EE 570: Location and Navigation

Σχετικά έγγραφα
EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Approximation of distance between locations on earth given by latitude and longitude

The Simply Typed Lambda Calculus

derivation of the Laplacian from rectangular to spherical coordinates

ST5224: Advanced Statistical Theory II

Homework 3 Solutions

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

EE512: Error Control Coding

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Inertial Navigation Mechanization and Error Equations

Homework 8 Model Solution Section

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

[1] P Q. Fig. 3.1

4.6 Autoregressive Moving Average Model ARMA(1,1)

the total number of electrons passing through the lamp.

Section 7.6 Double and Half Angle Formulas

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

1 String with massive end-points

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Higher Derivative Gravity Theories

Math 6 SL Probability Distributions Practice Test Mark Scheme

Partial Trace and Partial Transpose

Congruence Classes of Invertible Matrices of Order 3 over F 2

Mean-Variance Analysis

12. Radon-Nikodym Theorem

Other Test Constructions: Likelihood Ratio & Bayes Tests

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Strain gauge and rosettes

Second Order RLC Filters

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Section 9.2 Polar Equations and Graphs

Reminders: linear functions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

If we restrict the domain of y = sin x to [ π 2, π 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Note: Please use the actual date you accessed this material in your citation.

Derivation of Optical-Bloch Equations

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Block Ciphers Modes. Ramki Thurimella

Every set of first-order formulas is equivalent to an independent set

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Second Order Partial Differential Equations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Advanced Subsidiary Unit 1: Understanding and Written Response

Durbin-Levinson recursive method

Matrices and Determinants

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Finite Field Problems: Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

C.S. 430 Assignment 6, Sample Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Space-Time Symmetries

ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.3 Forecasting ARMA processes

Tridiagonal matrices. Gérard MEURANT. October, 2008

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Bounding Nonsplitting Enumeration Degrees

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Assalamu `alaikum wr. wb.

w o = R 1 p. (1) R = p =. = 1

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Introduction to the ML Estimation of ARMA processes

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Galatia SIL Keyboard Information

ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Math221: HW# 1 solutions

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Concrete Mathematics Exercises from 30 September 2016

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Μηχανική Μάθηση Hypothesis Testing

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

CRASH COURSE IN PRECALCULUS

Probability and Random Processes (Part II)

Transcript:

EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA April 19, 2016 Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 1 / 10

Overview Position, velocity and attitude drift unless the INS is aided. There are some opportunistic situations that provide information to the INS to initialize itself. Two categories of alignment Coarse Alignment Fine Alignment Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 2 / 10

Self-Alignment 1 Coarse Alignment: Use knowledge of the gravity vector and earth rate provided by the three accelerometers, and the knowledge of the earth rate vector provided by the gyroscopes. 2 Fine Alignment: Needed in quasi-stationary situations. Uses the fact that any position, velocity changes are considered disturbances, and the knowledge of the gravity vector and earth rate to estimate the body s attitude. Latitude needs to be known. Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 3 / 10

Coarse Alignment: Approach 1 0 sin(θ) f b = C n b 0 = cos(θ) sin(φ) g g cos(θ) cos(φ) Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 4 / 10

Coarse Alignment: Approach 1 0 sin(θ) f b = C n b 0 = cos(θ) sin(φ) g g cos(θ) cos(φ) Only provides pitch and roll angles g (+ve) Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 4 / 10

Coarse Alignment: Approach 2 ( f b, ω b, ) f b ω b = Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 5 / 10

Coarse Alignment: Approach 2 ( f b, ω b, ) f b ω b = Ĉ b n ( ) f n, ω n, f n ω n Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 5 / 10

Coarse Alignment: Approach 2 ( f b, ω b, ) f b ω b = Ĉ b n C 11 C 12 C 13 Ĉn b = C 21 C 22 C 23 C 31 C 32 C 33 ( ) f n, ω n, f n ω n Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 5 / 10

Coarse Alignment: Approach 2 where ( f b, ω b, ) f b ω b = Ĉ b n C 11 C 12 C 13 Ĉn b = C 21 C 22 C 23 C 31 C 32 C 33 ( ) f n, ω n, f n ω n ω b b x f C 11 = ω ie cos(l b ) x tan(l b) g C 21 = C 31 = ω y b f b ω ie cos(l b ) y tan(l b) g ω y b f b ω ie cos(l b ) y tan(l b) g C 12 = f b z ωb y f b y ωb z gω ie cos(l b ) C 22 = f b z ωb x + f b x ωb z gω ie cos(l b ) C 32 = f b y ωb x f b x ωb y gω ie cos(l b ) C 13 = f b x g C 23 = f b y g C 33 = f b z g Must ensure that the DCM is properly orthogonalized. Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 5 / 10

Fine Alignment Use full INS mechanization Use equivalent to GPS aided error mechanization Setup up measurements Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 6 / 10

Fine Alignment Use full INS mechanization Use equivalent to GPS aided error mechanization Setup up measurements 1 Specific force measurement δ f b = f b ˆ f b Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 6 / 10

Fine Alignment Use full INS mechanization Use equivalent to GPS aided error mechanization Setup up measurements 1 Specific force measurement 2 Angular rate measurement δ f b = f b ˆ f b δ ω b = ω b ˆ ω b Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 6 / 10

Fine Alignment Use full INS mechanization Use equivalent to GPS aided error mechanization Setup up measurements 1 Specific force measurement 2 Angular rate measurement δ f b = f b ˆ f b δ ω b = ω b ˆ ω b 3 Position measurement: deviation from initial position Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 6 / 10

Fine Alignment Use full INS mechanization Use equivalent to GPS aided error mechanization Setup up measurements 1 Specific force measurement 2 Angular rate measurement δ f b = f b ˆ f b δ ω b = ω b ˆ ω b 3 Position measurement: deviation from initial position 4 Velocity measurement: deviation from zero Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 6 / 10

Specific force measurement δ f n = f n ˆ f n = f n (I [ δψ n nb ])C n b ( f b δ f b ) + f d = [ δψ n nb ]C n b f b + Ĉ n b δ f b + f d Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 7 / 10

Specific force measurement Ĉ n b δ f n = f n ˆ f n = f n (I [ δψ n nb ])C n b ( f b δ f b ) + f d = [ δψ n nb ]C b n f b + Ĉ b n δ f b + f d 0 δψ D δψ E 0 = δψ D 0 δψ N 0 + Ĉ b n δ f b + f d δψ E δψ N 0 g Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 7 / 10

Specific force measurement δ f n = f n ˆ f n = f n (I [ δψ n nb ])C n b ( f b δ f b ) + f d = [ δψ nb ]C b n f b + Ĉ b n δ f b + f d 0 δψ D δψ E 0 = δψ D 0 δψ N 0 + Ĉ b n δ f b + f d δψ E δψ N 0 g 0 g 0 δψ N = g 0 0 δψ E + Ĉ b n δ f b + f d 0 0 0 δψ D = G δψ n nb + Ĉ n b δ f b + f b d Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 7 / 10

Specific force measurement δ f n = f n ˆ f n Recoordinatize in the body frame = f n (I [ δψ n nb ])C n b ( f b δ f b ) + f d = [ δψ nb ]C b n f b + Ĉ b n δ f b + f d 0 δψ D δψ E 0 = δψ D 0 δψ N 0 + Ĉ b n δ f b + f d δψ E δψ N 0 g 0 g 0 δψ N = g 0 0 δψ E + Ĉ b n δ f b + f d 0 0 0 δψ D = G δψ n nb + Ĉ n b δ f b + f b d δ f b nb = Ĉ b n G δψ n nb + δ f b + f b d δ f b captures bias-drift (sinking) + Markov,..., and f d represents variations in the nav frame Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 7 / 10

Angular Rate Measurement δ ω n in = ω n in ˆ ω n in Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Angular Rate Measurement δ ω n in = ω n in ˆ ω n in = (I + [ δψ n nb ])Ĉ n b ( ω b + ω b bn ) Ĉ n b ( ω b δ ω b ) Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Angular Rate Measurement C n b δ ω n in = ω n in ˆ ω n in = (I + [ δψ n nb ])Ĉ n b ( ω b + ω b bn ) Ĉ n b ( ω b δ ω b ) Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Angular Rate Measurement δ ω n in = ω n in ˆ ω n in ˆ ω n = ˆ ω n ie = (I + [ δψ n nb ])Ĉ n b ( ω b + ω b bn ) Ĉ n b ( ω b δ ω b ) Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Angular Rate Measurement δ ω n in = ω n in ˆ ω n in = (I + [ δψ n nb ])Ĉ n b ( ω b + ω b bn ) Ĉ n b ( ω b δ ω b ) Dev. from stationarity Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Angular Rate Measurement δ ω n in = ω n in ˆ ω n in = (I + [ δψ n nb ])Ĉ b n ( ω b + ω b bn ) Ĉ b n ( ω b δ ω b ) 0 Ω D 0 δψ N = Ω D 0 Ω N δψ E + Ĉ b n δ ω b ω n d 0 Ω N 0 δψ D = W δψ n nb + Ĉ n b δ ω b ω n d Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Angular Rate Measurement δ ω n in = ω n in ˆ ω n in Recoordinatize in the body frame = (I + [ δψ n nb ])Ĉ b n ( ω b + ω b bn ) Ĉ b n ( ω b δ ω b ) 0 Ω D 0 δψ N = Ω D 0 Ω N δψ E + Ĉ b n δ ω b ω n d 0 Ω N 0 δψ D = W δψ n nb + Ĉ n b δ ω b ω n d δ ω b in = Ĉ b n W δψ n nb + δ ω b ω b d δ ω b captures bias-drift (sinking) + Markov,..., vcsω d represents variations from stationarity. Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 8 / 10

Error State and Measurement Matrix x(t) = F (t) x(t) + w(t) y(t) = H(t) x(t) + v(t) ( x = δψ ) T nb n δ v nb n δ r nb n ba bg 0 3 3 0 3 3 I 3 3 0 3 3 0 3 3 0 H = 3 3 I 3 3 0 3 3 0 3 3 0 3 3 Ĉ n b G 0 3 3 0 3 3 I 3 3 0 3 3 Ĉn b W 0 3 3 0 3 3 0 3 3 I 3 3 where the measurements are: position error, velocity error, specific force error, and angular velocity errors, respectively. Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 9 / 10

Challenges There is no mechanism in the above formulation to estimate ω n d. If it can be modelled as white noise then the filter will be able to handle it. On the other hand, if it is correlated type of disturbance, additional measures must be taken to account for it. Aly El-Osery, Kevin Wedeward (NMT) EE 570: Location and Navigation April 19, 2016 10 / 10