2n δb n δ A n δb 2n δ C n δc 2n δ 3.3 2B 3 nδ C 3 nδ 3A 2 nδb n δ 3A n δc 2 nδ 3B n δc 2 nδ 3B 2 nδc n δ, C 3n δ B n vb 2n δ A n δc 2n δ A 2n δc n δ C n δc 2n δ 3.38 B n δc 2n δ B 2n δc n δ 3C 3 nδ B 3 nδ 3A 2 nδc n δ 3A n δb 2 nδ 3B 2 nδc n δ 6A n δb n δc n δ. Lemma The following identities are satisfied: A n δ 1 A n δ 2B δ C δ C δ B δ B n δ A δ C δ C n δ B δ C δ A δ B δ C δ, 3.39 B n δ 1 A δ A n δ C δ B δ B δ B n δ C δ C δ C n δ A δ B δ C δ, 3.40 and where C n δ 1 A δ 2B δ C δ A n δ B δ A δ B n δ C δ B δ C δ C n δ A δ 2B δ C δ C δ B δ : B δ A δ C δ C δ B δ C δ A δ B δ C δ., 3.41 Proof. First we note that 1 δξ ξ 6 n An δ B n δξ ξ 6 C n δξ 2 ξ 5. On the other hand we obtain 1 δξ ξ 6 n 1 δξ ξ 6 n 1 δξ ξ6 A nδ B n δξ ξ 6 C n δξ 2 ξ 5 A δ B δξ ξ 6 C δξ 2 ξ 5. The final form of formulas 3.39, 3.40 and 3.41 from the following identity could be derived: a bξ ξ 6 cξ 2 ξ 5 d eξ ξ 6 fξ 2 ξ 5 α βξ ξ6 γξ 2 ξ 5, 16

17 where α : 1 a 2e f f e D b d f c e f d e f, β : 1 d a f e D e b f f c d e f, γ : 1 d 2e f a d 2e f f e D e d b and D : e d f f e f c f e f d e f. Lemma The following identity for the determinant from Lemma 3.20 holds: A δ 2B δ C δ C δ B δ B δ A δ C δ C δ B δ C δ A δ B δ C δ A δ 3 B δ 3 C δ 3 3A δb δc δ A δ 2 B δ C δ 2A δ B δ 2 C δ 2 3 B δ 2 C δ 4B δ C δ 2 δ 3 2δ 2 δ Proof. By 3.16 we obtain [ 1 δξ ξ 6 1 δξ 2 ξ 5 1 δξ 3 ξ 4 ] δ 3 2δ 2 δ On the other hand, by we get 1 δξ ξ 6 1 δξ 2 ξ 5 1 δξ 3 ξ 4 1 δξ ξ 6 1 δξ 2 ξ 5 1 δξ 3 ξ 4 A δ B δξ ξ 6 C δξ 2 ξ 5 A δ B δξ 2 ξ 5 C δξ 3 ξ 4 A δ B δξ 3 ξ 4 C δξ ξ 6 A δ 3 a B δ 3 a C δ 3 b A δb δc δ c A δ 2 B δ C δ B d A δ δ 2 C δ 2 e B δ 2 C δ f B δ C δ 2, 3.44 where see Lemma 2.3 a ξ ξ 6 ξ 2 ξ 5 ξ 3 ξ 4 1, b ξ ξ 6 ξ 2 ξ 5 ξ ξ 6 ξ 3 ξ 4 ξ 2 ξ 5 ξ 3 ξ 4 ξ ξ 6 2 ξ 2 ξ 5 2 ξ 3 ξ 4 2 3, c ξ ξ 2 ξ 3 ξ 4 ξ 5 ξ 6 1, d ξ ξ 6 ξ 2 ξ 5 ξ ξ 6 ξ 3 ξ 4 ξ 2 ξ 5 ξ 3 ξ 4 2, e ξ ξ 6 2 ξ 2 ξ 5 ξ ξ 6 ξ 3 ξ 4 2 ξ 2 ξ 5 2 ξ 3 ξ 4 3, f ξ ξ 6 ξ 2 ξ 5 2 ξ ξ 6 2 ξ 3 ξ 4 ξ 2 ξ 5 ξ 3 ξ

18 Hence 3.42 follows from 3.43 and Reduction formulas for δ-arguments Next, our aim will be to prove some more general identities connecting the quasi-fibonacci numbers with different δ s δ 2. Let us start with the following formula: 2 δξ 2 ξ 5 δξ 3 ξ 4 n 2 δ δξ ξ 6 n 2 δ n 1 δ 2 δ n B n δ δ 2 n δ δ 2 ξ ξ6 2 δ n A n δ 2 δ ξ ξ 6 2 δ n C n δ 2 ξ 2 ξ But, we can deduce another equivalent formula n 1 2 δξ 2 ξ 5 δξ 3 ξ 4 δξ 2 ξ 5 1 δξ 3 ξ 4 n 3.46 n 1 δξ 2 ξ 5 1 δξ 3 ξ 4 n n A δ B δξ 2 ξ 5 C δξ 3 ξ 4 A n δ B n δξ 3 ξ 4 C n δξ ξ 6 n A δa n δ A δb n δξ 3 ξ 4 A δc n δξ ξ 6 A n δb δξ 2 ξ 5 B δb n δξ 5 ξ 6 ξ ξ 2 B δc n δξ 3 ξ ξ 6 ξ 4 A n δc δξ 3 ξ 4 B n δc δξ ξ 6 2 C δc n δξ 4 ξ 5 ξ 2 ξ 3 n A δa n δ A δb n δ B δc n δ A n δc δ 2B n δc δ C δc n δ n ξ ξ 6 A δb n δ A δc n δ B δb n δ A n δc δ B n δc δ C δc n δ n ξ 2 ξ 5 A δb n δ A n δb δ B δb n δ B δc n δ A n δc δ. From 3.45 and 3.46, again by linear independence of 1, ξ ξ 6 2 cos 2π and ξ2 ξ 5 2 cos 4 π over Q and by Lemma 2.8 the identities below can be generated: 18

19 Lemma We have δ 2 δ n A n δ 2 and n A δa n δ A δb n δ 3.4, B δc n δ A n δc δ 2B n δc δ C δc n δ δ 2 δ n B n δ 2 n A δb n δ A δc n δ 3.48 B δb n δ A n δc δ B n δc δ C δc n δ δ 2 δ n C n δ 2 n A δb n δ A n δb δ B δb n δ B δc n δ A n δc δ In the sequel, from the above formulas the following special identities can be obtained: the case δ 1 n A A n 1 A n A B n B C n A n C 3.50 the case δ 3 2B n C C C n, n B n 1 A B n A C n B B n A n C 3.51 C n 1 1 n A n 3 B n C C C n, n A B n A n B B B n 3.52 B C n A n C ; n A 3A n 3 A 3B n B 3C n 3 A n 3C 3 2B n 3C 3 C 3C n 3, n 1 n B n 3 A 3B n 3 A 3C n B 3B n 3 A n 3C 3 B n 3C 3 C 3C n 3, n 1 n C n 3 A 3B n 3 A n 3B B 3B n 3 B 3C n 3 A n 3C 3. 19

20 The case δ 2 must be treated in another way 2 2ξ 2 ξ 5 2ξ 3 ξ 4 2n 2ξ ξ 6 2n 2 2n 2 ξ 2 ξ 5 n 2 3n ξ2 ξ 5 n 2 A 3n 1 n 2 1 Bn 2 ξ 2 ξ 5 C 1 n 2 ξ 3 ξ 4 2 A 3n 1 n 2 1 Bn 2 ξ 2 ξ 5 C 1 n 2 1 ξ ξ 6 ξ 2 ξ 5 2 A 3n 1 n 2 1 Cn 2 1 Bn 2 1 Cn 2 ξ 2 ξ 5 C 1 n 2 ξ ξ 6, which, by 3.46, implies the next five identities 2 3n A n 1 2 Cn n A 2A 2n 2 A 2B 2n B 2C 2n 2 A 2n 2C 2 2B 2n 2C 2 C 2C 2n 2, 2 3n B 1 n n Cn 2 A 2B 2n 2 A 2n 2B B 2B 2n 2 B 2C 2n 2 A 2n 2C 2, 2 3n C 1 2 2n n 2 A 2B 2n 2 A 2C 2n B 2B 2n 2 A 2n 2C 2 B 2n 2C 2 C 2C 2n, hence, after some manipulations, we obtain 2 3n A n n A 2A 2n 2 A 2C 2n B 2B 2n 2 B 2C 2n 2 B 2n 2C 2, 2 3n B 1 2 2n n 2 A 2C 2n 2 A 2n 2B B 2C 2n 2 B 2n 2C 2 C 2C 2n 2. We have also the identity 1 ξ ξ 6 1 δ ξ 2 ξ 5 1 ξ ξ 6 δ, i.e., 1 ξ ξ 6 n 1 δ ξ 2 ξ 5 n 1 ξ ξ 6 n, δ 20

21 which, by 3.1 and 3.2, yields A n B n ξ ξ 6 C n ξ 2 ξ 5 A n δ B n δ ξ 2 ξ 5 C n δ ξ 3 ξ 4 n 1 δ n ξ ξ 6 n δ n A ξ ξ 6 n n δ n B ξ 2 ξ 5 n Hence, by Lemma 2.8, the following three identities can be discovered: δ n n C. A n A n δ A n C n δ B n B n δ B n C n δ C n B n δ 3.61 n δ n A, A n C n δ B n A n δ B n C n δ C n B n δ C n C n δ 3.62 n δ n B, A n B n δ A n C n δ B n B n δ C n A n δ C n B n δ C n C n δ 3.63 n δ n C. 3.3 Polynomials associated with quasi-fibonacci numbers of order Directly from equation 3.1 we obtain for x : 1 2δ cos 2π, 1, 2, 3 x n A n δ B n δ 2 cos 2π C n δ 2 cos 4π A n δ B nδ x B nδ C nδ 2δ 2 2 cos 2 2π δ δ δ 2 1 i.e., A n δ B nδ δ A n δ B nδ δ x B nδ δ C nδ δ 2 C nδ δ 2 x 2 2x 1 2δ 2 2δ 2 1 B nδ δ W n, x;δ : δ 2 x n C n δx 2 2C n δ δb n δx x 2 C nδ x δ 2 C nδ x 2 δ, 2 δb n δ 2δ 2 1C n δ δ 2 A n δ 0 for x x, 1, 2, 3. So, by identity 3.16 the polynomial p X;δ is a divisor of the polynomial W n, X;δ for every n 3. In the sequel we obtain for δ 1 x 3 2x 2 x 1 x n C n x 2 2C n B n x B n C n A n

22 for every n N, n 3. More precisely, the following decomposition holds: hence, for δ 1, we obtain x 3 2x 2 x 1 n 2 n 2 p X;δ C 1 δx n 2 W n, X;δ, B x n 2 x n C n x 2 2C n B n x B n C n A n Remar Equation 3.65 after differentiating and some manipulating enables us to generate the sums formulas of the following form: r1 p X;δ r C δx n r r polynomial depending on W n, X;δ, p X;δ and their derivatives For example, the identity 3.65 implies the identity 3.25 for X 1. Remar There exist other ways to obtain the relation For example, by 3.5 we have αa n1 δ βb n1 δ γc n1 δ α β δ A n δ 2αδ β γ δ B n δ δ α 1 δγ C n δ. 3.6 We are interested when the following system of equations holds: α β δ α 2αδ β γ δ β which is equivalent to the following one: γ β 1 2 2α 2, α β α β α β α δ α 1 δγ, γ 1 0. Hence, by Remar 3.11, it follows that β { α 1 2 cos 2π } : 1, 2, 3. So the equation 3.6 then has the following form: A n1 δ 2 cos 2π B n1δ 1 2 cos 2π 1Cn1 δ 1 2δ cos 2π A n δ 2 cos 2π B nδ 1 2 cos 2π 1Cn δ 1 2δ cos 2π n A 1 δ 2 cos 2π B 1δ 1 2 cos 2π 1C1 δ by δ cos 2π n1 22

23 or i.e., δ 2 x n1 δ x δ 1 A n δ x δ 1 x 1 B n δ δ 2 C n δ, δ 2 x n1 x 2 B n δ x 2 δb n δ δ A n δ for x : 1 2δ cos 2π, 1, 2, 3, which is equivalent to δ 1 δa n δ δ 1B n δ δ 2 C n δ 0 W n, X;δ 0. Lemma Immediately from 3.66 we obtain the following identities: and x 3 2x 2 x 1 2 n 2 B x n 2 1 n 3 x 3 2x 2 x 1 2 n 2 B x n 3 1 n 3x n2 2n 2x n1 n 1x n nx n 1 C n x 4 2B n 2C n x 3 3A n 5B n 2C n x 2 4A n 4B n 2C n x A n 3C n, 3.68 x 3 2x 2 x 1 3 n 2 B x n 2 n 2 n 12x n4 1 4n 2 24n 32x n3 2n 2 10n 18x n2 6n 2 24n 6x n1 3n 2 9n 6x n 2n 2n 2 x n 1 n 2 nx n 2 2C n x 6 6B n 12C n x 5 12A n 24B n 18C n x 4 32A n 42B n 6C n x 3 18A n 30B n 18C n x 2 6A n 6B n 30C n x 6A n 4B N 8C n Corollary We have n 2 B A n 2C n 1, 1 n 2 1 B 1 1 n A n 2B n 2C n, 1 n 3 n 2 B 2A n 2C n 1 n B n, 1 n 2 B na n B n 2nC n, 1 n 3 n 2 1 B 6 n 1 n 1 6A n 11B n 8C n, 1 23

24 and n 3 1 B 4 1 6A n n 11B n 8C n 1 n 2 A n 2B n 2C n B n Numerical remars about the zeros of polynomials B n x Let us set Then, B n x : B x n, n N. 1 B 1 x 1, B 2 x x 2, B 3 x x 2 2x 5, and, thus, we have the recurrence relations see 3.20 B n3 x x n2 2B n2 x B n1 x B n x, n 1. All polynomials B n x for n 2 1, N, have an even degree, for example B 5 x x 4 2x 3 5x 2 11x 25, B x x 6 2x 5 5x 4 11x 3 25x 2 56x 126. As follows from calculations, these polynomials have no real zeros for n 200. However, all polynomials B n x for n 2, N, have an odd degree, for example B 4 x x 3 2x 2 5x 11, B 6 x x 5 2x 4 5x 3 11x 2 25x 56. These polynomials have exactly one real zero, which is less than zero for n 200. The zeros s n of the consecutive polynomials B n mae a decreasing sequence from s 2 2 to s by numerical calculations. Remar 3.2. All numerical calculations were made in Mathematica. 1 Acnowledgment The authors wish to express their gratitude to the referee for several helpful comments and suggestions concerning the first version of our paper. 1 Mathematica is registered trademar of Wolfram Research Inc. 24

25 Table 1: A n δ n 0 1 n 1 1 n 2 2δ 2 1 n 3 δ 3 6δ 2 1 n 4 5δ 4 4δ 3 12δ 2 1 n 5 5δ 5 25δ 4 10δ 3 20δ 2 1 n 6 14δ 6 30δ 5 5δ 4 20δ 3 30δ 2 1 n 19δ 98δ 6 105δ 5 15δ 4 35δ 3 42δ 2 1 B n δ n 0 0 n 1 δ n 2 2δ n 3 2δ 3 3δ n 4 δ 4 8δ 3 4δ n 5 5δ 5 5δ 4 20δ 3 5δ n 6 5δ 6 30δ 5 15δ 4 40δ 3 6δ n 14δ 35δ 6 105δ 5 35δ 4 0δ 3 δ C n δ n 0 0 n 1 0 n 2 δ 2 n 3 δ 3 3δ 2 n 4 3δ 4 4δ 3 6δ 2 n 5 4δ 5 15δ 4 10δ 3 10δ 2 n 6 9δ 6 24δ 5 45δ 4 20δ 3 15δ 2 n 14δ 63δ 6 84δ 5 105δ 4 35δ 3 21δ 2 25

26 Table 2: n A n B n C n Table 3: n A n 1 B n 1 C n Table 4: n A n 1 2 B n 1 2 C n Table 5: n A n 2 B n 2 C n

27 Table 6: n A n 3 B n 3 C n Table : n A n 1 2 A2 n A 2n A n References [1] D. M. Bradley, A class of series acceleration formulae for Catalan s constant, Ramanujan J , [2] R. L. Graham, D. E. Knuth and O. Patashni, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, [3] R. Grzymowsi and R. Witu la, Calculus Methods in Algebra, Part One, WPKJS, 2000 in Polish. [4] J. Kappraff and G. W. Adamson, A unified theory of proportion, Vis. Math , electronic. [5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, [6] I. Niven, Irrational Numbers, MAA, 1956 appendix to the russian edition written by I. M. Yaglom. [] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, [8] P. Steinbach, Golden fields: a case for the heptagon, Math. Magazine 0 199, [9] D. Surowsi and P. McCombs, Homogeneous polynomials and the minimal polynomial of cos2π/n, Missouri J. Math. Sci ,

28 [10] W. Watins and J. Zeitlin, The minimal polynomials of cos2π/n, Amer. Math. Monthly , Mathematics Subject Classification: Primary 11B83, 11A0; Secondary 39A10. Keywords: Fibonacci numbers, primitive roots of unity, recurrence relation. Concerned with sequences A006054, A006356, A033304, A085810, and A Received January ; revised version received August ; September Published in Journal of Integer Sequences, September Revised version, correcting some errors, April Return to Journal of Integer Sequences home page. 28

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Applicable Analysis and Discrete Mathematics available online at Roman Witu la, Damian S lota

Applicable Analysis and Discrete Mathematics available online at  Roman Witu la, Damian S lota Applicable Analysis Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math. 3 2009, 310 329. doi:10.2298/aadm0902310w δ-ibonacci NUMBERS Roman Witu la, Damian S

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

EQUATIONS OF DEGREE 3 AND 4.

EQUATIONS OF DEGREE 3 AND 4. EQUATIONS OF DEGREE AND 4. IAN KIMING Consider the equation. Equations of degree. x + ax 2 + bx + c = 0, with a, b, c R. Substituting y := x + a, we find for y an equation of the form: ( ) y + py + 2q

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2, Logsine integrals Notes by G.J.O. Jameson The basic logsine integrals are: log sin θ dθ = log( sin θ) dθ = log cos θ dθ = π log, () log( cos θ) dθ =. () The equivalence of () and () is obvious. To prove

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα