Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Σχετικά έγγραφα
ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistical Inference I Locally most powerful tests

2 Composition. Invertible Mappings

Lecture 21: Properties and robustness of LSE

Problem Set 3: Solutions

Exercises to Statistics of Material Fatigue No. 5

Congruence Classes of Invertible Matrices of Order 3 over F 2

6.3 Forecasting ARMA processes

Tridiagonal matrices. Gérard MEURANT. October, 2008

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 34 Bootstrap confidence intervals

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Every set of first-order formulas is equivalent to an independent set

Uniform Convergence of Fourier Series Michael Taylor

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

C.S. 430 Assignment 6, Sample Solutions

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

EE512: Error Control Coding

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The ε-pseudospectrum of a Matrix

Matrices and Determinants

Fractional Colorings and Zykov Products of graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

SOME PROPERTIES OF FUZZY REAL NUMBERS

New bounds for spherical two-distance sets and equiangular lines

Reminders: linear functions

Mean-Variance Analysis

5. Choice under Uncertainty

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Example Sheet 3 Solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Solution Series 9. i=1 x i and i=1 x i.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Numerical Analysis FMN011

Approximation of distance between locations on earth given by latitude and longitude

Section 8.3 Trigonometric Equations

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

w o = R 1 p. (1) R = p =. = 1

Homework 3 Solutions

Homework for 1/27 Due 2/5

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6. MAXIMUM LIKELIHOOD ESTIMATION

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

On a four-dimensional hyperbolic manifold with finite volume

Lecture 12: Pseudo likelihood approach

4.6 Autoregressive Moving Average Model ARMA(1,1)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Second Order RLC Filters

Probability and Random Processes (Part II)

Μηχανική Μάθηση Hypothesis Testing

1. Introduction and Preliminaries.

Generating Set of the Complete Semigroups of Binary Relations

Math221: HW# 1 solutions

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Homomorphism in Intuitionistic Fuzzy Automata

Homework 8 Model Solution Section

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Srednicki Chapter 55

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

CRASH COURSE IN PRECALCULUS

Cyclic or elementary abelian Covers of K 4

A Note on Intuitionistic Fuzzy. Equivalence Relation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Local Approximation with Kernels

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order Partial Differential Equations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Appendix S1 1. ( z) α βc. dβ β δ β

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

Heisenberg Uniqueness pairs

Lecture 2. Soundness and completeness of propositional logic

The circle theorem and related theorems for Gauss-type quadrature rules

A General Note on δ-quasi Monotone and Increasing Sequence

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Commutative Monoids in Intuitionistic Fuzzy Sets

Exercise 2: The form of the generalized likelihood ratio

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

On the Galois Group of Linear Difference-Differential Equations

Transcript:

Supplementary Material For Testing Homogeneity of High-dimensional Covariance Matrices Shurong Zheng, Ruitao Lin, Jianhua Guo, and Guosheng Yin 3 School of Mathematics & Statistics and KLAS, Northeast Normal University, China Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A. 3 Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, China This Supplementary Material contains the proofs of the theorems and additional simulation results. In particular, Figure presents the simulation results for three samples with Gamma populations. For ease of exposition, the proof of Theorem is given first and that of Theorem is given later. We first provide two lemmas which are essential to the proofs of Theorems and. Lemmas Lemma Under Assumptions (A) (A), we have σ A {tr[(s S ) ] ˆµ µ A } N(0, )

where ˆµ = = (n n )n (n ) (trs ), and µ A = tr[(σ Σ ) ] + = n + (n ) tr(σ ) + = β n (n ) (e T l Σ e l ) σa = 4[n tr(σ )] + 4[n tr(σ )] + 8n +4[n tr(σ 4 ) + β n n [tr(σ Σ )] (e T l Σ e l ) ] +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n +4n [tr(σ 4 ) + β (e T l Σ e l ) ] +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l ] (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l ]. Proof. Define r i = n / w i and w i = (w i,..., w pi ) T for i =,..., n and =,. We have (n ) n n tr(s ) = tr[( Σ / r ir T iσ / i= ) ] + n ( r T Σ r ) n r T Σ n r i r T iσ r, i= where r = n n i= r i for =,..., K. First, we will consider the bounded spectral norm case, that is, the maximum eigenvalue of Σ is bounded for =,. When tr(σ q ) = O(pq ) holds for q =,, 3, 4 and at least one integer in the index set {, }, we only need to consider the CLT of n /3 tr[(s S ) ], and its proof is almost the same as the proof for the CLT of tr[(s S ) ] when Σ and Σ have the bounded spectral norms. Specifically, for the bounded spectral norm case, the proof can be completed through the following steps.

Step. We will prove n r T Σ r = n n n i= rt i Σ r i. As E(n i<j rt i Σ r j ) = 0 and we have n Var(n n i= E(n i<j trσ +o p (). We have n r T Σ r = n r T iσ r j ) 4E(r T Σ r r T Σ r ) = 4n tr(σ ) 0, i<j rt i Σ r j = o p (). Moreover, as E(n n r T iσ r i ) = n E[(rT Σ r n i= rt i Σ r i ) = n trσ ) ] = n [tr(σ )+β i<j rt i Σ r j + trσ and (e T j Σ e j ) ] 0 from (.5) of Bai and Silverstein (004), we have n n i= rt i Σ r i n trσ = o p (), and thus Step. We have n r T Σ n i= Step.. We have n n i= r i r T iσ r = n n r T Σ r = n trσ + o p (). i j l +n r T iσ r i r T iσ r i = n n i j i= n +n (n i= r T iσ r j r T jσ r l + n r T iσ r i r T iσ r j + n (r T iσ r i n trσ ) j= r T iσ r j r T jσ r i i j n r T iσ r i r T iσ r i. i= trσ )(r T iσ r i n trσ ) + (n trσ ). As n n i= E[(rT i Σ r i n trσ ) ] = n [trσ + β p j= (et j Σ e j ) ] 0, we have n n i= (rt i Σ r i n Var[n n i= trσ ) = o p (). As n (r T iσ r i n n i= E(rT i Σ r i n trσ )] = n 3 [trσ + β we have n n i= (rt i Σ r i n trσ ) = o p (), and thus n n i= trσ ) = 0 and (e T j Σ e j ) ] 0, r T iσ r i r T iσ r i = (n trσ ) + o p (). (.) 3 j=

Step.. We have n i j l E(rT i Σ r j r T j Σr l) = 0 and E(n i j l r T i Σr j r T j Σr l ) 0n tr(σ 4 ) + (n 3 + 4n 4 )[tr(σ 4 ) + β (e T j Σ e j ) + (trσ ) ] +4n 4 β (e T j Σ e j ) + 8n 4 β j= j= This leads to n i j l (rt i Σ r j r T j Σ r l ) = o p (). Step.3. We have n j= (e T j Σe l ) 4 0. i j ErT i Σ r j r T j Σ r i = (n )n tr(σ ) and n E( r T iσ r j r T jσ r i ) i j 6n 5 (n )β j= (e T j Σ e j ) + n 5 +n 5 (n )(n )(n 3)[tr(Σ )] +n 5 (n )(n )[tr(σ 4 ) + β (n )β As a result, we have Var(n i j rt i Σ r j r T j Σ r i ) 0; that is, Step.4. We have n i j j= (e T j Σ e l ) 4 (e T j Σ e j ) + (trσ ) ]. j= r T iσ r j r T jσ r i (n )n tr(σ ) = o p (). n = n r T iσ r i r T iσ r j i j i j (r T iσ r i n trσ )r T iσ r j + (n trσ ) i j r T iσ r j, and further, n (r T iσ r i n trσ )r T iσ r j i j n i (r T iσ r i n Then, we have n i j rt i Σ r i r T i Σ r j = o p (). trσ ) + n r T iσ r j r T jσ r i. 4 i j

Thus, we have tr(s ) = n n (n ) tr[( Σ / r ir T iσ / ) ] n + n (n ) (trσ ) n tr(σ ) + o p (). i= As trs = n (n ) ( n i= rt i Σ r i n r T Σ r ), we have n trs = n (n ) r T iσ r i (n ) trσ + o p (). i= As shown in Bai and Silverstein (004, pp. 559 560), n tr[( Σ / r ir T iσ / i= n )q ] tr[( i= where r i = n / w i, w i = ( w i,..., w pi ) T, Σ / r i r T iσ / )q ] = o p (), q =, w li = [Var(w li δ { wli n η n })] / [w li δ { wli n η n } E(w li δ { wli n η n })], w li c n η n, E w li = 0, E( w li ) = and E( w4 li ) < for l =,..., p and i =,..., n with η n 0, nη n and c being a positive constant. For simplicity, we rename the variable w li simply as w li and proceed by assuming that w li n η n, Ew li = 0, E(w li ) = and E(w4 li ) < with η n 0 and n η n. Let B = n i= Σ/ r ir T i Σ/, then trs = n (n ) trb (n ) trσ + o p () and tr(s ) = n (n ) tr(b ) n + n (n ) (trσ ) n tr(σ ) + o p (). (.) Step 3. In this step, we show that tr[(s S ) ] Etr[(S S ) ] = n (n ) [tr(b ) Etr(B )] + n (n ) [tr(b ) Etr(B )] n n (n ) (n ) [tr(b B ) Etr(Σ Σ )] + o p () is asymptotically normal. When Σ = Σ = Σ, we have Etr(S ) + Etr(Σ ) Etr(S S ) 5

= = n + (n ) tr(σ ) + = n n n (n ) (trσ) + = β n (n ) (e T l Σ e l ), where p Etr(S ) = n (n ) + tr(σ p(n ) ) + n n pn (n ) (trσ ) + β wn p(n ) (e T l Σ e l ) = p tr(σ ) + n + p(n ) tr(σ ) + n n pn (n ) (trσ ) + β wn p(n ) (e T l Σ e l ). Since = (n n )n (n ) (trσ), we need to establish the CLT of tr(s S ) ˆµ, where ˆµ = = (n n )n (n ) (trs ). Let E l be the conditional expectation given {x,..., x l } and E l,s be the conditional expectation given {x,..., x l, S }. Based on the martingale difference central limit theory, it can be derived that conditional on S, σ / A [tr(s ) Etr(S ) tr(s S ) + tr(σ S ) n n n (n ) {(trs ) (trσ ) d }] N(0, ), where (.3) σ A = σ 0A + 4σ 0A 4σ 0A + 4n (trσ ) σ 330A 4n (trσ )σ 30A + 8n (trσ )σ 30A, with σ 0A = σ 0A = σ 330A = σ 0A = n n [(E l E l )tr(b )], [(E l,b E l,b )tr(b B )], n [(E l,b E l,b )tr(b )], n [(E l E l )tr(b )][(E l,b E l,b )tr(b B )], 6

σ 30A = σ 30A = n n [(E l E l )tr(b )][(E l,b E l,b )trb ], [(E l,b E l,b )(trb )][(E l,b E l,b )tr(b B )]. Moreover, we have σ / A [tr(s ) Etr(S ) [tr(σ S ) tr(σ Σ )] n n n (n ) {(trs ) (trσ ) d }] N(0, ), where (.4) σ A = σ 440A + 4σ 550A + 4n (trσ ) σ 660A 4σ 450A 4n (trσ )σ 460A + 8n (trσ )σ 560A, with σ 440A = σ 550A = σ 660A = σ 450A = σ 460A = σ 560A = n n [(E l E l )tr(b )], [(E l E l )tr(b Σ )], n [(E l E l )trb ], n [(E l E l )tr(b )][(E l E l )tr(b Σ )], n [(E l E l )tr(b )][(E l E l )trb ], n [(E l E l )tr(b Σ )][(E l E l )trb ]. Step 4. Next, we show that µ A = Etr(S ) + Etr(S ) tr(σ Σ ) = n n n (n ) (trσ ) = tr[(σ Σ ) ] + n + (n ) tr(σ ) + n + (n ) tr(σ ) + β n (n ) = (e T Σ e ) + β n (n ) = (e T Σ e ). 7

Moreover, we have σ 0A = σ 0A = n [(E l E l )tr(b )] = 4n [tr(σ 4 ) + β (e T l Σ e l ) ] + (n trσ ) n [tr(σ ) + β +4[n tr(σ )] + 8(n trσ )n [tr(σ 3 ) + β +(n trσ ) n [tr(σ ) + β n [(E l,b E l,b )tr(b B )] = n tr[(σ B ) ] + β n = σ 330A = = σ 0A = σ 30A = (e T l Σ e l ) ], (e T l Σ / B Σ / e l ) [tr(σ Σ )] + [n tr[(σ Σ ) ] + β n n n n n n [(E l,b E l,b )trb ] E(r T l Σ r l ) = n tr(σ ) + β n e T l Σ e l e T l Σ e l ] (e T l Σ e l ), [(E l E l )tr(b )][(E l,b E l,b )tr(b B )] = n [tr(σ 3 B ) + β [ +(n trσ )n tr(σ B ) + β = [n tr(σ 3 Σ ) + β n = e T l Σ / B Σ / e l e T l Σ e l )] [ +(n trσ )n tr(σ Σ ) + β n n (e T l Σ e l ) ] (e T l Σ / Σ Σ / e l ) ] + o p (), ] e T l Σ e l e T l Σ / B Σ / e l e T l Σ / Σ Σ / e l e T l Σ e l ] [(E l E l )tr(b )][(E l,b E l,b )tr(trb )] [(E l E l )tr(b )][(E l E l )trb ] 8 e T l Σ e l e T l Σ / Σ Σ / e l ] + o p (), l

σ 30A = = (n tr(σ 3 ) + β n = = σ 440A = σ 550A = σ 660A = σ 450A = e T l Σ e l e T l Σ e l ) +(n trσ )[n tr(σ ) + β n n n (e T l Σ e l ) ], [(E l,b E l,b )(trb )][(E l,b E l,b )tr(b B )] [(E l E l )trb ][(E l,b E l,b )tr(b B )] n E l,b (r T l Σ r l n trσ )[r T l Σ / B Σ / r l n tr(σ B )] = [n tr(σ Σ ) + β n n [(E l E l )tr(b )] = 4n [tr(σ 4 ) + β (e T l Σ e l )(e T l Σ / Σ Σ / e l )], (e T l Σ e l ) ] + (n trσ ) n [tr(σ ) + β +4[n tr(σ )] + 8(n trσ )n [tr(σ 3 ) + β +(n trσ ) n [tr(σ ) + β n [(E l E l )tr(b Σ )] = [n tr[(σ Σ ) ] + β n n n (e T l Σ e l ) ], e T l Σ e l e T l Σ e l ] (e T l Σ / Σ Σ / e l ) ], [(E l E l )trb ] = [n tr(σ ) + β n [(E l E l )tr(b )][(E l E l )trb Σ ] = n [tr(σ 3 Σ ) + β [ +(n trσ )n tr(σ Σ ) + β (e T l Σ e l ) ], e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ e l e T l Σ / Σ Σ / e l ], (e T l Σ e l ) ] l 9

σ 460A = σ 560A = n [(E l E l )tr(b )][(E l E l )trb ] = [n tr(σ 3 ) + β n e T l Σ e l e T l Σ e l ] [ +(n trσ ) n tr(σ ) + β n n Thus, we have (e T l Σ e l ) ], [(E l E l )trb Σ ][(E l E l )trb ] = [n tr[(σ Σ )] + β n (e T l Σ e l )(e T l Σ / Σ Σ / e l )]. σ A = σ 0A + 4σ 0A + 4n (trσ ) σ 330A 4σ 0A 4n (trσ )σ 30A + 8n (trσ )σ 30A = 4[n tr(σ 4 ) + β n (e T l Σ e l ) ] + 4[n tr(σ )] + 8n (n trσ Σ ) n and +4[n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n (e T l Σ / Σ Σ / e l ) ] e T l Σ / Σ Σ / e l e T l Σ e l ], σ A = σ 440A + 4σ 550A + 4n (trσ ) σ 660A 4σ 450A 4n (trσ )σ 460A + 8n (trσ )σ 560A = 4n [tr(σ 4 ) + β (e T l Σ e l ) ] + 4[n tr(σ )] +4[n tr[(σ Σ ) ] + β n 8(n tr(σ 3 Σ ) + β n Step 5. According to (.3) and (.4), we have (e T l Σ / Σ Σ / e l ) ] e T l Σ / Σ Σ / e l e T l Σ e l )]. σ A {tr[(s S ) ] ˆµ µ A } N(0, ), where µ A = tr[(σ Σ ) ] + = n + (n ) tr(σ ) + = β n (n ) (e T l Σ e l ) 0

and σ A = σ A + σ A = 4[n tr(σ )] + 4[n tr(σ )] + 8n n [tr(σ Σ )] [ ] +4 n tr(σ 4 ) + β n (e T l Σ e l ) +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n +4n [ tr(σ 4 ) + β ] (e T l Σ e l ) +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n As a result, the proof of Lemma is completed. (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l ] (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l )]. Lemma Under Assumptions (A) (A), we have σ A σ A 3 σ A 3 σa 3 j / tr(s S ) ˆµ µ A tr(s S 3 ) ˆµ 3 µ A 3 where 0 = (0, 0) T and I is the identity matrix with N(0, I ), ˆµ ij = (n n )n (n ) (trs ), =i,j µ Aij = tr[(σ i Σ j ) ] + =i,j σ Aij = 4[n i tr(σ i )] + 4[n j +4[n i tr(σ 4 i ) + β i n i n + (n ) tr(σ ) + β n (n ) =i,j tr(σ j)] + 8n i n j [tr(σ i Σ j )] (e T l Σ i e l ) ] +4{n i tr[(σ i Σ j ) ] + β i n i (e T l Σ / i Σ j Σ / i e l ) } (e T l Σ e l ),

. 8[n i tr(σ 3 i Σ j ) + β i n i +4[n j tr(σ 4 j) + β j n j e T l Σ / i Σ j Σ / i e l e T l Σ i e l ] (e T l Σ je l ) ] +4{n j tr[(σ j Σ i ) ] + β j n j 8(n j tr(σ 3 jσ i ) + β j n j σ A 3 = 4[n tr(σ )] + 4[n tr(σ 4 ) + β n 4[n tr(σ 3 Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n (e T l Σ / j Σ i Σ / j e l ) } e T l Σ / j Σ i Σ / j e l e T l Σ je l )], +4[n tr(σ Σ Σ 3 Σ ) + β n (e T l Σ e l ) ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ]. Proof. Similar to Lemma, we first consider Σ with the bounded spectral norm for all =,, 3. When tr(σ q ) = O(pq ) for q =,, 3, 4 and at least one in the index set {,, 3 }, the proof mimics that in the bounded spectral norm case. Similar to the proof of Lemma, it can be shown that tr(s S ) ˆµ µ A and tr(s S 3 ) ˆµ 3 µ A 3 are asymptotically distributed as a bivariate normal distribution with the asymptotic variances σa, σa 3 and asymptotic covariance σ A 3. For simplicity of presentation, we consider the computation of σ A3, which is given by where σ A3 = σ 0A σ 30A σ 0A + 4 σ 30A + 4n (trσ ) σ 660A (n trσ )σ 460A +4(n trσ )σ 560A (n trσ )σ 460A + 4(n trσ )σ 760A, σ 760A = n [(E l E l )tr(b B 3 )][(E l E l )tr(b )],

σ 0A = σ 0A = σ 30A = σ 30A = n n [(E l E l )tr(b )], [(E l E l )tr(b )][(E l E l )tr(b B )], n [(E l E l )tr(b )][(E l E l )tr(b B 3 )], n [(E l E l )tr(b B )][(E l,b3 E l,b3 )tr(b B 3 )]. Then, we have σ 760A = σ 0A = σ 0A = σ 30A = n [(E l E l )tr(b B 3 )][(E l E l )tr(b )] = [n tr(σ 3 Σ ) + β n n [(E l E l )tr(b )] = 4n [tr(σ 4 ) + β (e T l Σ e l )(e T l Σ / Σ 3 Σ / e l )], (e T l Σ e l ) ] + 4(n trσ ) n [tr(σ ) + β +4[n tr(σ )] + 8(n trσ )n [tr(σ 3 ) + β n [(E l E l )tr(b )][(E l E l )tr(b B )] = n [tr(σ 3 B ) + β +(n trσ )n [tr(σ B ) + β = n [tr(σ 3 Σ ) + β +(n trσ )n [tr(σ Σ ) + β n (e T l Σ e l ) ] e T l Σ e l e T l Σ e l ], e T l Σ / B Σ / e l e T l Σ e l ] e T l Σ e l e T l Σ / B Σ / e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] [(E l E l )tr(b )][(E l E l )tr(b B 3 )] = n [tr(σ 3 B 3 ) + β e T l Σ e l e T l Σ / Σ Σ / e l ] + o p (), e T l Σ / B 3 Σ / e l e T l Σ e l ] 3

σ 30A = +(n trσ )n [tr(σ B 3 ) + β = n [tr(σ 3 Σ 3 ) + β +(n trσ )n [tr(σ Σ 3 ) + β n Thus, we obtain e T l Σ e l e T l Σ / B 3 Σ / e l ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] [(E l E l )tr(b B )][(E l,b3 E l,b3 )tr(b B 3 )] = n [tr(b Σ B 3 Σ ) + β = [n tr(σ Σ Σ 3 Σ ) + β n e T l Σ e l e T l Σ / Σ 3 Σ / e l ] + o p (), e T l Σ / B Σ / e l e T l Σ / B 3 Σ / e l ] σ A3 = 4[n tr(σ )] + 4n [tr(σ 4 ) + β +4(n trσ ) n [tr(σ ) + β +8(n trσ )n [tr(σ 3 ) + β 4[n tr(σ 3 Σ 3 ) + β n e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ] + o p (). (e T l Σ e l ) ] (e T l Σ e l ) ] l e T l Σ e l e T l Σ e l ] 4(n trσ )[n tr(σ Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n 4(n trσ )[n tr(σ Σ ) + β n +4[n tr(σ Σ Σ 3 Σ ) + β n e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ e l e T l Σ / Σ 3 Σ / e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] +4(n trσ ) [n tr(σ ) + β n 4(n trσ )[n tr(σ 3 ) + β n 4 e T l Σ e l e T l Σ / Σ Σ / e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ] (e T l Σ e l ) ] e T l Σ e l e T l Σ e l ]

4(n trσ )(n trσ )[n tr(σ ) + β n +4(n trσ )[n tr(σ Σ ) + β n 4(n trσ )[n tr(σ 3 ) + β n (e T l Σ e l ) ] (e T l Σ e l )(e T l Σ / Σ Σ / e l )] e T l Σ e l e T l Σ e l ] 4(n trσ )(n trσ )[n tr(σ ) + β n +4(n trσ )[n tr(σ 3 Σ ) + β n = 4[n tr(σ )] + 4[n tr(σ 4 ) + β n 4[n tr(σ 3 Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n +4[n tr(σ Σ Σ 3 Σ ) + β n (e T l Σ e l ) ] (e T l Σ e l )(e T l Σ / Σ 3 Σ / e l )] (e T l Σ e l ) ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ]. Generally, σ A 3 is obtained by replacing n i, Σ i and β i by n i, Σ i and β i in σ A3. That is, σ A 3 = 4[n tr(σ )] + 4[n tr(σ 4 ) + β n 4[n tr(σ 3 Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n +4[n tr(σ Σ Σ 3 Σ ) + β n The proof of Lemma is completed. (e T l Σ e l ) ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ]. 5

Proofs of Theorem and By Lemma and the delta method, under the conditions of Lemma, we have σ AK (T K ˆµ K µ AK ) d N(0, ), where ˆµ K = ω ˆµ = < K < K and µ AK = i<j K ω ijµ Aij and [ ω (n n )n (n ) (trs ) ], =, σ AK = ωijσ Aij + ω ij ω j σ Aijj i<j K + i<j< ω ij ω j σ Aijj + i<<j j<i< ω ij ω j σ Aijj, with the weights {ω ij, i, j K} and ω ij = ω ji. By (3) and (33) in Cai, Liu and Xia (03), we have a.s. a.s. max l l p δ l l s(n, n, p) 0.5 max i j p 0.5 max i j p (σ ij σ ij) ˆθ ij/n + ˆθ ij/n (σ ij σ ij) θ ij/n + θ ij/n s(n, n, p) 4 log p + 0.5 log log p s(n, n, p) 4 log p + 0.5 log log p Then, there exists a pair of, K satisfying (σ ij σ ij) 0.5 max s(n, n, p) + 4 log p. i j p θ ij/n + θ ij/n Then we have and max δ l l s(n, n, p) a.s. 0.5 log log p l l p max δ l l s(n, n, p) a.s. > 0 l l p 6

Therefore, we have That is, T K a.s. = K 0. Then, we have max {I{ max δ ijl l > s(n i, n j, p)}} a.s. =. i<j K l l p σ AK (T K K 0 ˆµ K µ AK ) d N(0, ). We first focus on the proof of the case with K =, and that of K 3 can be shown in a similar way. When K =, the power function is g (Σ, Σ ) = P HA (T ˆµ > ˆµ + z αˆσ ) ( T ˆµ µ A = P HA > ˆµ ) µ A + z αˆσ σ A > P HA ( T ˆµ µ A σ A > z αˆσ σ A Step. When p tra 0 and tra > c 0 for some positive constant c 0, σ A /ˆσ. That is, (z αˆσ )/σ A z α = o p (). Then, when n, n are large enough, we have g (Σ, Σ ) > α. Step. We have g (Σ, Σ ) > P HA ((T ˆµ µ A )σ A > (ˆµ µ A + z αˆσ )σ A ). When tr(a ), we have (ˆµ µ A )σ A in probability. Then, the power function satisfies g (Σ, Σ ). Step 3. We have σ A ). g (Σ, Σ ) = P HA (T ˆµ > ˆµ + z αˆσ ) ( T ˆµ µ A = P HA > ˆµ ) µ A + z αˆσ σ A > P HA ( T ˆµ µ A σ A > z αˆσ σ A > P HA ( T ˆµ µ A σ A σ A ) + T K σ A > z αˆσ σ A ). Because T ˆµ µ A σ A is asymptotically normal under H and T K a.s. = K 0, if (σ ij σ ij) 0.5 max s(n, n, p) + 4 log p, i j p θ ij/n + θ ij/n 7

then the power function g (Σ, Σ ) tends to one. The proof of Theorem is completed. Moreover, Theorem is a special case of Theorem. 8

References Bai, Z. D. and Silverstein, J. W. (004). CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab., 3, 553-605. Schott, J. R. (007). A test for the equality of covariance matrices when the dimension is large relative to the sample sizes. Comput. Stat. Data Anal., 5, 6535-654. Srivastava, M. S. and Yanagihara, H. (00). Testing the equality of several covariance matrices with fewer observations than the dimension. J. Multivar. Anal., 0, 39-39. 9

(a) Size, n =n =n 3 =00 Percentage 0 0 0 30 40 50 T 3 T 3 SC SY 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 p (b) Power, n =n =n 3 =00 Percentage 0 0 40 60 80 00 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 p (c) Size, n =60, n =00, n 3 =50 Percentage 0 0 40 60 80 00 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 p (d) Power, n =60, n =00, n 3 =50 Percentage 0 0 40 60 80 00 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 50 00 00 300 500 000 p Figure : Simulation results for testing the equality of three covariance matrices with Gamma populations under Scenarios 4 in comparison with two existing tests of Schott (007) (SC) and Srivastava and Yanagihara (00) (SY). 0