Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
|
|
- Ἀρτεμίδωρος Τρικούπη
- 6 χρόνια πριν
- Προβολές:
Transcript
1 PolyGamma Notations Traditional name Digamma function Traditional notation Ψz Mathematica StandardForm notation PolyGammaz Primary definition Ψz k k k z Specific values Specialized values n Ψn ; n k k Ψn ; n Ψ n n 4 4 k Π log8 ; n Ψ n 4 n 4 4 k 3 Π log8 ; n Ψ n n k 9 log3 3 Π ; n 6
2 Ψ n 3 n 3 3 k 2 9 log3 3 Π ; n n 2 n 2 Ψ n 2 k k log4 ; n k n k n 2 n 2 Ψ 2 n k k log4 ; n k n k Ψ n 2 n k 2 3 Π 9log3 ; n Ψ 2 n 3 n 3 3 k 3 Π log9 683 ; n Ψ n 3 n k 3 Π log8 ; n Ψ 3 n 4 n 4 4 k Π log8 ; n Ψ n p n p k 2 k 2 cos 2 Π p k log sin Π k Π 2 cot Π p log2 ; n p p n Ψ p n k p 2 k 2 cos 2 Π p k log sin Π k Π 2 cot Π p log2 ; n p p Ψ p 2 k 2 cos 2 Π p k log sin Π k 2 Π cot Π p log2 ; p p Values at fixed points Ψ3
3 3 Ψ log Ψ Ψ log Ψ Ψ 2 2 log Ψ Ψ 2 log Ψ Ψ 3 2 2log Ψ Ψ log4 Ψ Values at infinities Ψ Ψ Ψ Ψ Ψ
4 4 General characteristics Domain and analyticity Ψz is an analytical function of z which is defined over the whole complex z-plane with the exception of countably many points z k ; k zψz Symmetries and periodicities Mirror symmetry Ψz Ψz Periodicity No periodicity Poles and essential singularities The function Ψz has an infinite set of singular points: a) z k ; k, are the simple poles with residues ; b) z is the point of convergence of poles, which is an essential singular point ing z Ψz k, ; k,, res z Ψzk ; k Branch points The function Ψz does not have branch points z Ψz Branch cuts The function Ψz does not have branch cuts z Ψz Series representations Generalized power series
5 5 Expansions at z 0 For the function itself Ψz z Π2 z 6 Ζ3 Π4 z3 z2 ; z Ψz z Π2 z 6 Ζ3 z Π4 z3 90 Oz4 Ψz z j Ζj 2 z j ; z j Ψz z j z j ; z j2 j 0 k Ψz Oz z Expansions at z z 0 ; z 0 n For the function itself Ψz Ψz 0 Ζ2, z 0 z z 0 Ζ3, z 0 z z 0 2 ; z z 0 z 0 z Ψz Ψz 0 Ζ2, z 0 z z 0 Ζ3, z 0 z z 0 2 Oz z 0 3 ; z 0 z Ψz Ψz 0 j Ζj 2, z 0 z z 0 j ; z 0 z 0 0 j j z z 0 j Ψz Ψz 0 j 0 k z 0 j2 ; z 0 z Ψz Ψz 0 Ζ2, z 0 z z 0 Oz z 0 ; z 0 z 0 0 Expansions at z n For the function itself
6 Ψz Π2 Ψn z n 3 Ζ2, n z n Ζ3, n z n2 Π4 45 Ζ4, n z n3 ; z n n Ψz Π2 Ψn z n 3 Ζ2, n z n Ζ3, n z n2 Π4 45 Ζ4, n z n3 Oz n 4 ; n Ψz z n Ψn k Ψ k Ζk Ζk, n z n k ; n k Ψz Ψn Oz n ; n z n Expansions of Ψz Ε at Ε 0 ; z n For the function itself Ψz Ε Ψz Ζ2, z Ε Ζ3, z Ε 2 ; Ε 0 z z Ψz Ε Ψz Ζ2, z Ε Ζ3, z Ε 2 OΕ 3 ; z z Ψz Ε Ψz j Ζj 2, z Ε j ; z z 0 j Ψz Ε Ψz OΕ ; z z 0 Expansions of Ψn Ε at Ε 0 For the function itself Ψn Ε Π2 Ψn Ε 3 Ζ2, n Ε 2 Ψ2 n Ε 2 ; Ε 0 n Ψn Ε Π2 Ψn Ε 3 Ζ2, n Ε 2 Ψ2 n Ε 2 OΕ 3 ; n Ψn Ε Ε Ψn k Ψ k Ζk Ζk, n Ε k ; Ε 0 n k Ψn Ε OΕ ; n Ε
7 7 Asymptotic series expansions Ψz logz 2 z k B 2 k ; argz Π z 2 k 2 k z Ψz logz 2 z k B 2 k Π cotπ z argz 2 k z 2 k Π ; z z 0 z Ψz logz 2 z 2 z 2 O z 2 ; argz Π z Ψz logz 2 z Residue representations 2 z 2 O z 2 Π cotπ z argz Π ; z z 0 z Ψz z res s j 0 s 2 2 s z s s j 2 s 2 Other series representations Ψz z z z 2 z 2 3 z Ψz z z k k z Integral representations On the real axis Of the direct function t z Ψz t ; Rez 0 0 t t t z Ψz 0 t t t ; Rez Ψz 0 t z t t t ; Rez 0
8 Ψn P n t 2 t ; n t Ψz 0 A. Radovi x z x logx x ; Rez 0 Contour integral representations Ψz 2 Π z s s s 2 z s s s 2 s 2 s Γ Ψz 2 Π z s s s 2 z s s s ; 0 Γ Γ 2 s 2 s Limit representations Ψz lim n n logn z k Ψz lim Ζs, z s s Generating functions t log t Ψn t n t ; n Transformations Transformations and argument simplifications Argument involving basic arithmetic operations Ψ z Π cotπ z Ψz Ψz Ψz Π cotπ z z Ψz Ψz z
9 Ψz Ψz z n Ψz n Ψz ; n z k n Ψz n Ψz ; n z k Multiple arguments Argument involving numeric multiples of variable Ψ2 z log2 2 Ψ z 2 Ψz Ψ3 z 3 Ψz Ψ z 3 Ψ z 2 3 log3 Argument involving symbolic multiples of variable Ψm z logm m m Ψ z k m ; m Products, sums, and powers of the direct function Sums of the direct function Ψz Ψ z 2 2 Ψ2 z 2 log2 Identities Recurrence identities Consecutive neighbors Ψz Ψz z Ψz Ψz z Distant neighbors
10 n Ψz Ψz n ; n z k n Ψz Ψz n ; n k z k Functional identities Relations of special kind Ψz Ψz Π cotπ z z Complex characteristics Real part Ψ 0 x 2 x y 2 ReΨx y RootSum x 2 2 x y 2 2 &, & x x y ReΨx y Ψx y Ψx y 2 Imaginary part ImΨx y Ψx y Ψx y 2 Differentiation Low-order differentiation Ψz Ψ z z Ψz Ψ 2 z z 2 Symbolic differentiation n Ψz Ψ n z ; n z n
11 Fractional integro-differentiation Α Ψz Ψ Α z z Α Α Ψz z Α ΝΑ exp z, z Α zα Α zα k k 2 2 F, 2; 2 Α; z k Integration Indefinite integration Involving only one direct function Ψz z logz Involving one direct function and elementary functions Involving power function z Α Ψz z zα Α zα Α zα Α n z n Ψz z j n j j z nj Ψ j z ; n j 0 z 3F 2, 2, Α ; 2, Α 2; k 2 k Definite integration Involving the direct function n 0 zψt z t n t n Ψ n z k n k k z kn j j k j Ψ j ; n j 0 Summation Finite summation n Ψk n Ψn ; n k
12 2 k Ψ k 2 Π p k 2 Π p log ; p p m i p m i k a k i i n i k b k i Ψi Ψi n Ψm i p n m k n a k k m p k n b k pmn z n m b k n k a k k m m b k n k m a k k p m n m k n n j 0 m Ψ i a k Ψ i b k Ψi a k k m a k k m m b k n k n pmn z mn p2f 2,, m a,, m a p ; m n 2, m 2, m b,, m b ; z n j m k j n b k n k j n a k p jm n j k n n j a k k m j n b k m b i b i n i m k b i b k k i p i m b i k n mnp z j b i b k n k a k b i b i a k k m b i b k k m Ψi b k z i mnp z nb i p2f 2, m b i, a b i,, a p b i ; n b i 2, 2 b i, b b i,, b b i ; z log pmn z p F m, a,, a p ; n, b,, b ; z n p n m k n k a k k m m b k n k a k b k G m2,n p,2 pmn z a,, a n, m, a n,, a p 0, n, b,, b m, b m,, b ; n m j,k,j,k j k j m k m b j b k
13 3 {k, n +, p}] + Sum[PolyGamma[ b[[k]] + i], {k, m +, }] + PolyGamma[n + i + ] + PolyGamma[i + ] - PolyGamma[m + - i]), {i, 0, m}]/ ((((-)^n*n!*m!*product[gamma[ - a[[k]]], {k, n +, p}]*product[gamma[b[[k]]], {k, m +, }])/ (Product[Gamma[ - b[[k]]], {k,, m}]* Product[Gamma[a[[k]]], {k,, n}]))* MeijerG[{Table[ - a[[r]], {r,, n}], Join[{m + }, Table[ - a[[r]], {r, + n, p}]]}, {Join[{0, -n}, Table[ - b[[r]], {r,, m}]], Table[ - b[[r]], {r, + m, }]}, (-)^(p - n - m + )*z] - (((n!*m!*product[gamma[ - a[[k]]], {k, n +, p}]*product[gamma[b[[k]]], {k, m +, }])/(Product[ Gamma[ - b[[k]]], {k,, m}]* Product[Gamma[a[[k]]], {k,, n}]))* (Sum[Gamma[- + b[[i]]]*gamma[-n - + b[[ i]]]*((product[gamma[-b[[k]] + b[[i]]], {k,, i - }]*Product[ Gamma[-b[[k]] + b[[i]]], {k, i +, m}]*product[gamma[ + a[[k]] - b[[i]]], {k,, n}])/(gamma[ m + b[[i]]]*product[gamma[-a[[k]] + b[[i]]], {k, n +, p}]*product[ Gamma[ + b[[k]] - b[[i]]], {k, m +, }]))*((-)^(p - n - m + )*z)^( + n - b[[i]])* HypergeometricPFQ[Join[{, - m - b[[i]]}, Table[ + a[[r]] - b[[i]], {r,, p}]], Join[{2 + n - b[[i]], 2 - b[[i]]}, Table[ + b[[r]] - b[[i]], {r,, }]], z], {i,, m}] + Sum[(((n - j - )!*Product[ Gamma[ + n - b[[k]] - j], {k,, m}]* Product[Gamma[-n + a[[k]] + j], {k,, n}])/((n + m - j)!*product[ Gamma[ + n - a[[k]] - j], {k, n +, p}]*product[gamma[-n + b[[k]] + j], {k, m +, }]))*(((-)^(p - n - m)* z)^j/j!), {j, 0, n - }] + ((Product[Gamma[-b[[k]] - m], {k,, m}]* Product[Gamma[ + a[[k]] + m], {k,,
14 4 n}])/(product[gamma[-a[[k]] - m], {k, n +, p}]*product[gamma[ + b[[k]] + m], {k, m +, }]))* (((-)^n*((-)^(p - n - m - )*z)^(n + m + ))/((n + m + )!*(m + )!))* HypergeometricPFQ[Join[{, }, Table[ + m + a[[r]], {r,, p}]], Join[{2 + n + m, 2 + m}, Table[ + m + b[[r]], {r,, }]], z]))/ ((-)^(p - n - m)*z)^n + Log[(-)^(p - n - m - )*z]* HypergeometricPFQ[Join[{-m}, Table[a[[r]], {r,, p}]], Join[{n + }, Table[b[[r]], {r,, }]], z])} /. {z -> Random[]*Exp[Pi*I*(ii/4)]}, {n, 0, 3}, {m, 0, 3}, {ii, 0, 7}]] Infinite summation p k a k p m n i Ψi Ψi n Ψ i a k Ψ i b k Ψi a k Ψi b k z i i 0 i n i k b k i k n k k k m n log pmn z b k p F 2, a,, a p ;, n, b,, b ; z k G m2,n p,2 pmn z a,, a n, a n,, a p n, 0, b,, b m, b m,, b n p n k n k n p n k n a k k m m b k n k a k k pmn z n n n j m k j n b k n k j n a k mnp z j p j 0 j k n j n a k k m j n b k b k a k k m b k m b k n k a k m csc 2 Π b i n k a k b i i m n Π m k cscπ b i b k k i cscπ b i b k pmn z bi p i k n b i a k pf 2, a b i,, a p b i ; n b i 2, 2 b i, b b i,, b b i ; z ; n j,k,j,k j k j m k m b j b k
15 5 (i!*pochhammer[n +, i]*product[ Pochhammer[bb[[k]], i], {k,, }]))*z^i* (Sum[PolyGamma[ - bb[[k]] - i], {k,, m}] - Sum[PolyGamma[aa[[k]] + i], {k,, n}] - Sum[PolyGamma[ - aa[[k]] - i], {k, n +, p}] + Sum[PolyGamma[bb[[k]] + i], {k, m +, }] + PolyGamma[n + i + ] + PolyGamma[i + ]), {i, 0, 00}]/ ((((-)^n*n!*product[gamma[ - aa[[k]]], {k, n +, p}]*product[gamma[bb[[k]]], {k, m +, }])/ (Product[Gamma[ - bb[[k]]], {k,, m}]* Product[Gamma[aa[[k]]], {k,, n}]))* MeijerG[{Table[ - aa[[r]], {r,, n}], Table[ - aa[[r]], {r, + n, p}]}, {Join[{-n, 0}, Table[ - bb[[r]], {r,, m}]], Table[ - bb[[r]], {r, + m, }]}, (-)^(p - n - m)*z] - (((-)^n*n!*product[gamma[ - aa[[k]]], {k, n +, p}]*product[gamma[bb[[k]]], {k, m +, }])/ (Product[Gamma[ - bb[[k]]], {k,, m}]* Product[Gamma[aa[[k]]], {k,, n}]))* ((-)^n*pi^(m + )* Sum[(Product[Gamma[ + aa[[k]] - bb[[i]]], { k,, n}]/product[gamma[-aa[[k]] + bb[[i]]], {k, n +, p}])* Csc[Pi*bb[[i]]]^2*Product[Csc[Pi* (-bb[[k]] + bb[[i]])], {k,, i - }]* Product[Csc[Pi*(-bb[[k]] + bb[[i]])], {k, i +, m}]*((-)^(p - n - m)*z)^ ( - bb[[i]])* HypergeometricPFQRegularized[Join[{}, Table[ + aa[[r]] - bb[[i]], {r,, p}]], Join[{n bb[[i]], 2 - bb[[i]]}, Table[ + bb[[r]] - bb[[i]], {r,, }]], z], {i,, m}] + Sum[(((n - j - )!*Product[Gamma[ - bb[[k]] + n - j], {k,, m}]* Product[Gamma[aa[[k]] - n + j], {k,, n}])/(product[gamma[ - aa[[k]] + n - j], {k, n +, p}]* Product[Gamma[bb[[k]] - n + j], {k, m +, }]))*
16 6 (((-)^(p - n - m - )*z)^j/j!), {j, 0, n - }]/((-)^(p - n - m)*z)^n) + Log[(-)^(p - n - m)*z]*n!* Product[Gamma[bb[[k]]], {k,, }]* HypergeometricPFQRegularized[Join[{}, Table[aa[[r]], {r,, p}]], Join[{n +, }, Table[bb[[r]], {r,, }]], z])} /. {z -> Random[]*Exp[Pi*I*(ii/4)]}, {n, 0, 3}, {ii, 0, 7}]] Representations through more general functions Through hypergeometric functions Involving p F Ψz z 3 F 2,, 2 z; 2, 2; Through Meijer G Classical cases for the direct function itself Ψz z G,3 3,3 0, 0, z 0,, Through other functions Involving some hypergeometric-type functions Ψz Ψ 0 z Representations through euivalent functions With related functions Ψz z z z Ψz logz z Ψz H z Zeros
17 Ψz k 0 ;.4 z z z z z z z z k History J. Stirling (730) A.-M. Legendre (809) S. Poisson (8) C. F. Gauss (80) M.A. Stern (847) proved convergence of the Stirling series for digamma function
18 8 Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: This document is currently in a preliminary form. If you have comments or suggestions, please comments@functions.wolfram.com , Wolfram Research, Inc.
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.
BetaRegularized Notations Traditional name Regularized incomplete beta function Traditional notation I z a, b Mathematica StandardForm notation BetaRegularizedz, a, b Primary definition Basic definition
GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
GegenbauerC3General Notations Traditional name Gegenbauer function Traditional notation C Ν Λ z Mathematica StandardForm notation GegenbauerCΝ, Λ, z Primary definition 07.4.0.000.0 C Λ Ν z Λ Π Ν Λ F Ν,
Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation
Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Introductions to EllipticThetaPrime4
Introductions to EllipticThetaPrie Introduction to the Jacobi theta functions General The basic achieveents in studying infinite series were ade in the 18th and 19th centuries when atheaticians investigated
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
1 Elementary Functions
Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
RF series Ultra High Q & Low ESR capacitor series
RF series Ultra High Q & Low ESR capacitor series FAITHFUL LINK Features Application» High Q and low ESR performance at high frequency» Telecommunication products & equipments:» Ultra low capacitance to
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
Fiboacci Notatios Traditioal ame Fiboacci umber Traditioal otatio F Ν Mathematica StadardForm otatio FiboacciΝ Primary defiitio 04..0.000.0 F Ν ΦΝ cosν Π Φ Ν Specific values Specialized values 04..03.000.0
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
Mellin transforms and asymptotics: Harmonic sums
Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Computing the Macdonald function for complex orders
Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Συντακτικές λειτουργίες
2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS
Werner Rosenheinrich 191016 Ernst - Abbe - Hochschule Jena First variant: 40900 University of Applied Sciences Germany TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS Integrals of the type J 0
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet