Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Σχετικά έγγραφα
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

A summation formula ramified with hypergeometric function and involving recurrence relation

Congruence Classes of Invertible Matrices of Order 3 over F 2

2 Composition. Invertible Mappings

A Class of Orthohomological Triangles

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Multi-dimensional Central Limit Theorem

1 Complete Set of Grassmann States

α & β spatial orbitals in

Commutative Monoids in Intuitionistic Fuzzy Sets

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homomorphism in Intuitionistic Fuzzy Automata

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Fractional Colorings and Zykov Products of graphs

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

8.324 Relativistic Quantum Field Theory II

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Finite Field Problems: Solutions

Matrices and Determinants

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Statistical Inference I Locally most powerful tests

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Some Theorems on Multiple. A-Function Transform

On the k-bessel Functions

A General Note on δ-quasi Monotone and Increasing Sequence

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

A Note on Intuitionistic Fuzzy. Equivalence Relation

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

The k-α-exponential Function

C.S. 430 Assignment 6, Sample Solutions

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Section 8.3 Trigonometric Equations

On Inclusion Relation of Absolute Summability

EE512: Error Control Coding

F19MC2 Solutions 9 Complex Analysis

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Trigonometric Formula Sheet

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Constant Elasticity of Substitution in Applied General Equilibrium

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

PARTIAL NOTES for 6.1 Trigonometric Identities

Estimators when the Correlation Coefficient. is Negative

CRASH COURSE IN PRECALCULUS

Homework 3 Solutions

On Generating Relations of Some Triple. Hypergeometric Functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Every set of first-order formulas is equivalent to an independent set

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

The Simply Typed Lambda Calculus

Section 7.6 Double and Half Angle Formulas

Uniform Convergence of Fourier Series Michael Taylor

The one-dimensional periodic Schrödinger equation

Cyclic or elementary abelian Covers of K 4

On a four-dimensional hyperbolic manifold with finite volume

Tridiagonal matrices. Gérard MEURANT. October, 2008

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Reminders: linear functions

Math221: HW# 1 solutions

Generating Set of the Complete Semigroups of Binary Relations

Example Sheet 3 Solutions

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

ST5224: Advanced Statistical Theory II

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Areas and Lengths in Polar Coordinates

1. Introduction and Preliminaries.

SPECIAL FUNCTIONS and POLYNOMIALS

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

( y) Partial Differential Equations

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Homomorphism of Intuitionistic Fuzzy Groups

Inverse trigonometric functions & General Solution of Trigonometric Equations

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

Transcript:

Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs, Govt. Madhav Scence College, Uan, Inda dr_vg61@yahoo.com Department of Mathematcs Mandsaur Insttute of Technology,Mandsaur, Inda yashwantpanwar@gmal.com 3 Department of Mathematcs Mandsaur Insttute of Technology,Mandsaur, Inda opbhshwal@redffmal.com, opshwal@gmal.com Abstract It s well nown that the Fbonacc polynomals are of great mportance n the study of many subects such as Algebra, geometry, combnatorcs and number theory tself. Fbonacc polynomals defned by the recurrence relaton fn() fn 1() fn (), n wth f 0 () 0, f 1 () 1. In ths paper we ntroduce Generalzed Fbonacc-Le Polynomals. Further we present ts generalzed determnantal denttes wth classcal polynomals le Fbonacc Polynomal, Lucas Polynomals, Pell Polynomals and Pell-Lucas Polynomals. Mathematcs Subect Classfcaton: 11B39, 11B37, 11C08, 11C0 Keywords: Fbonacc polynomal, Fbonacc-Le polynomal, Determnant 1. INTRODUCTION Fbonacc polynomals defned by the recurrence relaton fn() fn 1() fn (), n wth f0() 0, f1() 1. It s well nown that

1416 V. K. Gupta, Y. K. Panwar and O. Shwal the Fbonacc polynomals are of great mportance n the study of many subects such as Algebra, geometry, combnatorcs and number theory tself. Many authors have studed Fbonacc polynomals and Generalzed Fbonacc polynomals denttes. They appled concept of Matr and Determnants to establsh some denttes. Spvey [8] descrbe sum property for determnants and presented new proof denttes le Cassn dentty, d Ocagne dentty and Catalan dentty. Koen and Bozurt [6] defne Jacobsthal M-matr and Jacobsthal Q- matr smlar to Fbonacc Q-matr and usng these matr representatons to found the Bnet le formula for acobsthal numbers. A.J.Macfarlane [4] use the property for determnants and gve new denttes nvolvng Fbonacc and related numbers. Some determnantal denttes nvolvng Fbonacc polynomals, Lucas polynomals, Chebyshev Polynomals, Pell polynomals, Pell-Lucas polynomals, Veta-Lucas Polynomals are descrbed [5]. In ths paper, we ntroduce Generalzed Fbonacc-Le Polynomals and ts determnantal denttes. Also we establsh result n terms of Generalzed Pell Polynomals and Generalzed Pell- Lucas Polynomals.. GENERALIZED FIBONACCI-LIKE POLYNOMIALS We defne Generalzed Fbonacc-Le Polynomals by recurrence relaton, V ( ) V ( ) V ( ) ; n 3 wth V ( ) a, V ( ) b [.1] n n 1 n 1 Frst few polynomals are V ( ) b a 3 3 ( ) 4 ( ) ( ) 5 3 3 ( ) ( ) V ( ) b a 4 V ( ) b 1 a 5 V ( 6 3 b If a b 1, then fn( ) fn 1( ) fn ( ) ; wth f1( ) 1, f( ) (Fbonacc polynomals) If a, b 1, then ln 1( ) ln ( ) ln 3( ) ; wth l0( ), l1( ) (Lucas polynomals) If a 1, b, then Pn( ) Pn 1( ) Pn ( ) ; wth P1( ) 1, P( ) (Pell polynomals) If a b, then Q ( ) Q ( ) Q ( ); wthq ( ), Q ( ) (Pell-Lucas polynomals) n 1 n n 3 0 1

Generalzed Fbonacc-le polynomal 1417 Now we defne a famly of Fbonacc-Le polynomal as { n ( ), n ( ), n m( ), n m ( ), n m ( )} V V V V V V, Where n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1. Then Generalzed Fbonacc-Le polynomals are V ( ) V ( ) V ( ) [.] n n n V ( ) V ( ) V ( ) [.3] n m n m n V ( ) V ( ) V ( ) [.4] n m n m n m If ( ab, ) (1,1), thenv ( ) f ( ), the Generalzed Fbonacc Polynomals. n n If ( ab, ) (,1), thenv ( ) l ( ), the Generalzed Lucas Polynomals. n n If ( ab, ) (1,), thenv ( ) P ( ), the Generalzed Pell Polynomals. n n If ( ab, ) (,), thenv ( ) Q ( ), the Generalzed Pell-Lucas Polynomals. n n If( ab,, ) (1,1,1), thenv (1) F, the Generalzed Fbonacc numbers. n n If ( ab,, ) (1,,1), thenv (1) L, the Generalzed Lucas numbers. n n If ( ab,, ) (1,1, ), thenv (1) P, the Generalzed Pell numbers. n n If( ab,, ) (1,,), thenv (1) Q, the Generalzed Pell-Lucas numbers. n n 3. DETERMINANTAL IDENTITIES Now we present determnantal denttes Theorem 1: If n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1, then bvn ( ) avn ( ) V ( ) n V ( ) V ( ) av ( ) V ( ) bv ( ) bv ( ) 4 abv ( ) V ( ) V ( ) n n n n n n n bvn K( ) av ( ) av ( ) n n n n V ( ) b V ( ) n n av n ( ) Proof: Let Δ bvn ( ) avn ( ) V ( ) n V ( ) V ( ) av ( ) V ( ) bv ( ) bv ( ) n n n n bvn K ( ) av ( ) av ( ) n n n n V ( ) b V ( ) n n av n ( ) [3.1]

1418 V. K. Gupta, Y. K. Panwar and O. Shwal Assume bvn ( ) α, avn ( ) β, then by [.1] Vn ( ) α β, Now α β α β α β α β Δ α β ( α β ) α α β β α ( α β ) β Multplyng and dvded R1 by ( α β), R byα, R3 by β by α β ( α β) ( α β) 1 Δ α β ( α β) α αβ ( α β ) β β α ( α β) Applyng R1 R1 R R3 & R R1 R, R3 R1 R3 α β β ( α β) α ( α β) Δ β 0 ( α β) αβ ( α β ) α ( α β) 0 [3.] [3.3] [3.4] Epand along frst row, we get Δ 4 abvn ( ) Vn ( ) Vn ( ) [3.5] Put bvn ( ) α, avn ( ) β, Vn ( ) α β Theorem : If n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1, then bvn () av n () Vn () bv n () Vn () Vn () b Vn () abvn () Vn () a V () bv () () { () () ()} n n Vn abvn Vn Vn abv () V () a V () av () V () V () n n n n n n Proof: Let bv () av () V () bv () V () V () n n n n n n n () n () n () () n n () n () abvn () Vn () av () av () () () n n Vn Vn Δ bv abv V av bv V [3.6] Assume bvn ( ) α, avn ( ) β, then by [1.1] Vn ( ) α β, Now α β( α β) α( α β) ( α β) Δ α αβ β α( α β) αβ β β ( α β ) ( α β ) [3.7]

Generalzed Fbonacc-le polynomal 1419 Tang α, β,( α β) common from C1, C, C 3 & Applyng R R ( R1 R3) α ( α β) α ( α β) Δ αβ( α β) 0 ( α β) ( α β) [3.8] β β ( α β) ( α β) Applyng C C C3& Epanson by R Δ ( αβ ( α β )) [3.9] Put bvn ( ) α, avn ( ) β, Vn ( ) α β, we get { abv ( ) ( ) ( )} n Vn Vn Δ [3.10] Theorem 3: If n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1, then bvn ( ) abvn ( V ) n ( ) bvn ( V ) n ( ) abvn ( ) Vn ( ) a V ( ) av ( ) ( ) { ( ) ( ) ( )} n n Vn abvn Vn Vn [3.11] bv ( ) V ( ) av ( ) V ( ) V ( ) n n n n n Theorem 4: If n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1, then a Vn () V () abv () () () () n n Vn bvn Vn abvn () Vn () bv () av () () { () () ()} n n Vn abvn Vn Vn [3.1] bv () V () av () V () a V () b V () n n n n n n Theorem 5: If n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1, then Vn ( ) avn ( ) bvn ( ) bvn ( ) avn ( ) Vn () bvn () avn () Vn () avn () V () bv () av () bv () V () n n n n n { av } 3 n bvn Vn ( ) ( ) ( ) [3.13] Theorem 6: If n,,,, m, are postve ntegers wth 0 < <, 1 < m, 1, then 1 bvn ( ) 1 1 1 1 1 1 1 avn ( ) 1 { abvn ( ) Vn ( ) Vn ( ) } 1 bvn () avn () Vn () 1 1 1 V ( ) n { abvn () Vn () Vn () avn () Vn () bvn () Vn () abvn () Vn () } [3.14] Above Theorems 3 to 6 can be solved same as Theorem: 1.

140 V. K. Gupta, Y. K. Panwar and O. Shwal 4. CONCLUSION Ths paper descrbes Generalzed Fbonacc-Le polynomals and ts determnantal denttes. Also results derved n terms of classcal polynomals le Fbonacc Polynomal, Lucas Polynomals, Pell Polynomals and Pell-Lucas Polynomals. ACKNOWLEDGEMENT. The authors are grateful to the referees for ther useful comments. References [1] Aleandru Lupas, A Gude of Fbonacc and Lucas Polynomal, Octagon Mathematcs Magazne, Vol. 7, No.1 (1999), -1. [] A. Benamn, J. Qunn and N. Cameron, Fbonacc Determnants- A Combnatoral Approach, Fbonacc Quarterly, 45, No. 1 (007), 39-55. [3] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas Polynomals, Fbonacc Quarterly, 3, No. 1 (1985), 17-0. [4] A. J. Macfarlane, Use of Determnants to Present Identtes Involvng Fboncc and Related Numbers, Fbonacc Quarterly, 48, No. 1 (010), 68-76. [5] B. Sngh, O. Shwal, Y.K.Panwar, Generalzed Determnantal Identtes Involvng Lucas Polynomals, Appled Mathematcal Scences, Vol. 3 (009), No. 8, 377-388. [6] F. Koen and D. Bozurt, On the Jacobsthaal Numbers by Matr Methods, Int. J. Contemp. Math. Scences, 3(008), 605-614. [7] N. Cahll and D. Narayan, Fbonacc and Lucas numbers s Trdgonal Matr Determnant, Fbonacc Quarterly, 4, (004), 16-1. [8] Z. Spvey, Fbonacc Identtes va the Determnant sum property, College Mathematcs Journal, 37(006), 86-89. Receved: January, 01