New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Divergent synthesis of various iminocyclitols from D-ribose

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Electronic Supplementary Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supplementary information

Supporting Information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Palladium-Catalyzed C H Monoalkoxylation of α,β-unsaturated Carbonyl Compounds

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Experimental section

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information. Experimental section

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Effect of uridine protecting groups on the diastereoselectivity

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information for

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting information

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Supporting Information

Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supporting Information

Supporting information

Supporting Information

Supporting Information

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information

Supporting Information

Supporting Information

Stable Analogues of Nojirimycin Synthesis and Biological. Evaluation of Nojiristegine and manno-nojiristegine

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Oxidative Activation of C S Bonds with an Electropositive Nitrogen Promoter Enables Orthogonal Glycosylation of Alkyl over Phenyl Thioglycosides

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supporting Information

The Free Internet Journal for Organic Chemistry

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Toward the Total Synthesis of Amphidinolide N: Synthesis of the C8 C29 Fragment

Selective mono reduction of bisphosphine

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Supporting Information For

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Supporting Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information. Design and Synthesis of 2-Arylbenzimidazoles and. Evaluation of Their Inhibitory Effect against. Chlamydia pneumoniae

Acylative Suzuki coupling of amides: Acyl-nitrogen activation via synergy of independently modifiable activating groups

Supporting Information

Synthesis of eunicellane-type bicycles embedding a 1,3- cyclohexadiene moiety

Asymmetric Transamination of α-keto Acids Catalyzed by. Chiral Pyridoxamines

Electronic Supplementary Information (ESI)

Supporting information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Experimental procedure

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information for. Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones

Supporting Information. Preparation of aminoethyl glycosides for glycoconjugation

Supporting Information. Chemoselective Acylation of 2-Amino-8-quinolinol in the Generation of C2-Amides or C8-Esters

Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation

Electronic Supplementary Information

Transcript:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 214 Supporting Information New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides Omkar P. Dhamale, Chengli Zong, Kanar Al-Mafraji and Geert-Jan Boons* Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 362. E-mail: gjboons@ccrc.uga.edu; Fax: +1 76-542-4412 Table of contents: Preparations and characterizations of compounds 37, 38, S1-S6 Copies of 1 H and HSQC NMR spectra

Methyl (Phenyl 2-O-levulinoyl-3-O-benzyl-4-O-(9-fluorenylmethoxycarbonyl)-1-thio-α-Lidopyranoside)uronate (37). Compound 37 was prepared according to a literature procedure (S. U. Hansen, G. J. Miller, G. C. Jayson and J. M. Gardiner, Org. Lett., 213, 15, 88-91). 1 H NMR (3 MHz, CDCl 3 ) δ 7.82 7.22 (m, 18H, CH Aromatic), 5.64 (s, 1H, H-1), 5.42 (d, J = 2.1 Hz, 1H, H-5), 5.22 5.9 (m, 2H, H-2, H-5), 4.85 (d, J = 11.7 Hz, 1H, CHHBn), 4.79 4.68 (d, J = 11.7 Hz, 1H, CHHBn), 1 (dd, J = 1.3, 7.3 Hz, 1H, CHHNap ), 4.36 (dd, J =, 7.3 Hz, 1H, CHHNap), 4.22 (t, J = 7.2 Hz, 1H, CHNap), 3.95 (t, J = 2.9 Hz, 1H, H-3), 3.79 (s, 3H,COOCH 3 ), 2.77 2.37 (m, 4H, CH 2 Lev), 2.3 (s, 3H, CH 3 Lev). 13 C NMR (75 MHz, CDCl 3 ) δ 13.7, 127.7, 12, 124.7, 119.8, 85.8, 73.7, 71.6, 69.3, 69.6, 67.7, 6, 49., 46.7, 29.9, 28.2. HRMS: m/z: calcd for C 4 H 38 O 1 SNa: 733.283; found: 733.29 [M+Na] +. N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl-O-(methyl-2-O-levulinoyl-3-O-benzyl-α-Lidopyranosyluronate)-(1 4)-O-2-azido-3-O-benzyl-6-O-levulinoyl-α-D-glycopyranoside (38). A suspension of compounds 37 (1 g, 2.13 mmol), 3 (1.1 g, 1.42 mmol) and activated molecular sieves (4Å crushed, 15 mg) in dichloromethane (2 ml) was stirred at ambient temperature under an atmosphere of Ar for 1 h. The mixture was cooled to o C followed by addition of NIS (.35 mg, 6 mmol) and AgOTf (.18 g,.71 mmol). TLC analysis (hexane/etoac, 1/1, v/v) showed complete consumption of the donor. Et 3 N (4 ml) was added and stirred for another 1 h followed by filtration through a pad of Celite and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of hexane /EtOAc (2/1 1/1, v/v) to give compound 38 as oil (1.7 g, 7%). (NMR data reported in: S. Arungundram, K. Al-Mafraji, J. Asong, F. E. Leach, III, I. J. Amster, A. Venot, J. E. Turnbull and G. J. Boons, J. Am. Chem. Soc., 29, 131, 17394-1745). S2

Ph O O BnO O OH OTDS a HO BnO BnO S1 O OH OTDS b MeOOC BnO BnO O OH S2 OTDS c MeOOC BnO BnO O OR 1 OR 2 d MeOOC BnO BnO O OR OTCAI S3, R2 =H, R 1 = Ac S4, R2 = TDS, R 1 = Lev S5, R2= TDS, R 3 = PivOAc 21, R = Ac 23, R = Lev 25, R = PivOAc Scheme S1. Synthesis of glucuronic acid donors with C-4 benzyl ether. Reagents and conditions: a) Et 3 SiH,, PhBCl 3, 3Å Molecular sieves, DCM, -78 C (91%); b) (i) TEMPO, BAIB, rt, DCM, H 2 O; (ii) CH 2 N 2, Et 2 O, (84%); c) (i) Ac 2 O, pyridine and then HF:Pyr. THF (79%, S3); (ii) levulinic acid, DCC, DMAP, rt, DCM, (89%, S4); (iii) PivOAc-Cl, DMAP, Pyr., (88%, S5); d) (i) HF:Pyr. THF; (ii) Cl 3 CCN, NaH, DCM. Dimethylthexylsilyl 3,4-O-benzyl-β-D-glucopyranoside (S1). A solution of compound 1 (1. g, 2. mmol) and activated molecular sieves (3Å, 1. g) in dichloromethane (2 ml) was stirred at ambient temperature under an atmosphere of Ar for 1 h. The mixture was cooled to -78 o C followed by addition of Et 3 SiH (576 µl, 6. mmol) and PhBCl 2 ( ml, 7. mmol). After being stirred for 1 h at -78 o C, Et 3 N (3 ml) and MeOH (3 ml) were added successively, and the mixture was diluted with CHCl 3 (2 ml) and washed with NaHCO 3 (sat.), dried (MgSO 4 ), filtered and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of CHCl 3 /MeOH (95/5 8/2, v/v) to give compound S1 as oil (.91 g, 91%). 1 H NMR (5 MHz, CDCl 3 ) δ 2 7.2 (m, 1H, CH Aromatic), 4.98 (d, J = 11.2 Hz, 1H, CHHBn), 4.89 (dd, J = 18.4, 11.1 Hz, 2H, CHHBn, CHHBn), 4.67 (d, J = 11. Hz, 1H, CHHBn), 8 (d, J = Hz, 1H, H-1), 3.86 (dd, J = 11.9, 2.9 Hz, 1H, H-6a), 3.76 3.53 (m, 3H, H6b, H-4, H-3), 3.52 3.37 (m, 2H, H-2, H-5), 1.7-1.66 (m, 1H, CH(CH 3 ) 2 ),.95-.86 (m, 12H, C(CH 3 ) 2 and CH(CH 3 ) 2 ),.21 (s, 6H, Si(CH 3 ) 2 ). 13 C NMR (126 MHz, CDCl 3 ) δ 128., 97.7, 84.2, 76.8, 76.7, 7, 75.2, 75.1, 75., 62.3, 34.3, 1, -1.9. HRMS: m/z: calcd for C 28 H 42 O 6 SiNa: 525.2648; found: 525.2656 [M+Na] +. S3

Dimethylthexylsilyl O-methyl-3,4-O-benzyl-β-D-glucopyranosyluronate (S2). Compound S2 (355 mg, 84%) was prepared according to the general procedure from compound S1 (4 mg,.8 mmol) using TEMPO (3 mg,.2 mmol), BAIB (64 mg, 1.99 mmol) and freshly prepared solution of diazomethane in Et 2 O (2 ml). 1 H NMR (6 MHz, CDCl 3 ) δ 7.39 7.33 (m, 6H, CH Aromatic), 7.37 7.27 (m, 5H, CH Aromatic), 4.92 (d, J = 11.3 Hz, 1H, CHHBn), 4.86 4.8 (m, 2H, CHHBn, CHHBn), 4.62 (d, J = 11.3 Hz, 1H, CHHBn), 3 (d, J = 7.4 Hz, 1H, H-1), 3.92 3.87 (m, 1H, H-5), 3.84 (d, J = 8.9 Hz, 1H, H-4), 3.74 3.7 (m, 3H, COOCH 3 ), 3.59 (t, J = 9. Hz, 1H, H-3), 3.54 3.48 (m, 1H, H-2), 5 (d, J = 2.8 Hz, 1H, CH(CH 3 ) 2 ),.91.82 (m, 12H, C(CH 3 ) 2 and CH(CH 3 ) 2 ),.15 (s, 3H, SiCH 3 ),.17 (s, 3H, SiCH 3 ), 13 C NMR (151 MHz, CDCl 3 ) δ 126.7, 126.1, 125.6, 98., 82.7, 78.1, 76.93, 74.3, 74.2, 73.4, 56.4, 51.8, 33.1, 29.1, 2.8, 19.6, -.3. HRMS: m/z: calcd for C 29 H 42 O 7 SiNa: 553.2597; found: 553.269 [M+Na] +. Methyl-2-O-acetyl-3,4-O-benzyl-α/β-D-glucupyranosyluronate (S3). A solution of compound S2 (9 mg,.17 mmol) in a mixture of pyridine and acetic anhydride (4/1, v/v,.2 M) was stirred for 2 hr at ambient temperature. The mixture was co-evaporated with toluene in vacuo and dried on the membrane pump for 3 hours. To a stirred solution of the resulting crude material in THF (2 ml), 3% HF in pyridine (34 µl) was added. After stirring at ambient temperature for 18 h, TLC analysis (hexanes/etoac, 6/4, v/v) indicated complete consumption of the starting material. The reaction mixture was subsequently diluted with DCM (1 ml), washed with water, NaHCO 3 (sat.), and brine. The organic phase was dried (MgSO 4 ), filtered, and the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using a gradient of hexanes/etoac (2/1 1/1, v/v) to give compound S3 as oil (57 mg, 79%). 1 H NMR (5 MHz, CDCl 3 ) δ 7.39 7.25 (m, 1H, CH Aromatic), (d, J = 3.6 Hz, 1H, H-1), 4.97 4.71 (m, 5H, H-2, 3 CHHBn), 4.66 (d, J = 1.9 Hz, 1H, CHHBn,), 3 (d, J = 9.3 Hz, 1H, H-5), 4.9 (t, J = Hz, 1H, H-3), 3.88 (t, J = 8. Hz, 1H, H-4), 3.76 (s, 3H, COOCH 3 ), (d, J = 9.4 Hz, 3H, COCH 3 ). 13 C NMR (126 MHz, CDCl 3 ) δ 129.8, 128.4, 128.3, 127.7, 9.8, 79.2, 78.7, 75.4, 75., 7, 72.9, 7.6, 51.9, 2. HRMS: m/z: calcd for C 23 H 26 O 8 Na: 453.1525; found: 453.1533 [M+Na] +. S4

Dimethylthexylsilyl O-methyl-2-O-levulinoyl-3,4-O-benzyl-β-D-glucupyranosyluronate (S4). A suspension of DCC (117 mg,.57 mmol) and DMAP (1 mg,.1 mmol) was added to a solution of compound S2 (1 mg,.19 mmol) and levulinilic acid (39 µl,.38 mmol) in DCM (1 ml) at C. After stirring for 6 h at ambient temperature, TLC analysis (hexanes/etoac, 7/3, v/v) indicated the consumption of the starting material. The mixture was filtered over pad of Celite and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of hexanes/etoac (3/1 1/1, v/v) to give compound S4 as oil (15 mg, 89%). 1 H NMR (5 MHz, CDCl 3 ) δ 7.35 7.24 (m, 11H, CH Aromatic), 4.99 (t, J = 9.3, 7.2 Hz, 1H, H-2), 4.79 (dd, J = 1, 5.2 Hz, 2H, CHHBn, CHHBn), 4.75 4.61 (m, 3H, H-1, CH 2 Bn), 3.98 3.9 (m, 2H, H-4, H-5), 3.75 (s, 3H, COOCH 3 ), 3.68 (t, J = 8.4 Hz, 1H, H-3), 2.68 (dt, J = 1, 6.8 Hz, 2H, CH 2 Lev), 2.49 (t, J = 6.8 Hz, 2H, CH 2 Lev), 2.17 (s, 3H, CH 3 Lev), 1.31 (s, 1H, CH(CH 3 ) 2 ),.88.81 (m, 12H, C(CH 3 ) 2 and CH(CH 3 ) 2 ),.17 (s, 3H, SiCH 3 ),.13 (s, 3H, SiCH 3 ). 13 C NMR (151 MHz, CDCl 3 ) δ 128.2, 127.9, 127.8, 127.7, 96.1, 82., 79., 74.9, 74.8, 7, 37.7, 3., 29.4, 27.8, 19., 1.3. HRMS: m/z: calcd for C 34 H 48 O 9 SiNa: 651.2965; found: 651.2972 [M+Na] +. Dimethylthexylsilyl O-methyl-2-O-(4-acetoxy-2,2-dimethylbunoate)-3,4-O-benzyl-β-Dglucupyranosyluronate (S5). To a stirring solution of compound S2 (1 mg,.19 mmol) in pyridine (1 ml), DMAP (3 mg,.19 mmol) and 4-acetoxy-2,2-dimethyl butanoyl chloride (45 µl,.38 mmol) was added at o C. After stirring for 4hr at ambient temperature, TLC analysis (hexanes/etoac, 7/3, v/v) indicated the total consumption of the starting material, after which the reaction mixture was diluted with EtOAc (1 ml) and washed with aqueous NaHCO 3 (1%), H 2 O, brine, dried (MgSO 4 ), filtered and the filtrate was concentrated under reduced pressure. The mixture was concentrated under reduced pressure and was purified by silica gel column chromatography using a gradient of hexanes/etoac (4/1 1/1, v/v) to compound S5 as oil (114 mg, 88%). 1 H NMR (6 MHz, CDCl 3 ) δ 7.36 7.14 (m, 1H, CH Aromatic), 5.6 4.92 (m, 1H, H-2), 4.85 9 (m, 5H, 4 CHHBn, H-1), 4.12 4.4 (t, 2H, CH 2 PivOAc), 3.75 3.66 (m, 4H, COOCH 3, H-4), 3.46 3.4 (t, J = Hz, 1H, H-3), 1.98 1.93 (m, 3H, CH 3 PivOAc), 1.85 (t, J = 7.7, 2H, CH 2 PivOAc), 1.61 (m, 1H, CH(CH 3 ) 2 ), 1.18 (d, J = 4.7 Hz, 6H, 2xCH 3 PivOAc),.88.81 (m, 12H, C(CH 3 ) 2 and CH(CH 3 ) 2 ),.18.11 (m, 6H, Si(CH 3 ) 2 ). 13 C NMR (151 MHz, CDCl 3 ) δ 128.4, 128.2, 127.7, 12, 127.4, 95.9, 82.6, 77.6, 75.3, 75.2, 74.7, S5

74.4, 61.2, 52.3, 38., 33.7, 25.2, 2.9, 19.7. HRMS: m/z: calcd for C 37 H 54 O 1 SiNa: 79.3384; found: 79.339 [M+Na] +. MeOOC HO BnO O OTDS OPivOAc a MeOOC NAPO BnO O OTDS OPivOAc b MeOOC NAPO BnO O OC(NH)CCl 3 OPivOAc 1 S6 27 Scheme S2. Synthesis of glucuronic donor with C-4 2-napthylmethyl ether. Reagents and conditions: a) 2- nathylmethyl bromide, NaH, TBAI, DMF, -2 o C (7%); b) (i) HF:Pyr. THF; (ii) Cl 3 CCN, NaH, DCM. Dimethylthexylsilyl O-methyl-2-O-(4-acetoxy-2,2-dimethylbunoate)-3-O-benzyl-4-O-(2- methyl-napthyl)-β-l-glucupyranosyluronate (S6). To stirring solution of compound 1 (3 mg,.5 mmol) in DMF (5 ml), 2-naphthylmethyl bromide (277 mg, 1.26 mmol) TBAI (2 mg,.1 mmol) and NaH (12 mg,.5 mmol) were added at -2 o C. After stirring for 3 min at -2 o C, TLC analysis (hexanes/etoac, 8/2, v/v) indicated total consumption of starting material. The reaction mixture was quenched with MeOH and was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of hexanes/etoac (5/1 1/1, v/v) to give compound S6 as oil (259 mg, 7%). 1 H NMR (3 MHz, CDCl 3 ) δ 7.77 (m, 12H, CH Aromatic), 4.91 (t, J =, 1H, H-2), 4.64 (m, J =11.1 Hz, 6H, CH 2 NAP, 3 CHHBn, H-1), 4.2 3.8 (m, 4H, H-4, H-5, CH 2 PivOAc), 3.65 3.51 (m, 4H, H-3, COOCH 3 ), 1.83 (d, J = Hz, 3H, CH 3 PivOAc), 1.73 (dd, J = 8., 6.3 Hz, 2H, CH 2 PivOAc), 7 1.38 (m, 1H, CH(CH 3 ) 2 ), 1.6 (s, 4H, 2 x CH 2 PivOAc),.79.61 (m, 12H, C(CH 3 ) 2 and CH(CH 3 ) 2 ),.9.6 (m, 6H, Si(CH 3 ) 2 ). 13 C NMR (126 MHz, CDCl 3 ) δ 128.3, 127.9, 127.1, 127., 126.7, 125.9, 125.8, 96.1, 82.3, 78.9, 74.9, 74.8, 74.4, 74.3, 61.3, 52.4, 38., 33.8, 26., 25.3, 25.2, 24.7, 24.1, 2.9, 19.9, 18.6. HRMS: m/z: calcd for C 41 H 56 O 1 SiNa: 759.354; found: 759.3546 [M+Na] +. S6

3 25 2 15 1 5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5 S7

cz-3-53-a_ghsqcad_21391_1 cz-3-53-a 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 9. 8. 7. 6. 5. 4. f2 (ppm) 3.5 3. 2. 1..5. -.5 S8

OD93_Proton_Minsw_213Apr3_1 4 38 36 34 32 3 28 26 24 22 2 18 16 14 12 1 8 6 4 2-2 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5-1. S9-4

OD93_Ghsqc_213Apr3_1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 9. 8. 7. 6. 5. 4. f2 (ppm) 3.5 3. 2. 1..5. -.5-1. S1

MestReNova OD-238 13 12 11 1 9 8 7 6 5 4 3 2 1-1 9.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. S11

238 HSQC OD-238 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 9.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S12

1 9 8 7 6 5 4 3 2 1 9.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. S13

cz-3-53-b_hsqcad_21397_1 cz-3-53-b 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 9.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S14

45 4 35 3 25 2 15 1 5 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S15

cz-3-61-omkar_hsqcad_213925_1 STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 14 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S16

OD617_PROTON_21312_1 STANDARD 1H OBSERVE - profile 5 45 4 35 3 25 2 15 1 5 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S17

OD617_gHSQC_21312_1 OD617 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S18

28 26 24 22 2 18 16 14 12 1 8 6 4 2-2.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. S19

cz-3-53c_hsqcad_213922_1 cz-3-53c 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S2

OD99_Proton_29Mar13_1 12.44 4 35 3 25 2 15 1 5 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2 S21

OD99_Hsqc_29Apr13_1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 8. 7. 6. 5. 4. 3.5 f2 (ppm) 3. 2. 1..5. -.5-1. S22

-1. -.5..5 1. 2. 3. 3.5 4. 5. 6. 7. 8. -2-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 OD25_Proton_Minsw_21May5_1 S23

OD25_Ghsqc_21May6_1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 8. 7. 6. 5. 4. 3.5 f2 (ppm) 3. 2. 1..5. -.5-1. S24

85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 5-5 7. 6. 5. 4. 3.5 3. 2. 1..5. S25

cz-3-53c_hsqcad_213922_1 cz-3-53c 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S26

OD199_Proton_29Dec8_1 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 5-5 1. 9.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5-1. - -2. S27

OD427_199_ASAPHMQC_21352_1 OD427_199 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 -2 S28

19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. S29

OD55-GlcA-2-PivAc-4-Fmoc-1-TDS_gHSQC_213429_1 OD55-GlcA-2-PivAc-4-Fmoc-1-TDS 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 9.5 9. 8. 7. 6. 5. 4. f2 (ppm) 3.5 3. 2. 1..5. -.5-1. S3

16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S31-2

OD549-F38_Ghsqc_212Jun26_1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 8. 7. 6. 5. 4. f2 (ppm) 3.5 3. 2. 1..5. -.5-1. S32

14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S33

OD583_gHSQC_212913_1 LH-2 purified dissacharide 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S34

OD548-F8_Proton_212Jun25_1 STANDARD 1H OBSERVE - profile 28 26 24 22 2 18 16 14 12 1 8 6 4 2-2 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S35-2

OD548_gHSQC_21351_1 OD548 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S36-2

OD541_Proton_Minsw_212Jun14_1 STANDARD 1H OBSERVE - profile 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5-1. S37

OD541_Ghsqc_212Jun15_1 2 4 6 8 1 12 14 16 18 2 22 8. 7. 6. 5. 4. 3.5 f2 (ppm) 3. 2. 1..5. -.5-1. S38

OD524_Proton_212May14_1 STANDARD 1H OBSERVE - profile 34 32 3 28 26 24 22 2 18 16 14 12 1 8 6 4 2-2 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2 S39

OD524_Ghsqc_212May14_1 STANDARD 1H OBSERVE - profile STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15. 8. 7. 6. 5. 4. 3.5 f2 (ppm) 3. 2. 1..5. -.5-1. S4

OD61_PROTON_212118_1 STANDARD 1H OBSERVE - profile 32 3 28 26 24 22 2 18 16 14 12 1 8 6 4 2-2 9.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5-1. - S41

- -1. -.5..5 1. 2. 3. 3.5 4. 5. 6. 7. 8. 9. 9.5 f2 (ppm) 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 OD61_gHSQC_212118_1 OD61 S42

OD669_PROTON_213422_1 STANDARD 1H OBSERVE - profile 25 24 23 22 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S43

OD669_gHSQC_213423_1 STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S44

OD672_PROTON_213423_1 OD672 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S45-2

OD672_gHSQC_213423_1 STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S46-2

-.5..5 1. 2. 3. 3.5 4. 5. 6. 7. 8. 9. 9.5 1. -2-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 OD673_PROTON_213424_1 STANDARD 1H OBSERVE - profile S47

OD673_gHSQC_213425_1 OD673 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S48

OD674_PROTON_213426_1 STANDARD 1H OBSERVE - profile 65 6 55 5 45 4 35 3 25 2 15 1 5-5 1. 9.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5 S49

OD674_gHSQC_213426_1 After sulfation and saponification 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 1. 9.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. -.5 S5

9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5 S51. -

cz-3-1_nac ghsqc_213429_1 Disaccharide with NAc next step is deprotection 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S52

cz-3-11_ghsqc_21343_1 STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S53

13 12 11 1 9 8 7 6 5 4 3 2 1 S54-1

65 6 55 5 45 4 35 3 25 2 15 1 5-5 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5 S55

2-78_Ghsqc_213Mar7_1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 8. 7. 6. 5. 4. f2 (ppm) 3.5 3. 2. 1..5. -.5 S56

38 S57

OD-514_PROTON_213429_2 STANDARD 1H OBSERVE - profile 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. -.5 S58

OD-514_gHSQC_213429_1 STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 11. 1. 9.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. -.5-1. - S59

525 Proton OD-OHCOOMe 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 9.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. S6

525 HSQC OD-OHCOOMe 1 2 3 4 5 6 7 8 9 1 11 12 13 14 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S61 15

OD544_PROTON_21343_1 STANDARD 1H OBSERVE - profile 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 5-5 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S62

OD544_gHSQC_21343_1 GlcA-2-Ac-4-Bn-1-OH 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S63

OD528_PROTON_213429_1 STANDARD 1H OBSERVE - profile 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1.5 9. 8. 7. 6. 5. 4. 3.5 3. 2. 1..5. S64

OD528_gHSQC_213429_1 GlcA-2-Lev-1-TDS 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 9.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S65

..5 1. 2. 3. 3.5 4. 5. 6. 7. 8. 9..5-2 -1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 OD521_PROTON_213429_1 STANDARD 1H OBSERVE - profile S66

OD521_gHSQC_213429_1 GlcA-2-PivOAc-4-Bn 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15.5 9. 8. 7. 6. 5. f2 (ppm) 4. 3.5 3. 2. 1..5. S67

OD597-F8_Proton_212Nov1_1 Column purified 22 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2 S68

OD597-F3_gHSQC_212112_1 Column purified 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 13 12 11 1 9 8 7 6 f2 (ppm) 5 4 3 2 1-1 S69

OD548-F38_Proton_212Jun25_1 STANDARD 1H OBSERVE - profile 4 35 3 25 2 15 1 5 13 12 11 1 9 8 7 6 5 4 3 2 1-1 S7-2

OD548-F38_Ghsqc_212Jun25_1 STANDARD 1H OBSERVE - profile STANDARD 1H OBSERVE - profile 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 8. 7. 6. 5. 4. 3.5 f2 (ppm) 3. 2. 1..5. -.5 S71