Rudi Hendra 1, Paul A. Keller 1* Telephone: Fax:

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

SUPPORTING INFORMATION

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Supporting Information. Experimental section

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information. Experimental section

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Electronic Supplementary Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Selective mono reduction of bisphosphine

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

SUPPLEMENTARY MATERIAL

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Supporting Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

SUPPORTING INFORMATION

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

SUPPORTING INFORMATION

Supporting information

Supporting Information

The Free Internet Journal for Organic Chemistry

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Supporting Information

Supporting Information

Supporting Information

Supplementary Information

Supporting Information

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Electronic Supplementary Information

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting Information for

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information for

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Aqueous MW eco-friendly protocol for amino group protection.

Phytochemical Studies and Antioxidant Activities of Artocarpus scortechinii King

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Supporting Information

Supporting Information for Substituent Effects on the Properties of Borafluorenes

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Aminofluorination of Fluorinated Alkenes

Supporting Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

multicomponent synthesis of 5-amino-4-

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Available online at shd.org.rs/jscs/

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information

phase: synthesis of biaryls, terphenyls and polyaryls

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Transcript:

Supporting Information for Phytochemical Studies on Two Australian Anigozanthos Plant Species Rudi Hendra 1, Paul A. Keller 1* 1 School of Chemistry, University of Wollongong, NSW 2522, Australia Telephone: +61 2 4221 4692 Fax: +61 2 4221 4287 Email: keller@uow.edu.au S1

Table of Contents General Procedures... 4 Figure S1. HPLC profile of polar extracts from A. flavidus (a) and A. pulcherrimus (b) flowers... 5 Table S1. NMR spectroscopic data for compound 1... 6 Figure S2. 1 H-NMR spectrum of compound 1 (in methanol-d 4 )... 7 Figure S3. UV-Vis spectroscopy of compound 1... 7 Table S2. NMR spectroscopic data for compound 2... 8 Figure S4. 1 H-NMR spectrum of compound 2 (in methanol-d 4 )... 9 Figure S5. UV-Vis spectroscopy of compound 2... 9 Table S3. NMR spectroscopic data for compound 4... 10 Figure S6. 1 H-NMR spectrum of compound 4 (in methanol-d 4 )... 11 Figure S7. UV-Vis spectroscopy of compound 4... 11 Table S4. NMR spectroscopic data for compound 5... 12 Figure S8. 1 H-NMR spectrum of compound 5 (in methanol-d 4 )... 13 Figure S9. UV-Vis spectroscopy of compound 5... 13 Table S5. NMR spectroscopic data for compound 6... 14 Figure S10. 1 H-NMR spectrum of compound 6 (in methanol-d 4 )... 15 Figure S11. UV-Vis spectroscopy of compound 6... 15 Table S6. NMR spectroscopic data for compound 7... 16 Figure S12. 1 H-NMR spectrum of compound 7 (in methanol-d 4 )... 17 Figure S13. UV-Vis spectroscopy of compound 7... 17 Table S7. NMR spectroscopic data for compound 8... 18 Figure S14. 1 H-NMR spectrum of compound 8 (in methanol-d 4 )... 19 Figure S15. UV-Vis spectroscopy of compound 8... 19 Table S8. NMR spectroscopic data for compound 9... 20 Figure S16. 1 H-NMR spectrum of compound 9 (in methanol-d 4 )... 21 Figure S17. UV-Vis spectroscopy of compound 9... 21 Table S9. NMR spectroscopic data for compound 10... 22 Figure S18. 1 H-NMR spectrum of compound 10 (in methanol-d 4 )... 23 Figure S19. UV-Vis spectroscopy of compound 9... 23 Table S10. NMR spectroscopic data for compound 11... 24 Figure S20. 1 H-NMR spectrum of compound 11 (in methanol-d 4 )... 25 Figure S21. UV-Vis spectroscopy of compound 11... 25 S2

Table S11. NMR spectroscopic data for compound 13... 26 Figure S22. 1 H-NMR spectrum of compound 13 (in methanol-d 4 )... 27 Figure S22. UV-Vis spectroscopy of compound 13... 27 Characterisation of New Compounds... 28 Figure S23. LRESIMS from compound 3... 28 Figure S24. HRESIMS from compound 3... 29 Figure S25. UV-Vis spectroscopy of compound 3... 30 Figure S27. 13 C-NMR spectrum of compound 3 (in methanol-d 4 )... 31 Figure S28. HSQC spectrum of compound 3 (in methanol-d 4 )... 32 Figure S29. COSY spectrum of compound 3 (in methanol-d 4 )... 33 Figure S30. HMBC spectrum of compound 3 (in methanol-d 4 )... 34 Figure S31. HMBC spectrum of compound 3 (in methanol-d 4 ) (zoom)... 35 Figure S32. LRESIMS from compound 12... 36 Figure S33. HRESIMS from compound 12... 36 Figure S34. UV-Vis spectroscopy of compound 12.... 37 Figure S35. RP-HPLC profile from acid hydrolysis of 12 compared to authentic standard... 38 Figure S36. 1 H-NMR spectrum of compound 12 (in methanol-d 4 )... 39 Figure S37. 13 C-NMR spectrum of compound 12 (in methanol-d 4 )... 40 Figure S38. HSQC spectrum of compound 12 (in methanol-d 4 )... 41 Figure S39. COSY spectrum of compound 12 (in methanol-d 4 )... 42 Figure S40. NOESY spectrum of compound 12 (in methanol-d 4 )... 43 Figure S41. HMBC spectrum of compound 12 (in methanol-d 4 )... 44 Figure S42. GCMS Spectrum of Anigozanthos sp... 45 Table S12. GCMS Data of Anigozanthos sp.... 45 Table S13. Antibacterial Activity of methanol extracts and pure compounds obtained from A. rufus and A. pulcherrimus... 46 Figure S43. Colour solutions from compound 1 13 in methanol.... 47 References... 48 S3

General Procedures Optical Rotations for compound 3 and 12 was measured a 25 o C in methanol with a path length of 1.0 dm on a Jasco P-2000 Digital Polarimeter (l = 589 nm). Proton ( 1 H) and carbon ( 13 C) nuclear magnetic resonance (NMR) spectra were recorded at 500 and 125.7 MHz respectively on a Varian Unity Inova-500 MHz spectrometer, controlled by Varian VNMR software (version 6.1 revision C). NMR spectra were acquired in CD 3 OD with chemical shifts (δ) reported in parts per million (ppm) relative to CD 3 OD ( 1 H: δ = 3.31 ppm; 13 C: δ= 49.2 ppm). Coupling constants (J) are reported in Hertz (Hz). J values listed in 1 H NMR spectral data refer to coupling between hydrogen nuclei. Electrospray (ES) mass spectra were obtained on a LCMS-2010 EV (Shimadzu). Samples were injected as a solution in methanol HPLC grade. High Resolution (HR) ES mass spectrometry (MS) was performed on a Micromass QTOF2 Ultima Spectrometer. The HPLC profiles from both species were obtained using a Waters (Waters 1525 pump, Waters 2487 detector, controlled by Breeze software v3.30) with a Symmetry C 18 column (5 µm, 4.9 x 150 mm) with a Wakosil C 18 RS column (5 µm, 4.6 x 250 mm). All compounds were isolated by preparative HPLC using a Waters prep-lc system (LC-600 controller, 2489 detector, LC150 Pump, PD1 degasser) with a Waters reverse-phase OBD Sunfire TM C 18 column (5 µm, 19 x 150 mm) protected with a Waters Sunfire TM C 18 guard column (5 µm, 19 x 10 mm). To determine of sugar moiety from compound 12, a RP-HPLC (Shimadzu HPLC) system, coupled with an automatic sampler (Shimadzu SIL-10A XL) and a Sedere Sedex 60 LT Evaporative Light Scattering Detector (ELSD) with Prevail Carbohydrates ES column (250 x 4.6 i.d.; Alltech). All analytical HPLC samples were filtered through a Whatman syringe filter PTFE 0.45 µm, 4 mm and preparative HPLC samples were filtered through a Bonnet syringe filter 0.45 µm, 30 mm. A Büchi Rotary Evaporator (R-114/200) with a high vacuum pump was used for evaporation of solvents under reduced pressure at 40 ºC. S4

Figure S1. HPLC profile of polar extracts from A. flavidus (a) and A. pulcherrimus (b) flowers. AU 1.50 1.00 0.50 0.00 A 1 2 λ: 254 nm 8 3 4 7 5 10 9 12 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 Minutes 0.80 0.60 B λ: 254 nm AU 0.40 0.20 6 11 12 13 0.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 Minutes S5

Table S1. NMR spectroscopic data for compound 1 Cyanidin-3-rutinoside, red solid. UVmax (Me) (nm): 280 (7451); 519 (8905). ESIMS m/z: 595 [M+1] +. HRESIMS calculated for C 27 H 31 O 15 [M+H] + : 595.1752, found 595.1781 Position 0.1% TFA-d in Methanol-d 4 1 0.1% TFA-d in Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 163.5 163.2 3 143.8 144.7 4 8.90, s 136.3 9.16, s 135.3 5 157.9 158.2 6 6.67, s 103.7 6.91, s 102.6 7 168.7 169.6 8 6.86, s 95.4 7.12, s 94.3 8a 156.4 157.9 4a 111.8 112.3 1' 120.1 120.3 2' 8.00, s 118.6 8.24, s 117.5 3' 145.9 146.5 4' 154.3 154.9 5' 7.00, d (8.7) 117.4 7.24, d (8.5) 116.5 6' 8.22, d (8.3) 128.4 8.49, d (9.0) 127.4 β-d-glucopyranose 1 5.25 d, (8.3) 103.6 5.51, d (8.0) 102.6 2 3.68 dd, (8.4, 8.0) 74.8 3.89-3.86, m 73.8 3 3.73 dd, (8.4, 8.0) 77.5 3.82-3.85, m 76.5 4 3.43-3.41, m 71.3 3.66-3.60, m 70.3 5 3.55 dd, (8.4, 8.0) 78.1 3.92-3.94, m 77.1 6 4.06 d, (11.0) 3.61-3.65, m 67.3 4.30, dd (11.0, 2.0) 4.05-4.00, m 66.9 α-l-rhamnopyranose 1 4.68 (s) 102.4 4.90 d, (8.0) 101.3 2 3.81-3.79, m 72.0 3.98-3.96, m 70.9 3 3.64-3.67, m 72.5 3.95-3.91, m 71.5 4 3.33-3.31, m 74.0 3.57-3.59, m 73.0 5 3.66-3.65 m 69.8 3.79-3.74, m 68.8 6 1.11 s 18.2 1.41 d, (6.0) 16.9 S6

Figure S2. 1 H-NMR spectrum of compound 1 (in methanol-d 4 ) HO 6 8 O 4 5' 1' 1'' O O HO 3'' 6'' O1''' O HO Figure S3. UV-Vis spectroscopy of compound 1 AU 1.50 1.00 280.4 519.1 0.50 0.00 S7

Table S2. NMR spectroscopic data for compound 2 Quercetin-3-rutinoside. Yellow solid. ESIMS m/z: 633 [M+Na] +, 609 [M+H] -. Position Methanol-d 4 2 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 159.3 158.5 3 135.6 135.6 4 179.4 179.4 5 162.9 162.9 6 6.20, s 99.9 6.21, d (2.0) 99.9 7 166.0 166.0 8 6.39, s 94.7 6.40, d (2.0) 94.9 8a 158.5 159.3 4a 105.6 105.6 1' 123.1 123.1 2' 7.67, s 117.7 7.66, d (2.1) 117.7 3' 145.8 145.8 4' 149.8 149.8 5' 6.88, d (8.4) 116.0 6.87, d (8.5) 116.1 6' 7.62, d (8.5) 123.6 7.62, dd (2.1, 8.5) 123.6 β-d-glucopyranose 1 5.10, d (7.5) 104.8 5.10, d (7.7) 104.7 2 3.68, dd (8.4, 8.0) 75.9 3.46, dd (7.7, 8.9) 75.7 3 3.73, dd (8.4, 8.0) 78.4 3.40, t (8.9) 78.2 4 3.43 3.41, m 71.5 3.26, t (8.9) 71.4 5 3.55, dd (8.4, 8.0) 77.3 3.32, ddd (1.2, 5.7, 8.6) 77.2 6 3.80, d (15.0) 3.40 3.45, m 68.7 3.80, dd (6.1, 11.0) 3.38, dd (6.1, 11.0) 68.5 α-l-rhamnopyranose 1 4.52, (s) 102.4 4.51, d (1.5) 102.4 2 3.81-3.79, m 72.2 3.62, dd (1.5, 3.4) 72.1 3 3.64-3.67, m 72.4 3.53, dd (3.4, 9.6) 72.2 4 3.33-3.31, m 74.0 3.27, t (9.6) 73.9 5 3.66-3.65, m 69.8 3.44, dq (6.2, 9.6) 69.7 6 1.12, d (6.2) 17.9 1.11, d (6.1) 17.8 S8

Figure S4. 1 H-NMR spectrum of compound 2 (in methanol-d 4 ) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 250 300 350 400 450 500 Figure S5. UV-Vis spectroscopy of compound 2 S9

Table S3. NMR spectroscopic data for compound 4 Cyanidin-3-O-(6-O-p-coumaryl-O-β-D-glucopyranoside, red solid. UVmax (Me) (nm): 282 (8302); 313 (7052); 523 (6981). ESIMS m/z: 595 [M+1] +. HRESIMS calculated for C 30 H 27 O 13 [M+H] + : 595.1452, found 595.1461 Position 0.1% TFA-d in Methanol-d 4 3 0.1% TFA-d in Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 164.5 162.1 3 145.1 146.0 4 8.91, s 136.8 8.92, s 136.8 5 159.1 158.1 6 6.53, s 103.3 6.69, d (1.8) 104.0 7 170.9 171.0 8 6.82, s 95.2 6.89, d (1.8) 95.0 8a 157.8 156.3 4a 113.0 113.1 1' 128.4 121.7 2' 8.00, d (2.2) 118.5 8.03, d (1.8) 119.9 3' 147.6 147.8 4' 155.8 156.3 5' 7.01, d (8.7) 117.4 7.02, d (8.7) 117.9 6' 8.24, dd (8.7, 2.2) 128.4 8.25, dd (1.8, 8.7) 129.4 β-d-glucopyranose 1 5.32, d (7.5) 103.1 4.67, d (7.1) 102.6 2 3.59, dd (7.5, 9.0) 78.0 4.06, dd (7.1, 8.5) 78.5 3 3.84, dd (9.0, 9.5) 76.1 3.82, dd (8.5, 2.7) 77.9 4 3.48, dd (9.5, 8.0) 71.8 3.94, d (2.7) 72.3 5 3.72, ddd (8.0, 6.5, 1.2) 74.8 3.62, ddd (8.0, 6.5, 1.2) 75.2 6 4.53, dd (1.2, 11.5), 64.5 4.39, dd (8.0, 12.0) 68.3 4.37, dd (6.5, 11.0) 4.24, d (12.0) p- Coumaryl 1 126.1 127.2 2 7.30, d (8.2) 131.4 6.88, d (1.6) 116.4 3 6.79, d (8.2) 116.8 6.78, dd (1.6, 8.0) 147.2 4 161.0 149.6 5 6.79, d (8.2) 116.8 6.68, d (8.0) 117.1 6 7.30, d (8.2) 131.4 123.4 α 6.22, d (16.0) 114.6 6.06, d (15.9) 114.5 β 7.44, d (16.0) 146.5 7.21, d (15.9) 146.6 carbonyl 169.1 168.9 S10

Figure S6. 1 H-NMR spectrum of compound 4 (in methanol-d 4 ) HO O O HO 1'' O 3'' 6'' O O Figure S7. UV-Vis spectroscopy of compound 4 AU 1.50 1.00 282.8 313.6 523.9 0.50 0.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 nm S11

Table S4. NMR spectroscopic data for compound 5 Kaempferol, yellow solid. UVmax (Me) (nm): 228 (13855); 267 (11997); 366 (10424). ESIMS m/z: 310 [M+Na] + Position Methanol-d 4 Methanol-d 2 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 161.6 161.5 3 135.3 135.5 4 179.5 179.4 5 163.1 163.0 6 6.18, d (2.0) 99.8 6.21, d (2.0) 99.9 7 166.1 166.0 8 6.39, d (2.0) 94.5 6.40, d (2.0) 94.9 8a 158.7 158.6 4a 105.8 105.6 1' 122.8 122.8 2' 8.08, d (8.6) 132.6 8.05, d (8.6) 132.4 3' 6.90, d (8.6) 116.5 6.89, d (8.6) 116.1 4' 159.6 159.4 5' 6.90, d (8.6) 116.5 6.89, d (8.6) 116.1 6' 8.08, d (8.6) 132.7 8.05, d (8.6) 132.4 S12

Figure S8. 1 H-NMR spectrum of compound 5 (in methanol-d 4 ) 2 1.5 1 0.5 0 200 250 300 350 400 450 500 Figure S9. UV-Vis spectroscopy of compound 5 S13

Table S5. NMR spectroscopic data for compound 6 Kaempferol-3-rutinoside, yellow solid. UVmax (Me) (nm): 225 (12018); 268 (10675); 350 (9870). ESIMS, m/z:595 [M+1] +. HRESIMS: calculated for C 27 H 30 O 15 Na [M+Na] + : 617.1482, found 617.1484 Position CD 3 OD CD 3 OD 2 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 161.6 161.4 3 135.3 135.5 4 179.5 179.4 5 163.1 163.0 6 6.20, d (2.1) 99.8 6.21, d (2.1) 99.9 7 166.1 166.0 8 6.39, d (2.1) 94.4 6.40, d (2.1) 94.9 8a 158.6 158.5 4a 105.7 105.5 1' 122.7 122.7 2' 8.06, d (8.4) 132.6 8.05,, d (8.5) 132.3 3' 6.89, d (8.5) 116.4 6.89, d (8.5) 116.1 4' 159.5 159.4 5' 6.89, d (8.5) 116.4 6.89, d (8.5) 116.1 6' 8.06, d (8.4) 132.6 8.05, d (8.5) 132.3 β-d-glucopyranose 1 5.12, d (7.0) 104.8 5.12, d (7.0) 104.5 2 3.43, dd (7.0, 8.5) 75.9 3.43, dd (7.7, 8.9) 75.7 3 3.40, dd (8.5, 9.0) 78.3 3.40, t (8.9) 78.1 4 3.24, dd (9.0, 8.5) 71.6 3.24, t (8.9) 71.4 5 3.32, ddd (8.5, 6.5, 1.5) 77.3 3.32, ddd (1.2, 6.1, 8.9) 77.2 6 3.80, dd (1.5, 10.5) 3.37, dd (10.5, 6.5) 68.7 3.80, dd (1.2, 11.0) 3.37, dd (6.1, 11.0) 68.5 α-l-rhamnopyranose 1 4.52, d (2.0) 102.5 4.51, d (1.5) 102.4 2 3.62, dd (2.0, 3.0) 72.2 3.62, dd (1.5, 3.5) 72.1 3 3.51, dd (3.0, 9.0) 72.4 3.51, dd (3.5, 9.6) 72.3 4 3.27, dd (9.0, 9.5) 74.0 3.27, t (9.6) 73.8 5 3.44, dd (9.5, 6.5) 69.9 3.44, dd (6.2, 9.6) 69.7 6 1.11, d (6.5) 18.1 1.11, d (6.2) 17.9 S14

Figure S10. 1 H-NMR spectrum of compound 6 (in methanol-d 4 ) HO O O O HO 1'' O 3'' 6'' O 1''' O HO 2 1.5 1 0.5 0 200 250 300 350 400 450 500 Series1 Figure S11. UV-Vis spectroscopy of compound 6 S15

Table S6. NMR spectroscopic data for compound 7 Apigenin-7-O-β-D-glucopyranoside, light yellow solid. ESIMS m/z: 469 [M+Na] +. Position Methanol-d 4 4,5 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 166.9 164.2 3 6.63, s 103.9 6.88, s 102.8 4 184.2 181.9 5 163.0 161.7 6 6.47, d (2.1) 101.3 6.46, d (2.0) 99.4 7 164.6 162.9 8 6.79, d (2.2) 96.1 6.85, d (2.0) 94.5 8a 158.9 156.9 4a 104.3 105.2 1' 123.1 120.6 2' 7.86, d (8.5) 129.8 7.96, d (9.0) 128.4 3' 117.2 6.95, d (9.0) 115.9 4' 162.8 161.0 5' 117.2 6.95, d (9.0) 115.9 6' 7.86, d (8.5) 129.8 7.96, d (9.0) 128.4 1'' 5.14, d (7.0) 101.5 5.16, d (7.0) 99.5 2'' 3.54 3.52, m 74.6 4.0 3.5, m 72.9 3'' 3.59 3.56, m 77.3 4.0 3.5, m 76.4 4'' 3.64, dd (10.6, 73.0 4.0 3.5, m 71.9 5.4) 5'' 4.11, d (9.6) 76.7 4.0 3.5, m 73.9 6'' 172.2 171.6 S16

Figure S12. 1 H-NMR spectrum of compound 7 (in methanol-d 4 ) 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 200 250 300 350 400 450 500 Figure S13. UV-Vis spectroscopy of compound 7 S17

Table S7. NMR spectroscopic data for compound 8 Kaempferol-3-O-(6-O-p-coumaryl)-O-β-D-glucopyranoside. Yellow solid, ESIMS m/z: 593 [M-H] -, 617 [M+Na] + ; Position Methanol-d 4 6 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 161.6 158.8 3 132.4 135.5 4 179.7 179.6 5 163.8 163.2 6 6.14, s 100.2 6.13, d (2.0) 100.6 7 165.9 167.3 8 6.32, s 95.0 6.30, d (2.4) 95.3 8a 158.4 158.8 4a 105.7 105.6 1' 123.0 123.4 2' 8.06, d (8.5) 132.6 8.05, d (8.4) 132.3 3' 6.89, d (8.5) 116.4 6.89, d (8.4) 116.1 4' 159.5 159.4 5' 6.89, d (8.5) 116.4 6.89, d (8.4) 116.1 6' 8.06, d (8.5) 132.6 8.05, d (8.4) 132.3 β-d-glucopyranose 1 5.24, d (6.7) 104.1 5.26 d, (7.60) 104.2 2 3.48, dd (7.0, 8.9) 75.9 3.42-3.51, m 76.1 3 3.22, dd (9.0, 9.5) 78.2 3.42-3.51, m 78.3 4 3.34, dd (9.0, 8.0) 71.9 3.42-3.51, m 72.0 5 3.45, ddd (8.9, 6.5, 75.8 3.42-3.51, m 75.9 1.5) 6 4.18, dd (11.5, 6.8) 64.5 4.19, dd (11.5, 6.8) 64.6 4.30, dd (11.9, 2.2) 4.30, dd (11.9, 2.2) p- Coumaryl 1 126.1 127.2 2 7.30, d (8.2) 131.4 6.88, d (1.6) 116.4 3 6.79, d (8.2) 116.8 6.78, dd (1.6, 8.0) 147.2 4 141.0 149.6 5 6.79, d (8.2) 116.8 6.68, d (8.0) 117.1 6 7.30, d (8.2) 131.4 123.4 α 6.22, d (16.0) 114.6 6.06, d (15.9) 114.5 9 7.31, d (8.1) 131.2 7.32, d (8.4) 131.6 (C=O) 168.8 169.3 S18

Figure S14. 1 H-NMR spectrum of compound 8 (in methanol-d 4 ) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 250 300 350 400 450 500 Figure S15. UV-Vis spectroscopy of compound 8 S19

Table S8. NMR spectroscopic data for compound 9 Quercetin-3-O-(6-O-p-coumaryl)-O-β-D-glucopyranoside. Yellow solid, ESIMS m/z: 609 [M-H] -, 633 [M+Na] + ; Position Methanol-d 4 6 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 161.6 158.8 3 132.4 135.5 4 179.7 179.6 5 163.8 163.2 6 6.14, s 100.2 6.13, d (2.0) 100.6 7 165.9 167.3 8 6.32, s 95.0 6.30, d (2.4) 95.3 8a 158.4 158.8 4a 105.7 105.6 1' 123.0 123.4 2' 6.80, d (8.1) 116.2 7.59, d (2.4) 115.0 3' 146.7 146.2 4' 146.8 146.9 5' 6.81, d (2.4) 116.3 6.81, d (8.4) 116.2 6' 7.99, d (8.3) 132.3 7.58, dd (8.4, 2.4) 123.4 β-d-glucopyranose 1 5.24, d (6.7) 104.1 5.26, d (7.60) 104.2 2 3.48, dd (7.0, 8.9) 75.9 3.42-3.51, m 76.1 3 3.22, dd (9.0, 9.5) 78.2 3.42-3.51, m 78.3 4 3.34, dd (9.0, 8.0) 71.9 3.42-3.51, m 72.0 5 3.45, ddd (8.9, 6.5, 1.5) 75.8 3.42-3.51, m 75.9 6 4.18, dd (11.5, 6.8) 64.5 4.19, dd (11.5, 6.8) 64.6 4.30, dd (11.9, 2.2) 4.30, dd (11.9, 2.2) p-coumaryl 2 6.07, d (15.9) 114.9 6.10, d (16.0) 117.6 3 7.40, d (15.8) 146.6 7.41, d (16.0) 131.5 4 161.4 161.5 5 7.31, d (8.1) 131.2 7.32, d (8.4) 131.6 6 6.84, d (8.3) 116.6 6.80, d (8.8) 117.6 7 141.2 140.2 8 6.84, d (8.3) 116.6 6.80, d (8.8) 117.6 9 7.31, d (8.1) 131.2 7.32, d (8.4) 131.6 (C=O) 168.8 169.3 S20

Figure S16. 1 H-NMR spectrum of compound 9 (in methanol-d 4 ) 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 200 250 300 350 400 450 500 Figure S17. UV-Vis spectroscopy of compound 9 S21

Table S9. NMR spectroscopic data for compound 10 Quercetin 3-O-β-D-glucopyranoside. Yellow solid. UVmax (Me) (nm): 228 (13855); 259 (13084); 359 (11830). ESIMS m/z: 465 [M+1 ]+ Position Methanol-d 4 2 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 158.2 156.6 3 135.6 135.2 4 179.7 175.9 5 163.2 161.0 6 6.21, d (2.1) 99.9 6.27, d (2.1) 97.8 7 165.9 164.1 8 6.41, d (2.1) 94.7 6.54, d, (2.1) 93.5 8a 159.0 156.8 4a 105.9 104.1 1' 122.2 122.7 2' 7.84, d (2.2) 116.0 7.74, d (2.1) 114.8 3' 149.1 147.3 4' 146.8 144.8 5' 6.87, d (8.6) 115.7 6.90, d (8.5) 114.6 6' 7.59, dd (8.5, 2.3) 122.0 7.64, dd (8.5, 2.2) 120.2 β-d-glucopyranose 1'' 5.16, d (7.5) 104.5 5.24, d (7.0) 104.1 2'' 3.47, dd (7.5, 9.0) 75.7 3.44, dd (7.5, 9.0) 75.7 3'' 3.42, dd (9.0, 9.5) 78.1 3.41, dd (9.0, 9.5) 78.2 4'' 3.34, dd (9.0, 8.5) 71.1 3.32, dd (9.0, 8.5) 71.4 5'' 3.25, ddd (8.5, 1.5, 6.5) 78.5 3.19, ddd (8.5, 1.5, 77.3 6'' 3.71, dd (1.5, 11.0) 3.58, dd (11.0, 6.5) 6.5) 62.6 3.68, dd (1.5, 11.0) 3.52, dd (11.0, 6.5) 68.6 S22

Figure S18. 1 H-NMR spectrum of compound 10 (in methanol-d 4 ) HO O O O HO 1'' O 3'' 6'' 2 1.5 1 0.5 0 200 250 300 350 400 450 500-0.5-1 Figure S19. UV-Vis spectroscopy of compound 9 S23

Table S10. NMR spectroscopic data for compound 11 Luteolin 7-O-β-D-glucopyranoside, Yellow solid. ESIMS m/z: 449 [M+1] Position Methanol-d 4 2 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 158.5 157.2 3 6.63, s 103.9 6.63, s 103.8 4 178.9 178.9 5 163.1 163.2 6 6.21, s 99.2 6.22, s 98.3 7 165.0 165.0 8 6.41, s 95.2 6.41, s 94.0 8a 159.1 157.2 4a 106.5 106.0 1' 122.2 122.2 2' 7.84, d (2.2) 116.0 7.74, d (2.1) 114.8 3' 149.1 147.3 4' 146.8 144.8 5' 6.87, d (8.6) 115.7 6.90, d (8.5) 114.6 6' 7.59, dd (8.5, 2.3) 122.0 7.64, dd (8.5, 2.2) 120.2 β-d-glucopyranose 1'' 5.14, d (6.5) 104.5 5.24, d (7.0) 109.5 2'' 3.47, dd (7.5, 9.0) 72.3 3.44, dd (7.5, 9.0) 82.1 3'' 3.42, dd (9.0, 9.5) 67.2 3.41, dd (9.0, 9.5) 78.3 4'' 3.34, dd (9.0, 8.5) 73.5 3.32, dd (9.0, 8.5) 88.0 5'' 3.25, ddd (8.5, 1.5, 6.5) 66.3 3.19, ddd (8.5, 1.5, 62.2 6'' 3.71, dd (1.5, 11.0) 3.58, dd (11.0, 6.5) 6.5) 62.3 3.68, dd (1.5, 11.0) 3.52, dd (11.0, 6.5) 68.6 S24

Figure S20. 1 H-NMR spectrum of compound 11 (in methanol-d 4 ) 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0-0.2200 250 300 350 400 450 500 Figure S21. UV-Vis spectroscopy of compound 11 S25

Table S11. NMR spectroscopic data for compound 13 Dihydroquercetin, A pale yellow solid. ESIMS m/z 305 [M-H] + Position Methanol-d 4 7 Methanol-d 4 δ H (J in Hz) δ C δ H (J in Hz) δ C 2 4.92, d (11.5) 85.2 5.01, d (11.5) 84.3 3 4.51, d (11.5) 73.7 4.60, d (11.5) 73.0 4 198.5 198.0 5 167.1 164.8 6 5.93, d (2.1) 97.4 5.98, s 97.0 7 169.6 167.8 8 5.89, d (2.1) 96.4 5.94, s 96.0 8a 163.6 164.0 4a 102.2 101.4 1' 129.8 129.6 2' 6.97, d (2.1) 116.0 7.06, d (2.1) 115.7 3' 146.5 145.6 4' 147.9 146.4 5' 6.81, d (8.1) 116.2 6.85, d (8.1) 115.7 6' 6.85, dd (8.1, 2.1) 121.0 6.90, dd (8.1, 2.1) 120.8 S26

Figure S22. 1 H-NMR spectrum of compound 13 (in methanol-d 4 ) 2 1.5 1 0.5 0 200 250 300 350 400 450 500-0.5-1 Figure S22. UV-Vis spectroscopy of compound 13 S27

Characterisation of New Compounds Figure S23. LRESIMS from compound 3 S28

Figure S24. HRESIMS from compound 3 S29

1.2 1 0.8 0.6 0.4 0.2 0 200-0.2 250 300 350 400 450 500-0.4 Figure S25. UV-Vis spectroscopy of compound 3 Figure S26. 1 H-NMR spectrum of compound 3 (in methanol-d 4 ) HO 4" 1" 3' 2' HO O O O 6 HO O 4 2 NH 2 S30

Figure S27. 13 C-NMR spectrum of compound 3 (in methanol-d 4 ) HO 4" 1" 3' 2' HO O O O 6 HO O 4 2 NH 2 2''/6'' 3''/5'' 7 1' 4'' 1 3' 1'' 2' 6 3 5 4 S31

Figure S28. HSQC spectrum of compound 3 (in methanol-d 4 ) HO 4" 1" 3' 2' HO O O O 6 HO O 4 2 NH 2 S32

Figure S29. COSY spectrum of compound 3 (in methanol-d 4 ) HO 4" 1" 3' 2' HO O O O 6 HO O 4 2 NH 2 S33

Figure S30. HMBC spectrum of compound 3 (in methanol-d 4 ) HO 4" 1" 3' 2' HO O O O 6 HO O 4 2 NH 2 S34

Figure S31. HMBC spectrum of compound 3 (in methanol-d 4 ) (zoom) S35

Figure S32. LRESIMS from compound 12 Figure S33. HRESIMS from compound 12 S36

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 200 250 300 350 400 450 500 Figure S34. UV-Vis spectroscopy of compound 12. S37

B. Acid hydrolysis of 12 Figure S35. RP-HPLC profile from acid hydrolysis of 12 compared to authentic standard. RH-HPLC coupled with Evaporative Light Scattering Detector (ELSD) and separation was achieved using isocratic flow on a Prevail Carbohydrates ES Column. S38

Figure S36. 1 H-NMR spectrum of compound 12 (in methanol-d 4 ) S39

Figure S37. 13 C-NMR spectrum of compound 12 (in methanol-d 4 ) S40

Figure S38. HSQC spectrum of compound 12 (in methanol-d 4 ) 2'';3'';5'' 6'' α2 3'''/5''' 1'' 4 6' 4'' 2'''/6''' 3/5 β2 β1 2/6 α1 S41

Figure S39. COSY spectrum of compound 12 (in methanol-d 4 ) S42

Figure S40. NOESY spectrum of compound 12 (in methanol-d 4 ) O HO O 2' 2 4' A 1'' O O 5' 6' O 4'' B 5 6"' 5"' 1"' C 3"' S43

Figure S41. HMBC spectrum of compound 12 (in methanol-d 4 ) S44

Figure S42. GCMS Spectrum of Anigozanthos sp. Table S12. GCMS Data of Anigozanthos sp. NO. RT (min) Compound name 1 4.17 3,8-Dimethyldecane 2. 4.71 3-Mercapto-2-pyridinone 3. 6.19 (R)-4-Iodo-1,2-epoxybutane 4. 7.28 Neophytadiene 5. 8.14 Methylpalmitate 6. 10.19 (S)-4-Iodo-1,2-epoxybutane 7. 14.34 1,4-Bis(methoxymethyl)benzene S45

Table S13. Antibacterial Activity of methanol extracts and pure compounds obtained from A. rufus and A. pulcherrimus, showing percentage of inhibition (%) Compound Microorganism SA EC KP PA AB CA CN 1 8.81 1.44 13.93 16.30 35.87 1.13 ND 2 12.29 ND 14.76 13.42 12.16 ND ND 3 10.79 ND 9.56 10.63 38.88 1.40 ND 4 11.42 ND 16.91 14.22 11.57 1.26 ND 5 10.39 ND 12.03 11.32 17.06 4.92 ND 6 10.71 ND 9.54 9.31 31.58 8.37 ND 7 14.03 ND 15.80 10.34 16.62 3.06 ND 8 11.28 7.14 9.97 12.38 19.08 8.64 ND 10 13.50 ND 1.83 8.49 25.13 2.06 ND 11 14.36 ND ND 6.42 17.45 4.65 ND 12 10.75 ND 5.30 12.32 0.33 1.33 ND 13 7.10 5.14 11.99 15.99 21.29 0.66 ND Me extract of 14.94 ND 19.82 16.77 25.21 1.33 ND A. rufus Me extract A. pulcherrimus 11.09 ND 17.09 16.45 22.41 3.72 ND Staphylococcus aureus ATCC 43300 (MRSA), Eschericia coli ATCC 25922 (FDA control strain), Klebsiella penumoniae ATCC 700603 (MDA), Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ATCC 19606, Candida albicans ATCC 90028, Cryptococcus neoformans ATCC 208821. ND: not inhibition detected. S46

Figure S43. Colour solutions from compound 1 13 in methanol. Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 Compound 6 Compound 7 Compound 8 Compound 9 Compound 10 Compound 11 Compound 12 Compound 13 S47

References (1) Du, Q.; Zheng, J.; Xu, Y., J. Food Comp. Anal. 2008, 21, 390-395. (2) Kazuma, K.; Noda, N.; Suzuki, M., Phytochemistry 2003, 62, 229-237. (3) Qiu, F.; Luo, J.; Yao, S.; Ma, L.; Kong, L., J. Sep. Sci. 2009, 32, 2146-2151. (4) Vanhoenacker, G.; Van Rompaey, P.; De Keukeleire, D.; Sandra, P., Nat. Prod. Lett. 2002, 16, 57-63. (5) Han, X. H.; Hong, S. S.; Hwang, J. S.; Lee, M. K.; Hwang, B. Y.; Ro, J. S., Arch. Pharm. Res.2007, 30, 13-17. (6) Ren, X.; Shen, L.-l.; Muraoka, O.; Cheng, M., J. Carbohydr. Chem. 2011, 30, 119-131, Lavault, M.; Richomme, P., Chem. Nat. Compd. 2004, 40, 118-121. (7) Kiehlmann, E.; Szczepina, M. G., Cent. Eur. J. Chem. 2011, 9, 492-498. S48