Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Σχετικά έγγραφα
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homework 3 Solutions

Trigonometric Formula Sheet

Section 8.3 Trigonometric Equations

2 Composition. Invertible Mappings

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Example Sheet 3 Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

PARTIAL NOTES for 6.1 Trigonometric Identities

If we restrict the domain of y = sin x to [ π 2, π 2

Spherical Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Solutions to Exercise Sheet 5

Rectangular Polar Parametric

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Approximation of distance between locations on earth given by latitude and longitude

A summation formula ramified with hypergeometric function and involving recurrence relation

Math221: HW# 1 solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

MathCity.org Merging man and maths

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Trigonometry Functions (5B) Young Won Lim 7/24/14

Differential equations

Section 8.2 Graphs of Polar Equations

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Second Order RLC Filters

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Chapter 6 BLM Answers

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Reminders: linear functions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Formula for Success a Mathematics Resource

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solution to Review Problems for Midterm III

Matrices and Determinants

Parametrized Surfaces

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Trigonometry 1.TRIGONOMETRIC RATIOS

Section 9.2 Polar Equations and Graphs

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Section 7.6 Double and Half Angle Formulas

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Lecture 26: Circular domains

D Alembert s Solution to the Wave Equation

Statistical Inference I Locally most powerful tests

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CYLINDRICAL & SPHERICAL COORDINATES

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Distances in Sierpiński Triangle Graphs

4.6 Autoregressive Moving Average Model ARMA(1,1)

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Probability and Random Processes (Part II)

Fundamentals of Signals, Systems and Filtering

derivation of the Laplacian from rectangular to spherical coordinates

The Spiral of Theodorus, Numerical Analysis, and Special Functions

EE512: Error Control Coding

Partial Trace and Partial Transpose

Uniform Convergence of Fourier Series Michael Taylor

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Homework 8 Model Solution Section

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Solution Series 9. i=1 x i and i=1 x i.

RF series Ultra High Q & Low ESR capacitor series

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Quadratic Expressions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

F19MC2 Solutions 9 Complex Analysis

Introductions to EllipticThetaPrime4

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Every set of first-order formulas is equivalent to an independent set

5.4 The Poisson Distribution.

Transcript:

Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853 Above approximate numerical value of Π shows 9 decimal digits. General characteristics The pi Π is a constant. It is irrational and transcendental over positive real number. Series representations Generalized power series Expansions for Π.3.6.. r r 8 r Π 6 8 5 8 6 8 r 8 7 8 r 8 r 8 r 8 3 8 ; r

http://functions.wolfram.com.3.6.. Π log.3.6.3. Π.3.6.. Π.3.6.5. Π 6 5 39 Π 3 Π.3.6.6. 3 log 3 3.3.6.7. log Π.3.6.8..3.6.9. Π 3 3 3 6 3 85 667 53.3.6.. Π 8 6 3 6 5 6.3.6.. 8 Π 8 8 7.3.6.. Π 6 8 8 5 8 6 8.3.6.3. Π 35 65 38 3 5

http://functions.wolfram.com 3 Π 5 Π.3.6.. 5 F 6.3.6.5. 3 F 5 5 3.3.6.6. F Π 3.3.6.7. Π 5 3 6 3 5 F.3.6.8. Π tan F.3.6.9. 3 Ζ Π.3.6.. Π 3 3 9 3 Π 8 3.3.6.5. 5 Π 35 3 37 7.3.6.6. 8 7 3 3 3 Π 3 3 9.3.6.7. 8 38 3

http://functions.wolfram.com Π 3 3 67.3.6.8. 8 938.3.6.9. 3 8 3 Π 6565 3 5 3 3 3 3 6.3.6.5. 795 3 Π 797 8 3 59 3 7.3.6.5. 355 56 3 Π 69 3 79 98 6 3 8.3.6.5. 8 3 75 3 Π 3 38 583.3.6.53. 365 36 7 3 Π 7 965 87 6 637 66 3 9 87 3 93 3.3.6.5. 99 76 5 3 Π 7 5 87 656 5 5 5 3 3.3.6.55. 5 73 37 8 3 Π 67 63 35 957.3.6.56. Π j j 3 9 683 35 6 7 9 3 Candido Otero Ramos (7) Expansions for Π.3.6.. Π 98 6 39 3 396

http://functions.wolfram.com 5.3.6.. Π 5 3.3.6.. 6 55 3 3 59 9 Π 3 3 6 3 3 The above Chudnovsy`s formula is used for the numerical computation of Π in Mathematica. Expansions for Π.3.6.3. Π 6.3.6.. Π 8.3.6.5. Π.3.6.6. Π 8.3.6.7. Π 36.3.6.8. Π 5 38 3 5 3.3.6.9. 3 Π 8 3 6 6 3 8 6 6 6 5 6 6 Expansions for Π 3.3.6.3. Π 3 3 3

http://functions.wolfram.com 6 Π 3 6.3.6.57. 8 3 3 3 3 3 5 9 88 8 8 6 3 3 3 5 3 6 3 G.Huvent (6) Expansions for Π.3.6.3. Π 9.3.6.3. Π 96 Π 7 6 3 7 3 9 3 3 3 3.3.6.58. G.Huvent (6) Π 3 7 38 9 3 8 9 3 6 8 358 5 5 3 55 6 3 68 3 8 78 8 368 5 6 7 8 9 8 6 38 8 3.3.6.59. Expansions for Π 6.3.6.33. Π 6 95 6.3.6.3. Π 6 96 6 56 7 7 68 8 9

http://functions.wolfram.com 7 Expansions for Π n.3.6.35. Π n n n n B n ; n n.3.6.6. Π n n n n B n n ; n.3.6.36. Π n n n n B n Expansions for Π n.3.6.6. Π n n n n E n ; n n ; n n Exponential Fourier series.3.6.. sin x Π x ; x x.3.6.3. cos x Π ; x.3.6.6. Π j j 3 Candido Otero Ramos (7).3.6.63. Π lim n n f n ; f f n Candido Otero Ramos (7) f n f n n Other series representations.3.6.. n Π n n ; n n n j l l Integral representations

http://functions.wolfram.com 8 On the real axis Of the direct function.3.7.. Π t t.3.7.. Π t t.3.7.3. Π t t.3.7.. sint Π t t.3.7.5. sin t Π t t.3.7.6. Π 8 sin 3 t 3 t t 3.3.7.7. sin t Π 3 t t.3.7.8. Π 38 sin 5 t 5 t t 5.3.7.9. Π sin 6 t t t 6.3.7.. Π n sin n n t n n t n t n n ; n Involving the direct function.3.7.. Π t t Gaussian probability density integral

http://functions.wolfram.com 9.3.7.. Π sint t Fresnel integral.3.7.3. Π cost t Fresnel integral.3.7.. Π log t t.3.7.5. Π log t t Involving related functions.3.7.6. cost Π t t Product representations.3.8.. Π.3.8.. Π.3.8.3. Π sec Π.3.8.. Π 3sec Π.3.8.8. Π Π.3.8.9. 6

http://functions.wolfram.com.3.8.5. 6 Π ; p p.3.8.6. Π.3.8.7. n lim Π Nest &,, n Limit representations.3.9.. Π lim n n n n n.3.9.. n Π lim n n n.3.9.3. Π lim n n n n Π lim n Π lim n.3.9.. n n n n.3.9.6. n n n.3.9.. n Π lim n n n n H ; n.3.9.3. n n n n Π lim n n n 3 n Pete Koupriyanov.3.9.7. n Π 6lim n n

http://functions.wolfram.com.3.9.. Π lim n n log F 6 loglcmf, F,, F n ; n.3.9.8. n Π lim n n cot Α logcos Α ; Α Π lim n.3.9.9. n Α n sgncos Α,sgncos Α ; Α Π.3.9.. a Π lim ; n s a a b b a b s s c c a b a b s.3.9.. Π lim ; n Α n Α n Β n Β n Α n n3 Β n Β n Β n Β n Β n Α 6 Β.3.9.5. Π lim n n b b n b n b n b sin Π b ; b n b n b n b b L. D. Servi: Nested Square Roots of American Mathematical Monthly, 36-39 (3).3.9.6. Π lim n An ; A B An Bn An Bn Bn Bn n Candido Otero Ramos (7) Continued fraction representations

http://functions.wolfram.com.3... Π 3 7 5 9 3.3... Π 3 9 6 5 6 9 6 8 6 6 6.3..3. Π 3, 6

http://functions.wolfram.com 3.3... Π 6 3 3 3 3 3.3..5. Π 3,.3..6. Π 3 9 5 6 7 5 9 36 3.3..7. Π,.3..8. Π.3..9. Π, 9 5 9 8.3... Π 6 3 8 5 56 7 65 9 96 3

http://functions.wolfram.com.3... Π,.3... 6 Π 6 6 9.3..3. 6 Π 6, Complex characteristics Real part.3.9.. ReΠ Π Imaginary part.3.9.. ImΠ Absolute value Π Π.3.9.3. Argument.3.9.. argπ Conjugate value Π Π.3.9.5. Signum value.3.9.6. sgnπ Differentiation

http://functions.wolfram.com 5 Low-order differentiation.3... Π z Fractional integro-differentiation Α Π z Α.3... zα Π Α Integration Indefinite integration Π z Π z.3....3... z Α Π z zα Π Α Integral transforms Fourier exp transforms.3... t Πz Π 3 z Inverse Fourier exp transforms.3... t Πz Π 3 z Fourier cos transforms.3..3. c t Πz Π3 z Fourier sin transforms.3... s t Πz Π z Laplace transforms

http://functions.wolfram.com 6.3..5. t Πz Π z Inverse Laplace transforms.3..6. t Πz Π z Representations through more general functions Through Meijer G.3.6.. Π Π G,, z Π G,, z, Through other functions.3.6.. Π tan 5 tan.3.6.8. 39 Π tan tan 3.3.6.9. Π 8 tan 3 tan 7.3.6.. Π tan tan 5 tan 8.3.6.3. Π 6 tan 8 tan Jeff Reid.3.6.5. 57 tan 39 Π tan 3 tan tan 5 tan Adam Bui (7).3.6.6. Π tan 3 tan tan 7 tan Adam Bui (7) 7 3

http://functions.wolfram.com 7.3.6.7. Π a a cot a tan a a a a a a a a a a a ; a Adam Bui &O.I. Marichev (7).3.6.. Π 88 tan 8 8 tan 3 tan.3.6.. Π 8 tan 8 tan 7 tan.3.6.. Π 6 tan tan 39 6 tan 393 tan 8 99 3 tan 6 tan 5 5 6 tan 6 575 8 tan 37 55 3 tan 3 5 5 3 tan 3 Π tan p q.3.6.3. tan q p p q ; p q.3.6.. Π K.3.6.5. Π E.3.6.6. Π 6 Li.3.6.7. Π Representations through equivalent functions.3.7.. Π 8.3.7.. Π log.3.7.3. Π log Π.3.7..

http://functions.wolfram.com 8 identity due to L. Euler.3.7.5. Π.3.7.6. Π ;.3.7.7. Π.3.7.8. Π ; Inequalities.3.9.. 3 7 Π 3 7 B.C. Archimedes.3.9.. Π q p q.65 ; p q Π Π.3.9.3. Theorems Volume of an n-dimensional sphere Volume V n of an n-dimensional sphere of radius r: V Π r ; V Π r. For instance, the area of a circle with radius r is Π r and the volume of a sphere with radius r is Π 3 r3. Above general formulas can be joined into one V n Surface area of an n-dimensional sphere Surface area S n of n-dimensional sphere of radius r: Πn n r n. S Π r ; S Π r. For instance, the circumference of circle with radius r is Π r, and the surface area of a sphere with radius r is Π r.

http://functions.wolfram.com 9 Above general formulas can be joined into one S n Πn n rn. Volume of an n-dimensional cylinder?? Volume V n of an n-dimensional cylinder of radius r and height h : V Π r h; V Π r h. For instance, the volume of a cylinder with radius r and height h is 3 Π r3 h. Above general formulas can be joined into one V n n Π n n Surface area of an n-dimensional cylinder?? r n h. Surface area S n of n-dimensional cone of radius r and height h : S Π r h r; S Π r h r. For instance, the volume of a cylinder with radius r and height h is 3 Π r h. For instance, the surface area of a cylinder with radius r and height h is Π r r h r. n Above general formulas can be joined into one S n Π Volume of an n-dimensional cone n r h r r n. Volume V n of an n-dimensional cone of radius r and height h : V Π r h; Π V r h. For instance, the volume of a cone with radius r and height h is 3 Π r h.

http://functions.wolfram.com Above general formulas can be joined into one V n Surface area of an n-dimensional cone n Π n n r n h. Surface area S n of n-dimensional cone of radius r and height h : S Π Π r h r r h r r ; S r. For instance, the volume of a cone with radius r and height h is 3 Π r h. For instance, the surface area of a cone with radius r and height h is Π r r h r. n Above general formulas can be joined into one S n Π n r h r r n. Probability of two random integers being relatively prime The probability that two integers piced at random are relatively prime is 6 Π. History The design of Egyptian pyramids (c. 3 BC) incorporated Π as 3 7 3.857 ; Egyptians (Rhind Papyrus, c. BC) gave Π as 6 9 3.65 China (c. BC) gave Π as 3 The Biblical verse I Kings 7:3 (c. 95 BC) gave Π as 3 3. Archimedes (Greece, c. BC) new that 3 7 Π 3 7 and gave Π as 3.8 W. Jones (76) introduced the symbol Π C. Goldbach (7) also used the symbol Π J. H. Lambert (76) established that Π is an irrational number F. Lindemann (88) proved that Π is transcendental The constant Π is the most frequently encountered classical constant in mathematics and the natural sciences.

http://functions.wolfram.com Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a ey to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/.3.3.. This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. -8, Wolfram Research, Inc.