Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
|
|
- Αναστάσιος Μπουκουβαλαίοι
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech In collaoration with Stephen Bruder, Electrical & Computer Engineering, Emry-Riddle Aeronautical University.1 Coordinate Frame Transformation Determine the detailed kinematic relationships etween the 4 major frames of interest The Earth-Centered Inertial (ECI) coordinate frame (i-frame) The Earth-Centered Earth-Fixed (ECEF) coordinate frame (e-frame) The Local Navigation (Nav) coordinate frame (n-frame) The Body coordinate frame (-frame).2 ECI/ECEF Relationship etween the ECI and ECEF frames ECI & ECEF have co-located orgins r ie = r ie = r ie = 0 The x, y, and z axis of the ECI & ECEF frames are coincident at time t 0 The ECEF frame rotates aout the common z-axis at a fixed rate (ω ie ) Ignoring minor speed variatins (precession & nutation) ω ie = µrad/sec (WGS84) which is 15 /hr.3 ECI/ECEF The angular velocity and acceleration are The angle of rotation is ω i ie = 0 0 i ω ie = ω ie θ ie = ω ie (t t 0 ) = ω ie t + θ GMST where GMST is the Greenwich mean sidereal time
2 The orientation of frame {e} wrt frame {i} ecomes Ce i = R ( z,θie) = cos θ ie sin θ ie 0 sin θ ie cos θ ie Note: ω i ie = ω e ie.4 Description of the navigation frame Orientation of the n-frame wrt the e- frame z e z i Cn e = R ( z,λ )R ( y, L 90 ) cos λ sin λ 0 sin L 0 cos L = sin λ cos λ cos L 0 sin L sin L cos λ sin λ cos L cos λ = sin L sin λ cos λ cos L sin λ cos L 0 sin L where geodetic Lat = L and Geodetic Lon = λ Vernal Equinox x i x n NMT θ lat y n z n N ω e θlon Greenwichhh y e y i x e.5 Angular velocity of the n-frame wrt the e-frame resolved in the e-frame as a skewsymmetric matrix Ċn e = CnΩ e n en = Ω e encn e Ω e en = Ċe n [Cn] e T s L s λ λ c L c λ L c λ λ c λ s L L + c L s λ λ = c L s λ L c λ s L λ s λ λ s L s λ L c L c λ λ [Ce n] T s L L 0 c L L 0 λ L cos(λ ) = λ 0 L sin(λ ) L cos(λ ) L sin(λ ) 0.6 The angular velocity vector sin(λ) L ω e en = cos(λ) L λ cos(λ) λ ω n en = [Cn] e T ω e en = L sin(l ) λ.7 2
3 ECI/ Hence the orientation of the n-frame wrt the i-frame ecomes c θie s θie 0 s L c λ s λ c L c λ Cn i = CeC i n e = s θie c θie 0 s L s λ c λ c L s λ c L 0 s L sin(l ) cos(θ ie + λ ) sin(θ ie + λ ) cos(l ) cos(θ ie + λ ) = sin(l ) sin(θ ie + λ ) cos(θ ie + λ ) cos(l ) sin(θ ie + λ ) cos(l ) 0 sin(l ).8 ECI/ The angular velocity of the n-frame wrt the i-frame resolved in the i-frame is ω i in = ω i ie + Ce ω i e en 0 cos(θ ie ) sin(θ ie ) 0 sin(λ ) L = 0 + sin(θ ie ) cos(θ ie ) 0 cos(λ ) L ω ie λ sin(θ ie + λ ) L = cos(θ ie + λ ) L ω ie + λ The vector from the origin of the e-frame to the n-frame origin resolved in the e-frame (from the last lecture) (R E + h ) cos(l ) cos(λ ) r e e = (R E + h ) cos(l ) sin(λ ) = r e en (R E (1 e 2 ) + h ) sin(l ).9 Origins of the n-frame and the -frame are the same The velocity of the n-frame wrt the e-frame resolved in the e-frame v e en = d dt r e en = r e en L + r e en λ + r e en ḣ L λ h sin(l ) cos(λ ) sin(λ ) cos(l ) cos(λ ) (R N + h ) L = sin(l ) sin(λ ) cos(λ ) cos(l ) sin(λ ) cos(l )(R E + h ) λ cos(l ) 0 sin(l ) ḣ.10 Recalling the form of Cn e suggests that (R N + h ) L v e en = Cn e cos(l )(R E + h ) λ = Ce n v n en ḣ 3
4 and hence, Restating v n en as and recalling that suggests that (R N + h ) L v n en = cos(l )(R E + h ) λ ḣ (R N + h ) L v n en = cos(l )(R E + h ) λ = ḣ v n en,n v n en,e v n en,d cos(l ) λ ω n en = L sin(l ) λ v n en,e /(R E + h ) ω n en = v n en,n /(R N + h ) tan(l ) v n en,e /(R E + h ) Description wrt the ody frame Orientation of the -frame wrt the n-frame in terms of relative yaw (ψ), pitch (θ), then roll (φ) angles c ψ s ψ 0 c θ 0 s θ C n = R ( z,ψ) R ( y,θ) R ( x,φ) = s ψ c ψ c φ s φ s θ 0 c θ 0 s φ c φ c θ c ψ c ψ s θ s φ c φ s ψ c φ c ψ s θ + s φ s y ψ pitch = c θ s ψ c φ c ψ + s θ s φ s ψ c φ s θ s ψ c ψ s φ s θ c θ s φ c θ c φ roll Center of Gravity x yaw z.13 The angular velocity of the -frame wrt the i-frame resolved/coordinatized in the i- frame ω i i = ω i in + C i n ω n n = ω i ie + C i e ω e en + C i n ω n n.14 4
5 Position vectors to the origin of the ody frame The origins of the ody and Nav frames are co-incident r n = 0 The origins of the ECI and ECEF frames are co-incident r e = r i = r en = r in Velocity of the -frame wrt the i-frame resolved in the i-frame A moving point in a rotation frame v i i = d dt r i i = d dt Ci e r e e = C i eω e ie r e e + C i e v e e = C i e (Ω e ie r e e + v e e).15 Acceleration of the -frame wrt the i-frame resolved in the i-frame A moving point in a rotation frame a i i = d dt v i i = d dt ( C i e (Ω e ie r e e + v e e) ) = Ċi e (Ω e ie r e e + v e e) + Ce i ω = 0 Ω e ie r e e + Ω e r ie e e + v e e = C i eω e ie (Ω e ie r e e + v e e) + C i e (Ω e ie v e e + a e e) = C i e (Ω e ieω e ie r e e + 2Ω e ie v e e + a e e).16 5
EE 570: Location and Navigation
EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical
EE 570: Location and Navigation
EE 570: Locatio ad Navigatio INS Iitializatio Aly El-Osery Electrical Egieerig Departmet, New Mexico Tech Socorro, New Mexico, USA April 25, 2013 Aly El-Osery (NMT) EE 570: Locatio ad Navigatio April 25,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Inertial Navigation Mechanization and Error Equations
Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
MAE 142 Homework #1 SOLUTIONS Due Friday, January 30, (a) Find the principle moments of inertia for each body.
MAE 4 Homework # SOLUTIONS Due Friday, January 3, 9. Mass Properties (pts) (a) Find the principle moments of inertia for each body. The inertia tensor is: J xx J xy J xz J = J xy J yy J yz J xz J yz J
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Γραφικά Υπολογιστών: 2D Μετασχηματισμοί (transformations)
ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: 2D Μετασχηματισμοί (transformations) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Τι είναι ; Μετασχηματισμός είναι
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Περισσότερα+για+τις+στροφές+
ΤεχνολογικόEκπαιδευτικόΊδρυμαKρήτης Ρομποτική «Τοπικήπαραμετροποίησηπινάκωνστροφής,γωνίεςEuler, πίνακαςστροφήςγύρωαπόισοδύναμοάξονα» Δρ.ΦασουλάςΓιάννης 1 Περισσότεραγιατιςστροφές ΗστροφήενόςΣΣμπορείνααντιστοιχηθείσεένα
Γραφικά Υπολογιστών: Θέαση στις 3D
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Physics 339 Gibbs-Appell November 2017
Physics 339 Gibbs-Appell November 2017 In1879JosiahWillardGibbspublished 1 analternativeformulationfornewtonianmechanics. Just as Lagrange s formulation produces equations identical to those from F = ma
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Lecture 6 Mohr s Circle for Plane Stress
P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes
Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 29.2 can be carried out using coordinate systems other than the rectangular cartesian coordinates. This
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Three-Dimensional Rotations as Products of Simpler Rotations
Physics 116A Winter 011 Three-Dimensional Rotations as Products of Simpler Rotations 1. The most general 3 3 rotation matrix In a class handout entitled, Three-Dimensional Proper and Improper Rotation
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική
PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Υπολογισµός Γωνιών (1.2, 1.5) (2.0, 1.5) θ 3 θ 4 θ 2 θ 1 (1.3, 1.2) (1.7, 1.0) (0, 0) " 1 = tan #1 2.0 #1.7 1.5 #1.0 $ 310 " 2 = tan #1
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
«Μνληέιν δηαζηαζηνπνίεζεο δηθηχνπ θνξκνχ επξπδσληθψλ δηθηχσλ βαζηδφκελν ζηελ εθαξκνγή»
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ ΣΜΗΜΑ ΗΛΔΚΣΡΟΛΟΓΧΝ ΜΗΥΑΝΙΚΧΝ ΚΑΙ ΣΔΥΝΟΛΟΓΙΑ ΤΠΟΛΟΓΙΣΧΝ ΣΟΜΔΑ: Σειεπηθνηλσληψλ θαη Σερλνινγίαο Πιεξνθνξίαο ΔΡΓΑΣΗΡΙΟ: Δλζχξκαηεο Σειεπηθνηλσλίαο Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ Σκήκαηνο
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
CURVILINEAR COORDINATES
CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude
PHY 396 K/L. Solutions for problem set #. Problem : Note the correct muon decay amplitude M(µ e ν µ ν e = G F ū(νµ ( γ 5 γ α u(µ ū(e ( γ 5 γ α v( ν e. ( The complex conjugate of this amplitude M = G F
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Modelling the Furuta Pendulum
ISSN 28 5316 ISRN LUTFD2/TFRT--7574--SE Modelling the Furuta Pendulum Magnus Gäfvert Department of Automatic Control Lund Institute of Technology April 1998 z M PSfrag replacements θ m p, l p m a, l a
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third