Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Σχετικά έγγραφα
Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Structural Expression of Exo-Anomeric Effect

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Electronic Supplementary Information for

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Accessory Publication

IV. ANHANG 179. Anhang 178

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Supporting Information for

Electronic Supplementary Information

Supporting Information

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Electronic Supplementary Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Electronic Supplementary Information (ESI)

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Supporting Information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Information (ESI) for

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Synthesis, characterization and luminescence studies of

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information for:

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supplementary Information

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Table of Contents 1 Supplementary Data MCD

Supporting Information

Chiral α-aminoxy Acid / Achiral Cyclopropane α-aminoxy Acid Unit as a Building Block for Constructing α N O Helix

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Supporting Information

Supporting Information for: electron ligands: Complex formation, oxidation and

Chemical Communications. Electronic Supporting Information

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information

Enhancing the Photochemical Stability of N,C-Chelate Polyboryl Compounds: C- C Bond Formation versus C=C Bond cis, trans-isomerization

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

SUPPORTING INFORMATION

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Electronic Supplementary Information (ESI)

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information

Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Transcript:

Supporting Material Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays Aaron D. Wilson, Rachel H. Newell, Michael J. McNevin, James T. Muckerman, ψ M. Rakowski DuBois,* and Daniel L. DuBois* Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 ψ Brookhaven National Lab, P.O. Box 5000, Upton, NY 11973-5000 National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 Table of Contents Table of Contents S1 Thermodynamic hydride acceptor ability of [Ni(P Ph 2N Ph 2) 2 ] 2+ in acetonitrile S2 Determination of the rate constant for H 2 production from the catalytic current S2 Figure S1. Plot of the catalytic current for hydrogen production versus the concentration of 6a. S3 Figure S2. Plot of the slopes shown in Figure 5 vs 1/ν 1/2. S4 Figure S3. Cyclic voltammograms as a function of the concentration of 6b in the presence of 0.8 atm of H 2 and 0.014 M NEt 3. S4 Figure S4. Plot of i c /i p for a 6.2 x 10-4 M solution of 6b as a function of the square root of H 2 pressure S5 Table S1. Crystal Data for [Ni(P Ph 2N Ph 2) 2 (MeCN)](BF 4 ) 2 (6a) and [Ni(P Cy 2N Bz 2) 2 ]- (BF 4 ) 2 2(MeCN) (6b) S5 Table S2. Atomic coordinates for [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)](BF 4 ) 2, 6a S6 Table S3. Bond lengths [Å] and angles [ ] for [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)](BF 4 ) 2, 6a S7 Figure S5. Atom numbering scheme for [Ni(P Ph 2N Ph 2) 2 (MeCN)](BF 4 ) 2, 6a S12 Table S4. Anisotropic displacement parameters (Å 2 x 10 3 ) for [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)](BF 4 ) 2, 6a S12 Table S5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)](BF 4 ) 2, 6a S14 Table S6. Torsion angles [ ] for [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)](BF 4 ) 2, 6a S15 Table S7. Atomic coordinates for [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN), 6b S19 Table S8. Bond lengths [Å] and angles [ ] for [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN), 6b S20 Figure S6. Atom numbering scheme for [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN), 6b S22 Table S9. Anisotropic displacement parameters (Å 2 x 10 3 ) for [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN), 6b S22 S1

Table S10. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN), 6b S23 Table S11. Torsion angles [ ] for [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN), 6b S24 Details of the theoretical calculations S26 Table S12. Cartesian coordinates (XYZ file) of the optimized model catalyst [Ni(PH 2 CH 2 NHCH 2 PH 2 ) 2 ] 2+ S26 Table S13. Cartesian coordinates (XYZ file) of the optimized transition state for the heterolytic cleavage of dihydrogen to form [HNi(PH 2 CH 2 N(H)HCH 2 PH 2 )- (PH 2 CH 2 NHCH 2 PH 2 )] 2+ (9) S27 References for Supporting Information S28 Thermodynamic hydride acceptor ability of [Ni(P Ph 2N Ph 2) 2 ] 2+ in acetonitrile. The sum of reactions 1S-3S in Scheme 1S below is the reaction of [Ni(P Ph 2N Ph 2) 2 ] 2+ with a solvated hydride ion to form [HNi(P Ph 2N Ph 2) 2 ] + in acetonitrile (reaction 4S). Therefore, the sum of the free energies associated with each of these three reactions is the free energy associated with reaction 4S, or the hydride acceptor ability of [Ni(P Ph 2N Ph 2) 2 ] 2+ in acetonitrile. The free energy of reaction 1S (reaction 2 of the manuscript) is -RTlnK eq or 1.37pK eq. The equilibrium constant for reaction 1S of 0.30 ± 0.06 atm -1 {K = [8a] [p-ncc 6 H 4 NH 3+ ]/([6b] P H2 [p-ncc 6 H 4 NH 2 ])} corresponds to a free energy of 0.7 ± 0.2 kcal/mol using 1 atm of hydrogen as the standard state. The pk a value of anisidine for reaction 2S is 11.3 ± 0.1 1 corresponding to a free energy of 15.5 ± 0.2 kcal/mol. Finally, the free energy for the conversion of 1.0 mole of solvated H + and H - in acetonitrile to 1.0 mole of H 2 gas is - 76.0 kcal/mol. 2 The sum of these three free energies gives a value of -59.8 ± 0.4 kcal/mol for the hydride acceptor ability of [Ni(P Ph 2N Ph 2)] 2+. Reaction ΔG (kcal/mol) [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)] 2+ + H 2 + p-ncc 6 H 4 NH 2 [HNi(P Ph 2N Ph 2) 2 ] + + + p-ncc 6 H 4 NH 3 0.7 ± 0.2 (1S) + p-ncc 6 H 4 NH 3 H + + p-ncc 6 H 4 NH 2 15.5 ± 0.2 (2S) H + + H - H 2-76.0 (3S) [Ni(P Ph 2N Ph 2) 2 (CH 3 CN)] 2+ + H - [HNi(P Ph 2N Ph 2) 2 ] + -59.8 kcal/mol (4S) Scheme 1S From this hydride acceptor ability, the driving force for hydrogen elimination from [HNi(P Ph 2N Ph 2) 2 ] + in a 1:1 mixture of cyanoanilinium/cyanoaniline (pk a = 7.6 in acetonitrile) is 6 kcal/mol. Determination of the rate constant for H 2 production from the catalytic current. The relationship between the catalytic current i c, the catalyst concentration [cat], and the acid concentration [H + ] for a catalytic reaction that is second order in acid and first order in catalyst concentration is given by eq. 5S for acid concentrations sufficiently high that they are unchanged during the course of the reaction and at potentials sufficiently negative that electron transfer is S2

fast. 3-5 In eq. 5S, n is the number of electrons involved in the catalytic reaction, F is Faraday's constant, A is the area of the electrode, D is the diffusion coefficient of the catalyst, and k is the third order rate constant. i c = nfa[cat] Dk[H + ] 2 (5S) The relationship between the peak current i p, the catalyst concentration [cat], and the sweep rate ν is given by eq. 6S for a reversible, one-electron wave. In eq. 6S, R is the ideal gas constant and T is the absolute temperature. i p = 0.4463FA[cat] FvD RT The ratio of i c /i p is given by eq. 7S. (6S) i c i p = n 0.4463 RTk[H + ] 2 Fv (7S) From eq. 7S it can be seen that ratio of ic/ip should be linear with respect to acid concentration (See Figure 5 of text). The slopes of the lines shown in Figure 5 of text should exhibit a linear dependence on (1/ν) 1/2 (see Figure S2 below) from which a rate constant of 1.3 10 4 M -2 s -1 can be calculated. 18 Current (µa) 16 14 12 10 y = 29.1x + 3.62 R 2 = 0.997 8 6 0.1 0.2 0.3 0.4 0.5 [Cat] mm Figure S1. Plot of the observed catalytic current for hydrogen production versus the catalyst concentration of 6a. Conditions: 50 mv/s scan rate, 0.3 M NBu 4 BF 4 in acetonitrile, 0.019 M triflic acid, glassy carbon electrode. S3

600 Slope of (ic/ip vs [H+]) 500 400 300 200 100 y = 83.734x + 103.99 R 2 = 0.9903 k = 1.3x10 4 M -2 s -1 0 0 1 2 3 4 5 [Scan Rate] -0.5 Figure S2. Plot of the slopes shown in Figure 5 vs 1/ν 1/2. From eq. 5 (or 7S) the slope of this plot is 0.72k 1/2, or k = 1.3x10 4 M -2 s -1. 2 Current (ua) -2-6 -10-14 -18-22 ip (ma) 0.3 20 15 10 5 y = 13680x + 0.4463 R 2 = 0.9991 0 0.0000 0.0005 0.0010 0.0015 6a [M] 0-0.3-0.6 Potential versus Ferrocene (V) no complex 0.10 mm 0.19 mm 0.28 mm 0.37 mm 0.45 mm 0.54 mm 0.62 mm 0.70 mm 0.78 mm 0.85 mm 1.00 mm 1.28 mm -0.9-1.2 Figure S3. Cyclic voltammograms as a function of the concentration of 6b in the presence of 0.8 atm of H 2 and 0.014 M NEt 3. Conditions: 100 mv/s scan rate, 0.3 M NBu 4 BF 4 in acetonitrile, glassy carbon electrode. Inset shows plot of the catalytic current versus the concentration of 6b. S4

4.5 4 icat/ip 3.5 3 2.5 2 y = 3.3399x + 1.3016 R 2 = 0.9876 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 (H 2 atm) 1/2 Figure S4. Plot of i c /i p for a 6.2 x10-4 M solution of 6b as a function of the square root of H 2 pressure in the presence of 7.2 x 10-3 M NEt 3. Conditions: 100 mv/s scan rate, 0.3 M NBu 4 BF 4 in acetonitrile, glassy carbon electrode. Table S1. Crystal Data for [Ni(P Ph 2N Ph 2) 2 (MeCN)](BF 4 ) 2 (6a) and [Ni(P Cy 2N Bz 2) 2 ](BF 4 ) 2 2(MeCN)(6b) (6a) (6b) formula C 58 H 59 B 2 F 8 N 5 NiP 4 C 64 H 94 B 2 F 8 N 6 NiP 4 formula weight 1182.31 1303.66 temperature 152(2) K 152(2) K crystal system Orthorhombic Monoclinic space group P2(1)2(1)2(1) (No. 19) C2/c (No. 15) unit cell dimensions a = 12.9803(5) α =90º a = 17.571(13) α =90º b = 18.2873(7) β =90º b = 16.235(11)β=99.754(15)º c = 23.0460(8)γ =90º c = 23.576(17) γ =90º Volume 5470.5(4) Å 3 6628.0(8) Å 3 Z 4 4 Crystal size 0.25 x 0.10 x 0.02 0.50 x 0.36 x 0.10 Goodness-of-fit on F 2 0.968 0.962 Final R indices [I 2σ(I)] R1 = 0.0809, wr2 = 0.1463 R1 = 0.0651, wr2 = 0.1005 R indices (all data) R1 = 0.1763, wr2 = 0.1753 R1 = 0.1633, wr2 = 0.1888 R = R 1 = Σ F o - F c / Σ F o Rw = [Σ[w(Fo 2 - Fc 2 ) 2 ] / Σ[w(Fo 2 ) 2 ]] 1/2 S5

Table S2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å 2 x 10 3 ] for C 58 H 59 B 2 F 8 N 5 NiP 4 (6a). U(eq) is defined as one third of the trace of the U ij tensor. x y z U(eq) Ni(1) 4246(1) 5224(1) 757(1) 20(1) P(1) 2702(1) 5567(1) 462(1) 22(1) P(2) 3820(1) 5897(1) 1504(1) 21(1) P(3) 5831(1) 5633(1) 664(1) 21(1) P(4) 4706(1) 4517(1) 25(1) 20(1) N(1) 4109(4) 4319(3) 1273(2) 26(1) N(2) 1707(4) 5648(3) 1514(2) 21(1) N(3) 3373(4) 6984(3) 731(3) 22(1) N(4) 5339(4) 5777(3) -512(2) 22(1) N(5) 6770(4) 4392(3) 301(2) 23(1) B(1) 1518(11) 2614(8) 1451(6) 75(4) B(2) 3355(7) 8279(5) 2854(4) 33(2) F(2) 1004(4) 2220(3) 1035(3) 79(2) F(4) 1772(5) 3298(3) 1265(3) 84(2) F(5) 2806(4) 8909(3) 2966(2) 72(2) F(6) 2695(4) 7704(3) 2750(2) 60(1) F(7) 3995(4) 8112(3) 3313(2) 55(1) F(8) 3940(4) 8384(3) 2356(2) 55(1) F(1) 610(10) 2759(6) 1793(5) 78(5) F(3) 2114(9) 2109(6) 1695(5) 70(4) F(1A) 1463(10) 2624(6) 2048(6) 73(5) F(3A) 2622(13) 2402(11) 1408(9) 142(8) C(1) 3970(5) 3922(4) 1629(3) 28(2) C(2) 3769(7) 3411(5) 2120(4) 51(2) C(3) 1677(5) 5262(4) 959(3) 26(2) C(4) 2648(5) 5546(4) 1852(3) 26(2) C(5) 2509(5) 6575(3) 462(3) 25(2) C(6) 3497(5) 6861(3) 1348(3) 22(2) C(7) 5183(5) 5000(3) -622(3) 23(2) C(8) 6157(5) 5917(4) -83(3) 25(2) C(9) 5815(5) 3958(3) 244(3) 24(2) C(10) 6788(5) 4894(3) 790(3) 24(2) C(11) 2228(5) 5317(4) -255(3) 23(2) C(12) 2715(5) 5610(4) -731(3) 27(2) C(13) 2414(6) 5404(4) -1289(3) 33(2) C(14) 1609(6) 4915(4) -1364(3) 36(2) C(15) 1131(6) 4629(4) -889(3) 34(2) C(16) 1421(5) 4820(4) -328(3) 32(2) C(17) 4686(5) 5902(4) 2122(3) 19(2) C(18) 5366(5) 5331(4) 2225(3) 20(2) C(19) 5990(5) 5314(4) 2711(3) 29(2) C(20) 5949(5) 5885(4) 3099(3) 31(2) C(21) 5264(6) 6461(4) 3014(3) 36(2) C(22) 4632(5) 6472(4) 2530(3) 28(2) C(23) 782(6) 5597(3) 1854(3) 22(2) C(24) -13(5) 5119(4) 1721(3) 32(2) C(25) -904(6) 5123(4) 2065(3) 39(2) C(26) -996(5) 5596(5) 2534(3) 43(2) C(27) -197(6) 6063(4) 2666(3) 35(2) C(28) 670(6) 6055(4) 2340(3) 33(2) C(29) 3495(5) 7729(4) 526(3) 24(2) C(30) 3638(6) 8309(4) 917(3) 33(2) S6

C(31) 3893(6) 8999(4) 719(4) 39(2) C(32) 3981(6) 9130(4) 137(4) 44(2) C(33) 3808(5) 8564(4) -256(3) 34(2) C(34) 3574(5) 7871(4) -60(3) 28(2) C(35) 6330(5) 6406(4) 1070(3) 23(2) C(36) 5991(5) 7108(4) 918(3) 29(2) C(37) 6407(6) 7718(4) 1189(3) 31(2) C(38) 7154(6) 7644(4) 1605(3) 34(2) C(39) 7478(6) 6940(4) 1779(3) 35(2) C(40) 7057(5) 6337(4) 1510(3) 27(2) C(41) 3816(5) 3849(3) -257(3) 20(2) C(42) 3047(5) 3555(4) 103(3) 29(2) C(43) 2364(6) 3046(3) -117(3) 30(2) C(44) 2417(6) 2827(4) -687(4) 33(2) C(45) 3162(6) 3107(4) -1035(4) 40(2) C(46) 3863(6) 3615(4) -815(3) 38(2) C(47) 5385(5) 6232(4) -1017(3) 28(2) C(48) 5345(6) 6991(4) -948(3) 37(2) C(49) 5311(6) 7426(4) -1426(3) 35(2) C(50) 5132(14) 7169(8) -1965(7) 46(4) C(51) 5107(10) 6421(6) -2047(5) 32(4) C(52) 5194(10) 5963(7) -1574(5) 28(3) C(50A) 5650(20) 7103(12) -2003(10) 34(6) C(51A) 5860(20) 6384(12) -2030(10) 47(7) C(52A) 5770(20) 5936(13) -1560(10) 39(6) C(53) 7706(5) 3998(4) 207(3) 25(2) C(54) 8445(6) 3906(4) 642(4) 40(2) C(55) 9352(7) 3516(4) 498(5) 60(3) C(56) 9506(7) 3218(5) -41(5) 57(3) C(57) 8774(7) 3307(5) -454(5) 51(2) C(58) 7861(6) 3704(4) -347(4) 35(2) Table S3. Bond lengths [Å] and angles [º] for C 58 H 59 B 2 F 8 N 5 NiP 4 (6a). Ni(1)-N(1) 2.046(6) Ni(1)-P(2) 2.187(2) Ni(1)-P(3) 2.200(2) Ni(1)-P(1) 2.207(2) Ni(1)-P(4) 2.207(2) P(1)-C(11) 1.821(7) P(1)-C(3) 1.841(7) P(1)-C(5) 1.860(6) P(2)-C(17) 1.816(7) P(2)-C(4) 1.836(7) P(2)-C(6) 1.847(6) P(3)-C(35) 1.815(7) P(3)-C(8) 1.848(7) P(3)-C(10) 1.859(6) P(4)-C(41) 1.802(7) P(4)-C(9) 1.837(6) P(4)-C(7) 1.840(6) S7

N(1)-C(1) 1.111(8) N(2)-C(23) 1.435(8) N(2)-C(4) 1.460(8) N(2)-C(3) 1.462(8) N(3)-C(6) 1.449(8) N(3)-C(29) 1.451(8) N(3)-C(5) 1.482(8) N(4)-C(47) 1.432(8) N(4)-C(7) 1.458(8) N(4)-C(8) 1.473(8) N(5)-C(53) 1.430(8) N(5)-C(10) 1.453(8) N(5)-C(9) 1.478(8) B(1)-F(3) 1.330(13) B(1)-F(4) 1.362(15) B(1)-F(2) 1.372(16) B(1)-F(1A) 1.377(17) B(1)-F(1) 1.442(16) B(1)-F(3A) 1.488(15) B(2)-F(6) 1.378(10) B(2)-F(5) 1.379(10) B(2)-F(7) 1.379(10) B(2)-F(8) 1.390(9) C(1)-C(2) 1.491(10) C(11)-C(12) 1.375(9) C(11)-C(16) 1.399(9) C(12)-C(13) 1.395(10) C(13)-C(14) 1.386(10) C(14)-C(15) 1.362(10) C(15)-C(16) 1.392(10) C(17)-C(18) 1.386(9) C(17)-C(22) 1.406(9) C(18)-C(19) 1.381(9) C(19)-C(20) 1.376(9) C(20)-C(21) 1.392(10) C(21)-C(22) 1.385(9) C(23)-C(24) 1.387(9) C(23)-C(28) 1.408(9) C(24)-C(25) 1.402(10) C(25)-C(26) 1.389(11) C(26)-C(27) 1.377(10) C(27)-C(28) 1.353(10) C(29)-C(34) 1.379(9) C(29)-C(30) 1.405(9) C(30)-C(31) 1.381(10) C(31)-C(32) 1.367(11) C(32)-C(33) 1.395(11) C(33)-C(34) 1.380(9) C(35)-C(40) 1.391(9) C(35)-C(36) 1.401(9) C(36)-C(37) 1.386(9) C(37)-C(38) 1.371(11) C(38)-C(39) 1.411(10) C(39)-C(40) 1.379(10) C(41)-C(46) 1.357(9) C(41)-C(42) 1.405(9) C(42)-C(43) 1.382(9) S8

C(43)-C(44) 1.377(10) C(44)-C(45) 1.356(11) C(45)-C(46) 1.395(10) C(47)-C(52) 1.397(13) C(47)-C(48) 1.399(9) C(47)-C(52A) 1.45(2) C(48)-C(49) 1.361(10) C(49)-C(50) 1.348(16) C(49)-C(50A) 1.52(2) C(50)-C(51) 1.380(18) C(51)-C(52) 1.378(16) C(50A)-C(51A) 1.34(3) C(51A)-C(52A) 1.36(3) C(53)-C(54) 1.397(10) C(53)-C(58) 1.399(10) C(54)-C(55) 1.415(11) C(55)-C(56) 1.370(13) C(56)-C(57) 1.354(13) C(57)-C(58) 1.412(11) N(1)-Ni(1)-P(2) 88.63(16) N(1)-Ni(1)-P(3) 114.37(17) P(2)-Ni(1)-P(3) 96.98(7) N(1)-Ni(1)-P(1) 109.27(17) P(2)-Ni(1)-P(1) 81.53(7) P(3)-Ni(1)-P(1) 136.29(7) N(1)-Ni(1)-P(4) 89.61(16) P(2)-Ni(1)-P(4) 177.86(8) P(3)-Ni(1)-P(4) 82.63(7) P(1)-Ni(1)-P(4) 100.21(7) C(11)-P(1)-C(3) 104.1(3) C(11)-P(1)-C(5) 101.7(3) C(3)-P(1)-C(5) 101.7(3) C(11)-P(1)-Ni(1) 120.9(2) C(3)-P(1)-Ni(1) 112.3(2) C(5)-P(1)-Ni(1) 113.8(2) C(17)-P(2)-C(4) 99.9(3) C(17)-P(2)-C(6) 106.8(3) C(4)-P(2)-C(6) 103.3(3) C(17)-P(2)-Ni(1) 117.7(2) C(4)-P(2)-Ni(1) 110.9(2) C(6)-P(2)-Ni(1) 116.2(2) C(35)-P(3)-C(8) 100.4(3) C(35)-P(3)-C(10) 104.3(3) C(8)-P(3)-C(10) 101.3(3) C(35)-P(3)-Ni(1) 123.3(2) C(8)-P(3)-Ni(1) 113.6(2) C(10)-P(3)-Ni(1) 111.3(2) C(41)-P(4)-C(9) 103.0(3) C(41)-P(4)-C(7) 104.4(3) C(9)-P(4)-C(7) 103.1(3) C(41)-P(4)-Ni(1) 119.9(2) C(9)-P(4)-Ni(1) 109.1(2) C(7)-P(4)-Ni(1) 115.4(2) C(1)-N(1)-Ni(1) 166.5(6) C(23)-N(2)-C(4) 113.6(5) C(23)-N(2)-C(3) 115.0(5) S9

C(4)-N(2)-C(3) 115.3(5) C(6)-N(3)-C(29) 116.9(5) C(6)-N(3)-C(5) 114.6(5) C(29)-N(3)-C(5) 114.9(5) C(47)-N(4)-C(7) 115.5(5) C(47)-N(4)-C(8) 114.5(5) C(7)-N(4)-C(8) 112.7(5) C(53)-N(5)-C(10) 114.9(5) C(53)-N(5)-C(9) 115.3(5) C(10)-N(5)-C(9) 114.9(5) F(3)-B(1)-F(4) 129.1(13) F(3)-B(1)-F(2) 102.3(11) F(4)-B(1)-F(2) 112.3(10) F(3)-B(1)-F(1A) 67.5(9) F(4)-B(1)-F(1A) 108.4(13) F(2)-B(1)-F(1A) 132.7(13) F(3)-B(1)-F(1) 111.8(11) F(4)-B(1)-F(1) 101.6(10) F(2)-B(1)-F(1) 94.6(11) F(1A)-B(1)-F(1) 53.8(8) F(3)-B(1)-F(3A) 44.5(9) F(4)-B(1)-F(3A) 89.2(12) F(2)-B(1)-F(3A) 106.5(12) F(1A)-B(1)-F(3A) 96.8(13) F(1)-B(1)-F(3A) 150.6(14) F(6)-B(2)-F(5) 110.4(7) F(6)-B(2)-F(7) 109.7(7) F(5)-B(2)-F(7) 110.7(7) F(6)-B(2)-F(8) 107.5(7) F(5)-B(2)-F(8) 108.8(7) F(7)-B(2)-F(8) 109.6(7) N(1)-C(1)-C(2) 178.0(8) N(2)-C(3)-P(1) 112.2(5) N(2)-C(4)-P(2) 114.6(4) N(3)-C(5)-P(1) 113.5(4) N(3)-C(6)-P(2) 111.3(4) N(4)-C(7)-P(4) 111.9(4) N(4)-C(8)-P(3) 114.3(4) N(5)-C(9)-P(4) 112.5(4) N(5)-C(10)-P(3) 109.1(4) C(12)-C(11)-C(16) 120.1(6) C(12)-C(11)-P(1) 118.2(5) C(16)-C(11)-P(1) 121.7(5) C(11)-C(12)-C(13) 120.2(6) C(14)-C(13)-C(12) 119.9(7) C(15)-C(14)-C(13) 119.5(7) C(14)-C(15)-C(16) 121.8(7) C(15)-C(16)-C(11) 118.5(7) C(18)-C(17)-C(22) 118.4(6) C(18)-C(17)-P(2) 121.6(5) C(22)-C(17)-P(2) 119.9(5) C(19)-C(18)-C(17) 121.9(6) C(20)-C(19)-C(18) 119.2(7) C(19)-C(20)-C(21) 120.5(7) C(22)-C(21)-C(20) 120.1(7) C(21)-C(22)-C(17) 119.9(7) C(24)-C(23)-C(28) 118.3(7) S10

C(24)-C(23)-N(2) 122.9(6) C(28)-C(23)-N(2) 118.8(6) C(23)-C(24)-C(25) 119.1(7) C(26)-C(25)-C(24) 120.9(7) C(27)-C(26)-C(25) 119.6(7) C(28)-C(27)-C(26) 119.8(7) C(27)-C(28)-C(23) 122.4(7) C(34)-C(29)-C(30) 118.3(7) C(34)-C(29)-N(3) 120.3(6) C(30)-C(29)-N(3) 121.1(6) C(31)-C(30)-C(29) 120.7(7) C(32)-C(31)-C(30) 120.3(8) C(31)-C(32)-C(33) 119.6(7) C(34)-C(33)-C(32) 120.3(7) C(29)-C(34)-C(33) 120.7(7) C(40)-C(35)-C(36) 118.6(6) C(40)-C(35)-P(3) 123.1(5) C(36)-C(35)-P(3) 118.3(5) C(37)-C(36)-C(35) 120.2(7) C(38)-C(37)-C(36) 120.7(7) C(37)-C(38)-C(39) 120.0(7) C(40)-C(39)-C(38) 118.9(7) C(39)-C(40)-C(35) 121.6(6) C(46)-C(41)-C(42) 118.1(6) C(46)-C(41)-P(4) 121.8(5) C(42)-C(41)-P(4) 120.1(5) C(43)-C(42)-C(41) 119.8(7) C(44)-C(43)-C(42) 120.9(7) C(45)-C(44)-C(43) 119.4(7) C(44)-C(45)-C(46) 120.1(8) C(41)-C(46)-C(45) 121.7(7) C(52)-C(47)-C(48) 116.6(8) C(52)-C(47)-N(4) 122.4(7) C(48)-C(47)-N(4) 118.8(6) C(52)-C(47)-C(52A) 30.6(9) C(48)-C(47)-C(52A) 118.8(11) N(4)-C(47)-C(52A) 119.9(11) C(49)-C(48)-C(47) 119.3(7) C(50)-C(49)-C(48) 123.2(9) C(50)-C(49)-C(50A) 27.0(9) C(48)-C(49)-C(50A) 118.1(10) C(49)-C(50)-C(51) 118.5(13) C(52)-C(51)-C(50) 119.5(12) C(51)-C(52)-C(47) 121.8(10) C(51A)-C(50A)-C(49) 118.6(19) C(50A)-C(51A)-C(52A) 122(2) C(51A)-C(52A)-C(47) 119(2) C(54)-C(53)-C(58) 120.6(7) C(54)-C(53)-N(5) 122.4(7) C(58)-C(53)-N(5) 117.0(6) C(53)-C(54)-C(55) 117.6(8) C(56)-C(55)-C(54) 122.3(9) C(57)-C(56)-C(55) 119.1(9) C(56)-C(57)-C(58) 121.8(9) C(53)-C(58)-C(57) 118.5(8) S11

Figure S5. Atom numbering scheme for [Ni(P 2 Ph N 2 Ph ) 2 (MeCN)](BF 4 ) 2 (6a) Table S4. Anisotropic displacement parameters [Å 2 x 10 3 ] for C 58 H 59 B 2 F 8 N 5 NiP 4 (6a). The anisotropic displacement factor exponent takes the form: -2 2 [h 2 a* 2 U 11 + 2 h k a* b* U 12 ] U11 U22 U33 U23 U13 U12 Ni(1) 20(1) 19(1) 21(1) 0(1) 0(1) -1(1) P(1) 25(1) 17(1) 24(1) -1(1) -1(1) 1(1) P(2) 19(1) 20(1) 22(1) -1(1) -1(1) 0(1) P(3) 21(1) 21(1) 23(1) 0(1) 1(1) -1(1) P(4) 21(1) 17(1) 22(1) 1(1) 0(1) -1(1) N(1) 22(3) 29(3) 25(3) 1(3) 2(3) 2(3) N(2) 19(3) 26(3) 19(3) 2(3) 2(3) 2(3) N(3) 25(3) 18(3) 23(3) 4(3) -6(3) -2(2) N(4) 24(3) 17(3) 24(3) -2(2) 0(3) -2(3) N(5) 17(3) 24(3) 27(4) -6(3) 2(3) 2(3) B(1) 89(11) 82(10) 53(9) 15(7) 25(8) 27(9) B(2) 35(5) 45(6) 20(5) -1(4) 6(5) -2(5) F(2) 59(4) 72(4) 106(5) -6(4) 3(3) -5(3) F(4) 90(4) 86(4) 75(4) 39(3) -12(4) -42(4) F(5) 76(4) 52(3) 90(4) -21(3) 7(3) 22(3) F(6) 56(3) 45(3) 78(4) 3(3) -5(3) -10(3) F(7) 53(3) 70(3) 42(3) 5(3) -2(3) -2(3) F(8) 58(3) 72(3) 37(3) -1(2) 1(2) -2(3) C(1) 27(4) 24(4) 31(5) -2(3) 1(4) 8(3) C(2) 43(5) 53(6) 56(6) 24(5) 12(5) 1(5) S12

C(3) 20(3) 25(4) 34(4) 0(3) -2(3) 1(3) C(4) 28(4) 27(4) 22(4) 4(3) 1(3) 0(3) C(5) 26(4) 20(4) 29(4) -4(3) -13(3) 3(3) C(6) 32(4) 11(3) 21(4) -7(3) 6(3) 3(3) C(7) 27(4) 26(4) 16(4) -3(3) 2(3) -2(3) C(8) 23(4) 23(4) 30(4) 1(3) -2(3) -7(3) C(9) 24(4) 21(4) 28(4) 6(3) -2(3) 2(4) C(10) 26(4) 18(4) 30(4) -1(3) -3(4) -2(3) C(11) 26(4) 25(4) 18(4) -3(3) -3(3) 9(3) C(12) 32(4) 25(4) 23(4) -4(4) -6(4) 6(3) C(13) 39(5) 33(4) 27(5) 10(3) 6(4) 5(4) C(14) 41(5) 38(5) 28(5) -3(3) -7(4) 0(4) C(15) 36(4) 34(4) 31(5) -3(3) 1(4) -2(4) C(16) 34(4) 28(4) 33(5) 1(4) 0(4) 2(4) C(17) 13(3) 23(4) 22(4) -3(3) 5(3) -1(3) C(18) 27(4) 25(4) 8(3) -3(3) 6(3) -5(3) C(19) 22(4) 35(4) 31(4) 3(4) 3(3) 2(4) C(20) 28(4) 41(4) 24(4) -1(3) -5(4) -2(4) C(21) 55(5) 34(4) 19(4) -11(3) -7(4) -4(4) C(22) 31(4) 26(4) 26(4) -1(3) -4(4) 9(3) C(23) 25(4) 23(3) 19(4) 6(3) 1(3) 1(4) C(24) 24(4) 29(4) 43(5) -11(4) 4(4) -3(3) C(25) 23(4) 58(5) 37(5) 4(4) 8(4) -12(4) C(26) 16(4) 75(6) 39(5) 13(5) 17(4) 4(4) C(27) 33(5) 38(5) 33(5) 3(4) 3(4) 21(4) C(28) 24(4) 35(4) 41(5) -1(4) -7(4) 5(4) C(29) 18(4) 16(4) 36(5) 3(3) -5(3) 3(3) C(30) 38(5) 31(4) 30(5) -2(3) 1(4) 1(4) C(31) 41(5) 21(4) 55(6) -2(4) -6(5) -5(4) C(32) 38(5) 32(4) 62(7) 12(4) -11(5) -6(4) C(33) 28(4) 37(5) 35(5) 13(4) 4(4) -1(4) C(34) 30(4) 33(4) 20(4) 0(3) -5(3) 1(3) C(35) 18(4) 26(4) 26(4) 1(3) 1(3) -5(3) C(36) 23(4) 27(4) 36(5) 2(3) 1(3) -1(3) C(37) 31(4) 22(4) 40(5) -2(4) 9(4) -3(3) C(38) 44(5) 28(4) 31(5) -9(3) 12(4) -17(4) C(39) 31(5) 46(5) 29(5) -4(4) -8(4) -1(4) C(40) 29(4) 23(4) 28(4) 3(3) -1(4) -4(3) C(41) 19(3) 21(4) 20(4) 0(3) -1(3) -3(3) C(42) 29(4) 24(4) 34(5) -5(3) 1(4) 0(3) C(43) 25(4) 15(4) 52(6) 2(3) -3(4) -3(3) C(44) 39(5) 17(4) 44(5) 4(4) -18(4) -1(3) C(45) 48(5) 36(5) 36(5) -1(4) -7(4) -7(4) C(46) 45(5) 33(4) 37(5) -1(4) -2(4) -17(4) C(47) 28(4) 22(4) 33(5) 4(3) -1(4) -8(3) C(48) 49(5) 29(4) 32(5) 7(3) -2(4) 3(4) C(49) 45(5) 20(4) 38(5) 9(3) -10(4) -6(4) C(53) 17(4) 22(4) 35(5) 6(3) 5(3) -2(3) C(54) 38(5) 20(4) 63(6) 0(4) -16(5) 2(4) C(55) 26(5) 35(5) 118(10) 3(5) -19(6) 11(4) C(56) 34(5) 30(5) 108(9) 10(6) 20(6) 2(4) C(57) 47(6) 37(5) 68(7) 14(5) 23(5) -2(5) C(58) 34(5) 25(4) 45(5) 16(4) 11(4) 2(4) S13

Table S5. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters [Å 2 x 10 3 ] for C 58 H 59 B 2 F 8 N 5 NiP 4 (6a). x y z U(eq) H(2A) 4332 3444 2402 71 H(2B) 3723 2910 1972 71 H(2C) 3118 3543 2309 71 H(3A) 999 5345 773 37 H(3B) 1751 4731 1029 37 H(4A) 2739 5018 1928 36 H(4B) 2563 5793 2231 36 H(5A) 2422 6743 57 35 H(5B) 1866 6690 675 35 H(6A) 2850 6992 1551 30 H(6B) 4051 7181 1498 30 H(7A) 5843 4778-746 32 H(7B) 4681 4940-942 32 H(8A) 6315 6447-83 36 H(8B) 6788 5655-206 36 H(9A) 5662 3721 621 34 H(9B) 5924 3567-46 34 H(10A) 7485 5107 832 34 H(10B) 6619 4628 1152 34 H(12) 3257 5953-680 32 H(13) 2760 5599-1618 40 H(14) 1392 4781-1743 43 H(15) 585 4290-943 40 H(16) 1078 4616-2 38 H(18) 5403 4941 1954 24 H(19) 6441 4914 2775 35 H(20) 6391 5886 3428 37 H(21) 5230 6848 3289 43 H(22) 4164 6865 2473 33 H(24) 45 4794 1401 38 H(25) -1453 4798 1976 47 H(26) -1605 5597 2762 52 H(27) -256 6390 2985 41 H(28) 1222 6370 2444 40 H(30) 3559 8227 1321 40 H(31) 4008 9384 988 47 H(32) 4160 9604 2 53 H(33) 3852 8656-661 40 H(34) 3466 7488-331 33 H(36) 5475 7167 630 35 H(37) 6171 8192 1085 37 H(38) 7455 8065 1776 41 H(39) 7977 6884 2077 42 H(40) 7268 5862 1628 32 H(42) 2996 3706 497 35 H(43) 1851 2844 130 36 H(44) 1937 2483-836 40 H(45) 3207 2957-1429 48 H(46) 4386 3802-1063 46 H(48) 5341 7200-570 44 H(49) 5418 7937-1378 41 H(50) 5026 7494-2281 55 S14

H(51) 5031 6224-2426 38 H(52) 5121 5451-1629 33 H(50A) 5717 7403-2337 40 H(51A) 6066 6181-2390 56 H(52A) 5966 5436-1587 46 H(54) 8343 4098 1020 48 H(55) 9872 3460 784 72 H(56) 10118 2953-124 69 H(57) 8879 3097-826 61 H(58) 7362 3769-644 42 Table S6. Torsion angles [º] for C 58 H 59 B 2 F 8 N 5 NiP 4 (6a). N(1)-Ni(1)-P(1)-C(11) -98.9(3) P(2)-Ni(1)-P(1)-C(11) 175.5(3) P(3)-Ni(1)-P(1)-C(11) 84.3(3) P(4)-Ni(1)-P(1)-C(11) -5.7(3) N(1)-Ni(1)-P(1)-C(3) 24.7(3) P(2)-Ni(1)-P(1)-C(3) -60.9(3) P(3)-Ni(1)-P(1)-C(3) -152.1(3) P(4)-Ni(1)-P(1)-C(3) 117.9(3) N(1)-Ni(1)-P(1)-C(5) 139.5(3) P(2)-Ni(1)-P(1)-C(5) 54.0(3) P(3)-Ni(1)-P(1)-C(5) -37.3(3) P(4)-Ni(1)-P(1)-C(5) -127.3(3) N(1)-Ni(1)-P(2)-C(17) 64.0(3) P(3)-Ni(1)-P(2)-C(17) -50.4(2) P(1)-Ni(1)-P(2)-C(17) 173.7(2) P(4)-Ni(1)-P(2)-C(17) 29(2) N(1)-Ni(1)-P(2)-C(4) -50.0(3) P(3)-Ni(1)-P(2)-C(4) -164.4(2) P(1)-Ni(1)-P(2)-C(4) 59.7(2) P(4)-Ni(1)-P(2)-C(4) -85(2) N(1)-Ni(1)-P(2)-C(6) -167.6(3) P(3)-Ni(1)-P(2)-C(6) 78.0(3) P(1)-Ni(1)-P(2)-C(6) -57.9(3) P(4)-Ni(1)-P(2)-C(6) 158(2) N(1)-Ni(1)-P(3)-C(35) -100.2(3) P(2)-Ni(1)-P(3)-C(35) -8.6(3) P(1)-Ni(1)-P(3)-C(35) 76.4(3) P(4)-Ni(1)-P(3)-C(35) 173.5(3) N(1)-Ni(1)-P(3)-C(8) 138.3(3) P(2)-Ni(1)-P(3)-C(8) -130.0(3) P(1)-Ni(1)-P(3)-C(8) -45.0(3) P(4)-Ni(1)-P(3)-C(8) 52.1(3) N(1)-Ni(1)-P(3)-C(10) 24.7(3) P(2)-Ni(1)-P(3)-C(10) 116.4(3) P(1)-Ni(1)-P(3)-C(10) -158.6(3) P(4)-Ni(1)-P(3)-C(10) -61.5(2) N(1)-Ni(1)-P(4)-C(41) 63.2(3) P(2)-Ni(1)-P(4)-C(41) 98(2) S15

P(3)-Ni(1)-P(4)-C(41) 177.8(3) P(1)-Ni(1)-P(4)-C(41) -46.3(3) N(1)-Ni(1)-P(4)-C(9) -55.1(3) P(2)-Ni(1)-P(4)-C(9) -20(2) P(3)-Ni(1)-P(4)-C(9) 59.5(2) P(1)-Ni(1)-P(4)-C(9) -164.6(2) N(1)-Ni(1)-P(4)-C(7) -170.6(3) P(2)-Ni(1)-P(4)-C(7) -136(2) P(3)-Ni(1)-P(4)-C(7) -55.9(3) P(1)-Ni(1)-P(4)-C(7) 79.9(3) P(2)-Ni(1)-N(1)-C(1) 5(3) P(3)-Ni(1)-N(1)-C(1) 102(3) P(1)-Ni(1)-N(1)-C(1) -75(3) P(4)-Ni(1)-N(1)-C(1) -176(3) Ni(1)-N(1)-C(1)-C(2) 5(27) C(23)-N(2)-C(3)-P(1) 163.1(4) C(4)-N(2)-C(3)-P(1) -61.7(6) C(11)-P(1)-C(3)-N(2) -158.0(5) C(5)-P(1)-C(3)-N(2) -52.5(5) Ni(1)-P(1)-C(3)-N(2) 69.5(5) C(23)-N(2)-C(4)-P(2) -160.9(4) C(3)-N(2)-C(4)-P(2) 63.3(7) C(17)-P(2)-C(4)-N(2) 164.8(5) C(6)-P(2)-C(4)-N(2) 54.8(6) Ni(1)-P(2)-C(4)-N(2) -70.4(5) C(6)-N(3)-C(5)-P(1) -66.4(6) C(29)-N(3)-C(5)-P(1) 154.1(5) C(11)-P(1)-C(5)-N(3) -139.1(5) C(3)-P(1)-C(5)-N(3) 113.6(5) Ni(1)-P(1)-C(5)-N(3) -7.4(6) C(29)-N(3)-C(6)-P(2) -158.0(4) C(5)-N(3)-C(6)-P(2) 63.4(6) C(17)-P(2)-C(6)-N(3) 145.4(5) C(4)-P(2)-C(6)-N(3) -109.8(5) Ni(1)-P(2)-C(6)-N(3) 11.9(6) C(47)-N(4)-C(7)-P(4) -160.8(5) C(8)-N(4)-C(7)-P(4) 65.0(6) C(41)-P(4)-C(7)-N(4) 143.2(5) C(9)-P(4)-C(7)-N(4) -109.5(5) Ni(1)-P(4)-C(7)-N(4) 9.4(6) C(47)-N(4)-C(8)-P(3) 156.4(5) C(7)-N(4)-C(8)-P(3) -68.9(6) C(35)-P(3)-C(8)-N(4) -137.8(5) C(10)-P(3)-C(8)-N(4) 115.1(5) Ni(1)-P(3)-C(8)-N(4) -4.3(5) C(53)-N(5)-C(9)-P(4) -152.7(5) C(10)-N(5)-C(9)-P(4) 70.1(6) C(41)-P(4)-C(9)-N(5) 160.3(5) C(7)-P(4)-C(9)-N(5) 51.9(5) Ni(1)-P(4)-C(9)-N(5) -71.3(5) C(53)-N(5)-C(10)-P(3) 154.5(4) C(9)-N(5)-C(10)-P(3) -68.0(6) C(35)-P(3)-C(10)-N(5) -153.1(4) C(8)-P(3)-C(10)-N(5) -49.2(5) Ni(1)-P(3)-C(10)-N(5) 71.9(5) C(3)-P(1)-C(11)-C(12) 166.3(5) C(5)-P(1)-C(11)-C(12) 60.9(6) S16

Ni(1)-P(1)-C(11)-C(12) -66.3(6) C(3)-P(1)-C(11)-C(16) -16.3(6) C(5)-P(1)-C(11)-C(16) -121.7(6) Ni(1)-P(1)-C(11)-C(16) 111.1(5) C(16)-C(11)-C(12)-C(13) -0.9(10) P(1)-C(11)-C(12)-C(13) 176.6(5) C(11)-C(12)-C(13)-C(14) 1.3(10) C(12)-C(13)-C(14)-C(15) -1.2(10) C(13)-C(14)-C(15)-C(16) 0.7(11) C(14)-C(15)-C(16)-C(11) -0.2(11) C(12)-C(11)-C(16)-C(15) 0.3(10) P(1)-C(11)-C(16)-C(15) -177.1(5) C(4)-P(2)-C(17)-C(18) 96.9(6) C(6)-P(2)-C(17)-C(18) -155.9(5) Ni(1)-P(2)-C(17)-C(18) -23.2(6) C(4)-P(2)-C(17)-C(22) -79.2(6) C(6)-P(2)-C(17)-C(22) 28.0(6) Ni(1)-P(2)-C(17)-C(22) 160.7(5) C(22)-C(17)-C(18)-C(19) -0.5(9) P(2)-C(17)-C(18)-C(19) -176.7(5) C(17)-C(18)-C(19)-C(20) -1.1(10) C(18)-C(19)-C(20)-C(21) 2.0(10) C(19)-C(20)-C(21)-C(22) -1.4(11) C(20)-C(21)-C(22)-C(17) -0.2(11) C(18)-C(17)-C(22)-C(21) 1.2(10) P(2)-C(17)-C(22)-C(21) 177.4(5) C(4)-N(2)-C(23)-C(24) -125.1(7) C(3)-N(2)-C(23)-C(24) 10.8(9) C(4)-N(2)-C(23)-C(28) 55.5(8) C(3)-N(2)-C(23)-C(28) -168.6(6) C(28)-C(23)-C(24)-C(25) 1.6(10) N(2)-C(23)-C(24)-C(25) -177.8(6) C(23)-C(24)-C(25)-C(26) -0.2(12) C(24)-C(25)-C(26)-C(27) -0.5(12) C(25)-C(26)-C(27)-C(28) -0.4(12) C(26)-C(27)-C(28)-C(23) 1.9(11) C(24)-C(23)-C(28)-C(27) -2.6(10) N(2)-C(23)-C(28)-C(27) 176.9(6) C(6)-N(3)-C(29)-C(34) 168.3(6) C(5)-N(3)-C(29)-C(34) -53.2(8) C(6)-N(3)-C(29)-C(30) -5.3(9) C(5)-N(3)-C(29)-C(30) 133.2(7) C(34)-C(29)-C(30)-C(31) -2.6(11) N(3)-C(29)-C(30)-C(31) 171.1(6) C(29)-C(30)-C(31)-C(32) 1.8(11) C(30)-C(31)-C(32)-C(33) 0.2(12) C(31)-C(32)-C(33)-C(34) -1.6(12) C(30)-C(29)-C(34)-C(33) 1.2(11) N(3)-C(29)-C(34)-C(33) -172.5(6) C(32)-C(33)-C(34)-C(29) 0.8(11) C(8)-P(3)-C(35)-C(40) -123.3(6) C(10)-P(3)-C(35)-C(40) -18.6(7) Ni(1)-P(3)-C(35)-C(40) 109.4(6) C(8)-P(3)-C(35)-C(36) 54.6(6) C(10)-P(3)-C(35)-C(36) 159.2(5) Ni(1)-P(3)-C(35)-C(36) -72.8(6) C(40)-C(35)-C(36)-C(37) 2.5(10) S17

P(3)-C(35)-C(36)-C(37) -175.4(5) C(35)-C(36)-C(37)-C(38) 0.3(11) C(36)-C(37)-C(38)-C(39) -2.7(11) C(37)-C(38)-C(39)-C(40) 2.3(11) C(38)-C(39)-C(40)-C(35) 0.5(11) C(36)-C(35)-C(40)-C(39) -2.9(11) P(3)-C(35)-C(40)-C(39) 174.9(6) C(9)-P(4)-C(41)-C(46) -85.3(6) C(7)-P(4)-C(41)-C(46) 22.1(7) Ni(1)-P(4)-C(41)-C(46) 153.3(5) C(9)-P(4)-C(41)-C(42) 94.7(6) C(7)-P(4)-C(41)-C(42) -157.9(5) Ni(1)-P(4)-C(41)-C(42) -26.7(6) C(46)-C(41)-C(42)-C(43) -0.3(10) P(4)-C(41)-C(42)-C(43) 179.7(5) C(41)-C(42)-C(43)-C(44) -0.8(10) C(42)-C(43)-C(44)-C(45) 1.1(11) C(43)-C(44)-C(45)-C(46) -0.4(11) C(42)-C(41)-C(46)-C(45) 1.1(11) P(4)-C(41)-C(46)-C(45) -178.9(6) C(44)-C(45)-C(46)-C(41) -0.8(12) C(7)-N(4)-C(47)-C(52) 6.0(11) C(8)-N(4)-C(47)-C(52) 139.4(9) C(7)-N(4)-C(47)-C(48) 168.5(6) C(8)-N(4)-C(47)-C(48) -58.0(9) C(7)-N(4)-C(47)-C(52A) -29.8(15) C(8)-N(4)-C(47)-C(52A) 103.6(14) C(52)-C(47)-C(48)-C(49) -11.6(12) N(4)-C(47)-C(48)-C(49) -175.2(7) C(52A)-C(47)-C(48)-C(49) 23.0(16) C(47)-C(48)-C(49)-C(50) 12.0(15) C(47)-C(48)-C(49)-C(50A) -18.9(16) C(48)-C(49)-C(50)-C(51) -8(2) C(50A)-C(49)-C(50)-C(51) 79(3) C(49)-C(50)-C(51)-C(52) 4(2) C(50)-C(51)-C(52)-C(47) -5(2) C(48)-C(47)-C(52)-C(51) 8.5(15) N(4)-C(47)-C(52)-C(51) 171.4(9) C(52A)-C(47)-C(52)-C(51) -94(3) C(50)-C(49)-C(50A)-C(51A) -101(4) C(48)-C(49)-C(50A)-C(51A) 8(3) C(49)-C(50A)-C(51A)-C(52A) 0(4) C(50A)-C(51A)-C(52A)-C(47) 4(4) C(52)-C(47)-C(52A)-C(51A) 79(3) C(48)-C(47)-C(52A)-C(51A) -15(3) N(4)-C(47)-C(52A)-C(51A) -177.0(18) C(10)-N(5)-C(53)-C(54) 20.4(9) C(9)-N(5)-C(53)-C(54) -116.8(7) C(10)-N(5)-C(53)-C(58) -159.4(6) C(9)-N(5)-C(53)-C(58) 63.4(8) C(58)-C(53)-C(54)-C(55) 0.9(10) N(5)-C(53)-C(54)-C(55) -178.9(6) C(53)-C(54)-C(55)-C(56) -1.7(12) C(54)-C(55)-C(56)-C(57) 1.0(13) C(55)-C(56)-C(57)-C(58) 0.5(12) C(54)-C(53)-C(58)-C(57) 0.5(10) N(5)-C(53)-C(58)-C(57) -179.7(6) S18

C(56)-C(57)-C(58)-C(53) -1.3(11) Table S7. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å 2 x 10 3 ] for C 64 H 94 B 2 F 8 N 6 NiP 4 (6b). U(eq) is defined as one third of the trace of the U ij tensor. x y z U(eq) Ni(1) 0 1825(1) 2500 20(1) P(1) 876(1) 2685(1) 2280(1) 22(1) P(2) 991(1) 972(1) 2655(1) 21(1) N(1) 1118(1) 1377(2) 1557(1) 23(1) N(2) 1633(2) 2287(2) 3343(1) 25(1) N(3) -1052(7) -1528(6) 3260(5) 90(4) N(3A) -757(9) -1470(9) 3039(6) 66(6) B(1) 3530(3) 666(4) 1799(2) 49(1) F(1) 3058(2) -30(2) 1688(1) 82(1) F(2) 3212(2) 1157(2) 2172(1) 86(1) F(3) 4216(3) 287(5) 2088(2) 54(2) F(3A) 4295(5) 672(9) 1978(4) 62(3) F(4) 3530(3) 1033(3) 1286(2) 141(2) C(1) 1463(2) 2157(2) 1792(1) 24(1) C(2) 1300(2) 695(2) 1975(1) 25(1) C(3) 1577(2) 2967(2) 2920(1) 27(1) C(4) 1846(2) 1505(2) 3093(1) 24(1) C(5) 570(2) 3646(2) 1881(1) 27(1) C(6) 1255(2) 4207(2) 1805(1) 33(1) C(7) 955(2) 4982(2) 1465(2) 43(1) C(8) 486(3) 4762(2) 882(2) 48(1) C(9) -192(2) 4208(3) 947(2) 46(1) C(10) 64(2) 3425(2) 1298(1) 31(1) C(11) 931(2) 7(2) 3068(1) 25(1) C(12) 765(2) 223(2) 3676(1) 30(1) C(13) 727(2) -552(2) 4044(1) 40(1) C(14) 1446(2) -1085(3) 4067(2) 44(1) C(15) 1577(2) -1314(2) 3460(2) 40(1) C(16) 1653(2) -534(2) 3098(1) 32(1) C(17) 1397(2) 1147(2) 1013(1) 30(1) C(18) 1173(2) 1797(2) 551(1) 27(1) C(19) 417(2) 1835(2) 244(1) 34(1) C(20) 205(2) 2449(2) -163(2) 41(1) C(21) 737(2) 3040(2) -271(2) 41(1) C(22) 1485(2) 3013(2) 30(1) 38(1) C(23) 1705(2) 2394(2) 436(1) 33(1) C(24) 2205(2) 2513(2) 3862(1) 33(1) C(25) 2241(2) 1890(2) 4339(1) 30(1) C(26) 1640(2) 1831(2) 4660(1) 34(1) C(27) 1669(2) 1241(3) 5094(1) 42(1) C(28) 2285(2) 703(3) 5216(2) 44(1) C(29) 2886(2) 750(2) 4903(2) 44(1) C(30) 2862(2) 1344(2) 4470(1) 37(1) C(31) -734(3) -2154(3) 3161(2) 63(1) C(32) -447(5) -2969(4) 3174(3) 104(2) S19

Table S8. Bond lengths [Å] and angles [º] for C 64 H 94 B 2 F 8 N 6 NiP 4 (6b). Ni(1)-P(1) 2.2048(13) Ni(1)-P(1)#1 2.2048(13) Ni(1)-P(2)#1 2.2055(14) Ni(1)-P(2) 2.2055(14) P(1)-C(3) 1.836(3) P(1)-C(5) 1.854(3) P(1)-C(1) 1.877(3) P(2)-C(2) 1.834(3) P(2)-C(11) 1.857(3) P(2)-C(4) 1.884(3) N(1)-C(1) 1.471(4) N(1)-C(2) 1.481(4) N(1)-C(17) 1.496(4) N(2)-C(4) 1.473(4) N(2)-C(3) 1.480(4) N(2)-C(24) 1.493(4) N(3)-C(31) 1.202(12) N(3A)-C(31) 1.146(15) B(1)-F(3A) 1.340(9) B(1)-F(4) 1.349(6) B(1)-F(2) 1.373(5) B(1)-F(1) 1.400(6) B(1)-F(3) 1.420(7) C(5)-C(6) 1.545(5) C(5)-C(10) 1.547(4) C(6)-C(7) 1.536(5) C(7)-C(8) 1.522(6) C(8)-C(9) 1.520(6) C(9)-C(10) 1.542(5) C(11)-C(16) 1.536(4) C(11)-C(12) 1.550(4) C(12)-C(13) 1.536(5) C(13)-C(14) 1.525(6) C(14)-C(15) 1.532(5) C(15)-C(16) 1.546(5) C(17)-C(18) 1.520(4) C(18)-C(19) 1.401(5) C(18)-C(23) 1.405(5) C(19)-C(20) 1.391(5) C(20)-C(21) 1.392(6) C(21)-C(22) 1.383(6) C(22)-C(23) 1.397(5) C(24)-C(25) 1.506(5) C(25)-C(30) 1.400(5) C(25)-C(26) 1.403(5) C(26)-C(27) 1.395(5) C(27)-C(28) 1.382(6) C(28)-C(29) 1.390(6) C(29)-C(30) 1.400(5) C(31)-C(32) 1.414(8) P(1)-Ni(1)-P(1)#1 101.40(7) P(1)-Ni(1)-P(2)#1 157.15(3) P(1)#1-Ni(1)-P(2)#1 82.74(6) S20

P(1)-Ni(1)-P(2) 82.74(6) P(1)#1-Ni(1)-P(2) 157.15(3) P(2)#1-Ni(1)-P(2) 102.23(7) C(3)-P(1)-C(5) 107.64(15) C(3)-P(1)-C(1) 104.88(15) C(5)-P(1)-C(1) 102.47(14) C(3)-P(1)-Ni(1) 111.23(11) C(5)-P(1)-Ni(1) 119.88(11) C(1)-P(1)-Ni(1) 109.45(11) C(2)-P(2)-C(11) 107.67(15) C(2)-P(2)-C(4) 105.38(14) C(11)-P(2)-C(4) 102.18(15) C(2)-P(2)-Ni(1) 110.58(11) C(11)-P(2)-Ni(1) 120.20(11) C(4)-P(2)-Ni(1) 109.63(11) C(1)-N(1)-C(2) 111.4(2) C(1)-N(1)-C(17) 111.2(2) C(2)-N(1)-C(17) 108.6(2) C(4)-N(2)-C(3) 111.5(2) C(4)-N(2)-C(24) 111.0(2) C(3)-N(2)-C(24) 109.1(2) F(3A)-B(1)-F(4) 97.2(6) F(3A)-B(1)-F(2) 106.8(5) F(4)-B(1)-F(2) 112.3(5) F(3A)-B(1)-F(1) 126.7(8) F(4)-B(1)-F(1) 106.2(4) F(2)-B(1)-F(1) 107.2(4) F(3A)-B(1)-F(3) 29.2(4) F(4)-B(1)-F(3) 119.5(5) F(2)-B(1)-F(3) 110.4(4) F(1)-B(1)-F(3) 99.7(5) N(1)-C(1)-P(1) 112.9(2) N(1)-C(2)-P(2) 109.6(2) N(2)-C(3)-P(1) 109.0(2) N(2)-C(4)-P(2) 112.4(2) C(6)-C(5)-C(10) 112.1(2) C(6)-C(5)-P(1) 112.9(2) C(10)-C(5)-P(1) 109.2(2) C(7)-C(6)-C(5) 109.7(3) C(8)-C(7)-C(6) 111.4(3) C(9)-C(8)-C(7) 111.1(3) C(8)-C(9)-C(10) 112.4(3) C(9)-C(10)-C(5) 110.9(3) C(16)-C(11)-C(12) 111.7(2) C(16)-C(11)-P(2) 112.7(2) C(12)-C(11)-P(2) 109.3(2) C(13)-C(12)-C(11) 111.7(3) C(14)-C(13)-C(12) 111.7(3) C(13)-C(14)-C(15) 111.1(3) C(14)-C(15)-C(16) 110.9(3) C(11)-C(16)-C(15) 110.3(3) N(1)-C(17)-C(18) 111.0(3) C(19)-C(18)-C(23) 118.3(3) C(19)-C(18)-C(17) 120.6(3) C(23)-C(18)-C(17) 121.1(3) C(20)-C(19)-C(18) 120.5(3) C(19)-C(20)-C(21) 120.7(4) S21

C(22)-C(21)-C(20) 119.5(3) C(21)-C(22)-C(23) 120.2(3) C(22)-C(23)-C(18) 120.8(3) N(2)-C(24)-C(25) 112.6(3) C(30)-C(25)-C(26) 117.9(3) C(30)-C(25)-C(24) 121.5(3) C(26)-C(25)-C(24) 120.6(3) C(27)-C(26)-C(25) 120.3(3) C(28)-C(27)-C(26) 121.1(4) C(27)-C(28)-C(29) 119.5(4) C(28)-C(29)-C(30) 119.6(4) C(29)-C(30)-C(25) 121.5(3) N(3A)-C(31)-N(3) 39.8(7) N(3A)-C(31)-C(32) 155.4(10) N(3)-C(31)-C(32) 164.3(8) Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+0.5 Figure S6. Atom numbering scheme for [Ni(P 2 Cy N 2 Bz ) 2 ](BF 4 ) 2 2(MeCN), (6b) Table S9. Anisotropic displacement parameters [Å 2 x 10 3 ] for C 64 H 94 B 2 F 8 N 6 NiP 4 (6b). The anisotropic displacement factor exponent takes the form: -2 2 [h 2 a* 2 U 11 + 2 h k a* b* U 12 ] U11 U22 U33 U23 U13 U12 Ni(1) 25(1) 13(1) 23(1) 0 8(1) 0 P(1) 28(1) 14(1) 24(1) -1(1) 9(1) -2(1) P(2) 27(1) 14(1) 21(1) -1(1) 5(1) 1(1) S22

N(1) 34(1) 15(1) 22(1) -3(1) 8(1) 3(1) N(2) 35(1) 18(2) 23(1) -4(1) 4(1) 1(1) B(1) 37(2) 66(4) 44(2) -6(2) 8(2) -4(2) F(1) 79(2) 57(2) 109(2) -11(2) 11(2) 1(2) F(2) 51(2) 96(3) 114(2) -54(2) 19(2) 8(2) F(4) 141(4) 176(5) 121(3) 88(3) 61(3) 16(3) C(1) 29(2) 19(2) 26(1) -1(1) 11(1) -1(1) C(2) 32(2) 20(2) 24(1) -4(1) 7(1) -1(1) C(3) 35(2) 17(2) 30(2) -5(1) 9(1) -3(1) C(4) 26(1) 21(2) 24(1) -6(1) 4(1) -1(1) C(5) 33(2) 20(2) 29(2) 2(1) 12(1) 2(1) C(6) 45(2) 19(2) 40(2) 3(1) 18(1) -3(2) C(7) 59(2) 21(2) 56(2) 14(2) 29(2) 1(2) C(8) 73(3) 28(2) 48(2) 17(2) 23(2) 14(2) C(9) 53(2) 47(3) 37(2) 8(2) 10(2) 15(2) C(10) 36(2) 29(2) 31(2) 3(1) 10(1) 4(2) C(11) 32(2) 18(2) 25(1) 3(1) 5(1) -1(1) C(12) 36(2) 29(2) 26(1) 2(1) 7(1) 2(1) C(13) 48(2) 40(2) 32(2) 11(2) 8(1) -6(2) C(14) 54(2) 37(2) 40(2) 19(2) 2(2) 0(2) C(15) 45(2) 25(2) 49(2) 8(2) 6(2) 3(2) C(16) 37(2) 21(2) 39(2) 3(1) 8(1) 4(1) C(17) 37(2) 27(2) 27(1) -4(1) 11(1) 2(1) C(18) 36(2) 25(2) 24(1) -4(1) 12(1) 4(1) C(19) 40(2) 34(2) 30(2) -3(1) 12(1) -2(2) C(20) 46(2) 44(2) 33(2) 2(2) 9(2) 8(2) C(21) 62(2) 29(2) 35(2) 4(2) 19(2) 9(2) C(22) 55(2) 27(2) 38(2) -6(2) 24(2) -4(2) C(23) 38(2) 36(2) 29(2) -7(1) 13(1) -3(2) C(24) 38(2) 27(2) 31(2) -7(1) 3(1) -7(2) C(25) 38(2) 26(2) 25(1) -10(1) 2(1) -5(1) C(26) 39(2) 33(2) 30(2) -8(2) 4(1) 0(2) C(27) 46(2) 51(3) 30(2) -6(2) 6(1) -8(2) C(28) 59(2) 36(2) 34(2) 1(2) -3(2) -4(2) C(29) 49(2) 36(2) 41(2) -5(2) -8(2) 2(2) C(30) 37(2) 39(2) 34(2) -11(2) 3(1) -4(2) C(31) 78(3) 41(3) 63(3) 8(2) -13(2) -18(3) C(32) 174(7) 48(3) 83(4) -16(3) -1(4) 6(4) Table S10. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters [Å 2 x 10 3 ] for C 64 H 94 B 2 F 8 N 6 NiP 4 (6b). x y z U(eq) H(1A) 1517 2530 1469 33 H(1B) 1986 2046 2008 33 H(2A) 1862 586 2043 35 H(2B) 1031 187 1818 35 H(3A) 2088 3069 2811 38 H(3B) 1408 3478 3092 38 H(4A) 2083 1135 3408 34 H(4B) 2236 1616 2845 34 S23

H(5) 238 3960 2111 37 H(6A) 1544 4366 2187 47 H(6B) 1612 3905 1596 47 H(7A) 629 5302 1689 60 H(7B) 1398 5332 1409 60 H(8A) 291 5272 678 68 H(8B) 822 4477 647 68 H(9A) -464 4047 561 64 H(9B) -559 4520 1141 64 H(10A) 360 3065 1075 44 H(10B) -398 3117 1368 44 H(11) 480-316 2866 35 H(12A) 1177 591 3872 42 H(12B) 269 523 3640 42 H(13A) 674-388 4439 56 H(13B) 266-878 3880 56 H(14A) 1388-1593 4287 62 H(14B) 1902-781 4268 62 H(15A) 1139-1651 3268 56 H(15B) 2053-1649 3487 56 H(16A) 2115-218 3273 45 H(16B) 1719-696 2704 45 H(17A) 1172 610 874 41 H(17B) 1966 1087 1091 41 H(19) 47 1438 315 41 H(20) -307 2465-371 49 H(21) 588 3460-548 49 H(22) 1849 3417-40 45 H(23) 2221 2376 637 40 H(24A) 2064 3057 4005 46 H(24B) 2722 2565 3752 46 H(26) 1211 2194 4581 41 H(27) 1259 1209 5309 51 H(28) 2297 305 5513 53 H(29) 3310 381 4982 53 H(30) 3277 1377 4260 44 H(32A) 103-2958 3148 146 H(32B) -729-3280 2849 146 H(32C) -516-3234 3536 146 Table S11. Torsion angles [º] for C 64 H 94 B 2 F 8 N 6 NiP 4 (6b). P(1)#1-Ni(1)-P(1)-C(3) 88.38(12) P(2)#1-Ni(1)-P(1)-C(3) -173.18(13) P(2)-Ni(1)-P(1)-C(3) -68.83(12) P(1)#1-Ni(1)-P(1)-C(5) -38.35(11) P(2)#1-Ni(1)-P(1)-C(5) 60.08(15) P(2)-Ni(1)-P(1)-C(5) 164.43(12) P(1)#1-Ni(1)-P(1)-C(1) -156.19(11) P(2)#1-Ni(1)-P(1)-C(1) -57.76(14) P(2)-Ni(1)-P(1)-C(1) 46.59(11) P(1)-Ni(1)-P(2)-C(2) -69.29(11) S24

P(1)#1-Ni(1)-P(2)-C(2) -171.47(13) P(2)#1-Ni(1)-P(2)-C(2) 88.06(11) P(1)-Ni(1)-P(2)-C(11) 164.29(12) P(1)#1-Ni(1)-P(2)-C(11) 62.11(15) P(2)#1-Ni(1)-P(2)-C(11) -38.35(11) P(1)-Ni(1)-P(2)-C(4) 46.47(11) P(1)#1-Ni(1)-P(2)-C(4) -55.71(14) P(2)#1-Ni(1)-P(2)-C(4) -156.17(11) C(2)-N(1)-C(1)-P(1) -81.3(3) C(17)-N(1)-C(1)-P(1) 157.4(2) C(3)-P(1)-C(1)-N(1) 132.4(2) C(5)-P(1)-C(1)-N(1) -115.3(2) Ni(1)-P(1)-C(1)-N(1) 13.0(2) C(1)-N(1)-C(2)-P(2) 55.4(3) C(17)-N(1)-C(2)-P(2) 178.3(2) C(11)-P(2)-C(2)-N(1) 161.8(2) C(4)-P(2)-C(2)-N(1) -89.7(2) Ni(1)-P(2)-C(2)-N(1) 28.7(2) C(4)-N(2)-C(3)-P(1) 56.8(3) C(24)-N(2)-C(3)-P(1) 179.7(2) C(5)-P(1)-C(3)-N(2) 160.9(2) C(1)-P(1)-C(3)-N(2) -90.5(2) Ni(1)-P(1)-C(3)-N(2) 27.7(2) C(3)-N(2)-C(4)-P(2) -81.8(3) C(24)-N(2)-C(4)-P(2) 156.3(2) C(2)-P(2)-C(4)-N(2) 131.6(2) C(11)-P(2)-C(4)-N(2) -116.0(2) Ni(1)-P(2)-C(4)-N(2) 12.6(2) C(3)-P(1)-C(5)-C(6) 47.1(2) C(1)-P(1)-C(5)-C(6) -63.1(2) Ni(1)-P(1)-C(5)-C(6) 175.51(17) C(3)-P(1)-C(5)-C(10) 172.6(2) C(1)-P(1)-C(5)-C(10) 62.3(2) Ni(1)-P(1)-C(5)-C(10) -59.1(2) C(10)-C(5)-C(6)-C(7) 55.4(4) P(1)-C(5)-C(6)-C(7) 179.3(2) C(5)-C(6)-C(7)-C(8) -57.6(4) C(6)-C(7)-C(8)-C(9) 57.8(4) C(7)-C(8)-C(9)-C(10) -55.2(4) C(8)-C(9)-C(10)-C(5) 52.6(4) C(6)-C(5)-C(10)-C(9) -53.0(4) P(1)-C(5)-C(10)-C(9) -178.9(2) C(2)-P(2)-C(11)-C(16) 48.4(3) C(4)-P(2)-C(11)-C(16) -62.3(2) Ni(1)-P(2)-C(11)-C(16) 176.19(17) C(2)-P(2)-C(11)-C(12) 173.3(2) C(4)-P(2)-C(11)-C(12) 62.6(2) Ni(1)-P(2)-C(11)-C(12) -58.9(2) C(16)-C(11)-C(12)-C(13) -53.2(4) P(2)-C(11)-C(12)-C(13) -178.7(2) C(11)-C(12)-C(13)-C(14) 53.3(4) C(12)-C(13)-C(14)-C(15) -55.8(4) C(13)-C(14)-C(15)-C(16) 57.8(4) C(12)-C(11)-C(16)-C(15) 54.9(4) P(2)-C(11)-C(16)-C(15) 178.5(2) C(14)-C(15)-C(16)-C(11) -57.3(4) C(1)-N(1)-C(17)-C(18) -61.3(3) S25

C(2)-N(1)-C(17)-C(18) 175.8(2) N(1)-C(17)-C(18)-C(19) -77.8(4) N(1)-C(17)-C(18)-C(23) 99.7(3) C(23)-C(18)-C(19)-C(20) 0.1(5) C(17)-C(18)-C(19)-C(20) 177.6(3) C(18)-C(19)-C(20)-C(21) -0.5(5) C(19)-C(20)-C(21)-C(22) 0.3(5) C(20)-C(21)-C(22)-C(23) 0.3(5) C(21)-C(22)-C(23)-C(18) -0.8(5) C(19)-C(18)-C(23)-C(22) 0.6(5) C(17)-C(18)-C(23)-C(22) -177.0(3) C(4)-N(2)-C(24)-C(25) -62.4(3) C(3)-N(2)-C(24)-C(25) 174.4(3) N(2)-C(24)-C(25)-C(30) 105.8(3) N(2)-C(24)-C(25)-C(26) -72.9(4) C(30)-C(25)-C(26)-C(27) -0.1(5) C(24)-C(25)-C(26)-C(27) 178.7(3) C(25)-C(26)-C(27)-C(28) -0.2(5) C(26)-C(27)-C(28)-C(29) 0.1(5) C(27)-C(28)-C(29)-C(30) 0.4(5) C(28)-C(29)-C(30)-C(25) -0.7(5) C(26)-C(25)-C(30)-C(29) 0.5(5) C(24)-C(25)-C(30)-C(29) -178.3(3) Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2 Details of the theoretical calculations. All calculations on the reaction path of the model catalyst [Ni(PH 2 CH 2 NHCH 2 PH 2 ) 2 ] 2+ were carried out using the UB3LYP hybrid DFT method 6 and the all-electron 6-31G(d,p) basis 7 with the Gaussian 03 program. 8 Table S12. Cartesian coordinates (XYZ file) of the optimized model catalyst [Ni(PH 2 CH 2 NHCH 2 PH 2 ) 2 ] 2+ 29 scf done: -3145.775961 C 0.551155-0.616654-0.353527 P 0.387557-0.944940 1.475779 Ni 1.916621-0.119829 2.889717 P 3.445452 0.705752 4.303845 C 3.282168 0.377024 6.133175 N 3.048340-1.040094 6.314056 P 2.491982 1.481366 1.432389 C 2.157557 1.236083-0.386723 N 0.784962 0.800507-0.534624 P 1.341754-1.721191 4.346848 C 1.675697-1.475660 6.165939 H -0.017906-2.095922 4.290327 H 1.982386-2.938574 4.044733 H 4.736020 0.238317 3.988153 H 3.621933 2.103408 4.216011 H 4.226922 0.667167 6.600171 S26

H 2.491434 1.030118 6.534226 H 0.924187-0.777154 6.565880 H 1.530611-2.442107 6.655582 H 3.495592-1.413223 7.143813 H 0.210504-2.342506 1.563849 H -0.902866-0.476963 1.791234 H 1.851870 2.698974 1.734727 H 3.851808 1.855540 1.488681 H 0.337612 1.173523-1.364379 H 2.302502 2.202695-0.876091 H 2.909028 0.537707-0.786969 H -0.393421-0.906919-0.820799 H 1.342029-1.269761-0.754276 Tabel S13. Cartesian coordinates (XYZ file) of the optimized transition state for heterolytic cleavage of dihydrogen to form [HNi(PH 2 CH 2 N(H)HCH 2 PH 2 )(PH 2 CH 2 NHCH 2 PH 2 )] 2+ 31 scf done: -3146.934224 C 3.206022 1.073642 0.588004 P 1.469528 0.981411 1.269699 Ni -0.111834 0.144072-0.057474 P -1.518816-1.498370 1.048814 C -3.167407-1.325508 0.125196 N -3.067756-0.188188-0.812387 C -3.237748 1.152811-0.237466 P -1.574112 1.729281 0.466368 N 3.566879-0.235622 0.082802 C 3.109895-0.548727-1.257636 P 1.352686-1.153193-1.129913 H -0.747785 0.227581-1.480193 H -1.836502 1.979673 1.826195 H -1.396631 3.036647-0.026411 H -1.314104-2.893566 1.028312 H -1.910371-1.350165 2.395479 H -3.334747-2.234586-0.455889 H -3.999375-1.212477 0.827358 H -3.993294 1.184883 0.554227 H -3.532436 1.848370-1.026363 H 1.226926 2.286451 1.746148 H 1.640193 0.282353 2.480441 H 1.496469-2.445182-0.590572 H 0.968086-1.434869-2.455073 H 4.548368-0.448704 0.220293 H 3.706663-1.363263-1.676412 S27

H 3.142970 0.294941-1.964756 H 3.863835 1.348773 1.416539 H 3.242763 1.881874-0.159256 H -1.551135-0.087907-1.174060 H -3.669704-0.320126-1.623489 References and Notes 1. Edidin, R. T.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1987, 109, 3945-3953. 2. (a) Wayner, D. M.; Parker, V. D. Acc. Chem. Res. 1993, 26, 287-294. (b) Ellis, W. W.; Raebiger, J. W.; Curtis, C. J.; Bruno, J. W.; DuBois, D. L. J. Am. Chem. Soc. 2004, 126, 2738-2743. 3. Delahay, P.; Stiehl, G. L.; J. Am. Chem. Soc. 1952, 74, 3500-3505. 4. Nichloson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706. 5. Saveant, J. M.; Vianello E. Electrochimica Acta 1965, 10, 905-920. (e) Ibid. 1967, 12, 629-646. 6. A. D. Becke, J. Chem. Phys. 98, 5648 (1993); C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). 7. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971). 8. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003. S28