High Sensitivity Analysis of Volatile and Semi-volatile Compounds Using ASAP and GC/MS on an LC/MS Instrument

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Supplementary Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Assalamu `alaikum wr. wb.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Supporting Information. Experimental section

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Determination of Organophosphate Pesticides in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

DuPont Suva 95 Refrigerant

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

In vitro και in vivo φαρμακοκινητική ανάλυση των παραγώγων ανθρακινόνης σε φυτικά σκευάσματα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting Information

DuPont Suva 95 Refrigerant

Electronic Supporting Information

HPLC- ESI-MS HPLC-ESI-MS HPLC-ESI-MS HPLC 11 HPLC HPLC-ESI-MS. Asterias rollestoni Bell. LC- MS. Vol.11 No.1

SUPPLEMENTARY MATERIAL

Electronic Supplementary Information

Δρ. Αικατερίνη Αργυροπούλου R&D Manager

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Comparative Study on Determinations of BTEX in Soils from Industrial Contaminated Sites

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Non-Polar Columns. With the partnership of Teknokroma

Τεχνολογία Εφαρµογές. Γ. Θεοδωρίδης Τµήµα Χηµείας ΑΠΘ

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

The Free Internet Journal for Organic Chemistry

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Supporting Information

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Divergent synthesis of various iminocyclitols from D-ribose

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Finite Field Problems: Solutions

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

the total number of electrons passing through the lamp.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Rapid Determination of Seven Fungicides in Citrus Fruits

EE512: Error Control Coding

Supplementary information

Supporting Information

April 2013 Chinese Journal of Chromatography 380 ~ A

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Joint Research Centre

Electronic Supplementary Information

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

2 Composition. Invertible Mappings

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS n

Capacitors - Capacitance, Charge and Potential Difference

Supporting Information

Σπανό Ιωάννη Α.Μ. 148

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΤΟΞΙΚΟΛΟΓΙΚΗ ΑΝΑΛΥΣΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΕΝΗ ΣΕ ΚΛΙΝΙΚΑ ΚΑΙ ΙΚΑΣΤΙΚΑ ΠΕΡΙΣΤΑΤΙΚΑ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Precision Metal Film Fixed Resistor Axial Leaded

Strain gauge and rosettes

Improved Sensitivity Mass Spectrometric Detection of Eicosanoids by Charge

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

( E N) 0 ~ 20 cm ( EESI-MS) ) (KQ3200B. ( Burdick&Jackson, SK Chemical, Ulsan, Korea) ( 土壤 (Soils), 2013, 45(2):

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

[1] P Q. Fig. 3.1

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Επεξεργασία πειραματικών αποτελεσμάτων

By R.L. Snyder (Revised March 24, 2005)

Transcript:

High Sensitivity Analysis of Volatile and Semi-volatile Compounds Using ASAP and GC/MS on an LC/MS Instrument Charles N. McEwen DuPont Corporate Center for Analytical Sciences Wilmington, DE

Why is Solvent Bad for Ionization? Solvent in the gas phase limits ionization to molecules more basic than the solvent Exception is photoionization (not acid/base ionization) but still mediated by solvent Removing solvent and water vapor from ionization region increases types of compounds that can be ionized at atmospheric pressure

ASAP Atmospheric-pressure pressure Solids Analysis Probe A rapid method for analysis of volatile and semivolatile compounds in solids, liquids, polymers, and biological tissue

ASAP Ion Source N2 nebulizer gas LC connector APCI Probe LC interface probe Heated desolvation gas N2 purge in Teflon plug Melting point capillary Discharge needle MS inlet Mass Spec API source housing N 2 purge vent

Safety First ASAP vaporizes materials The ion source should be sealed during analysis (Just as ESI and APCI) and Vented to a hood

ASAP Probe

AP MALDI Orbitrap with ASAP ESI/APCI Source ASAP Probe

ASAP Examples Solids probe replacement Accurate mass of mixtures Analysis of polymer additives Analysis of drugs (or explosives) Analysis of biological tissue

Replacement for Solids Probe No vacuum lock Fast analysis MH + ions with minimal fragmentation Accurate mass MS/MS for structural information

ASAP on QTof Showing Instrument Calibration and 6 Steroid Samples in 3 min. Rapid solids probe analysis at atmospheric pressure of steroids cnmtest 1 a TOF MS ES+ TIC 1.26e5 PEG44 % 1.8 min 2.8 min Total Ion Current Chromatogram of ASAP analysis of 6 steroids.2.4.6.8 1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 2.8 Time Rapid solids probe analysis at atmospheric pressure of steroids cnmtest 21 (.415) Cm (21:31) 1 b 371.2179 415.2544 TOF MS ES+ 1.27e4 459.2837 PEG for Instrument Calibration 327.1971 53.315 % 547.3396 195.1281 283.1758 372.2383 416.2615 46.2923 591.3519 177.535 151.92 239.1587 223.876 279.1529 328.2191 54.3135 548.3578 163.14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5 52 54 56 58 m/z Rapid solids probe analysis at atmospheric pressure of steroids cnmtest 132 (2.641) AM (Cen,4, 75., Ar,5.,391.28,.8) 1 c MH + -H 2 O 269.223 287.2359 MH + TOF MS ES+ 7.65e3 Atmospheric Pressure Mass Spectrum of Steroid % 27.232 288.2433 139.729 195.1591 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 m/z Anal. Chem., 25, 77,7826-7831

Solids Probe Sample for Accurate Mass fish-11134-71-tube2-asap1_67189575 #15 RT:.89 AV: 1 SB: 1.32 NL: 3.39E7 T: FTMS + p APCI corona Full ms [ 1.-1.] 547.37 C 33 H 58 P 3 1 95 547.37 9 85 8 75 7 65 546.37 546.37 C 33 H 57 P 3 Relative Abundance 6 55 5 45 4 35 548.37 548.38 C 33 H 59 P 3 3 25 2 15 1 5 545.36 C 33 H 56 P 3 549.38 C 36 H 55 P 2 551.39 C 36 H 57 P 2 554.28 C 43 H 38 557.3 C 43 H 41 56.37 C 37 H 54 P 2 562.36 562.36 C 43 H 46 563.37 563.37 C 43 H 47 564.37 564.37 C 43 H 48 566.38 C 43 H 5 542 544 546 548 55 552 554 556 558 56 562 564 566 568 m/z

Accurate Mass Measurement for GC/MS GC/MS using low performance MS ASAP on high performance MS for elemental compositions High resolution required MS/MS with accurate mass

PrefumeX_51219134717 #8-18 RT:.18-.29 AV: 11 NL: 2.3E7 T: FTMS + p APCI corona Full ms [ 1.-8.] 147.442 C 9 H 7 O 2 1 ASAP of Perfume on Orbitrap 95 9 85 8 295.1292 C 14 H 19 O 5 N 2 75 7 27.1747 C 14 H 23 O 1 65 6 Relative Abundance 55 5 45 189.1641 C 14 H 21 279.981 C 13 H 15 O 5 N 2 4 35 3 137.1325 C 1 H 17 118.411 C 8 H 6 O 1 178.991 C 11 H 14 O 2 273.2585 C 2 H 33 25 2 15 161.1327 C 12 H 17 343.163 225.141 C 19 H 13 O 2 N 5 C 6 H 19 O 4 N 5 1 5 25.2297 C 17 H 3 O 1 34.244 C 2 H 32 O 2 326.152 C 21 H 18 N 4 37.36 C 27 H 46 391.285 C 25 H 35 N 4 426.3863 C 3 H 5 O 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 m/z

Perfume Analysis APGCMS Perfume4 3m DB1 apciperfume4_cv32 Sm (Mn, 1x1) 1 GC/APMS 822 845 1174 TOF MS ES+ BPI 1.1e3 878 928 783 % 53 111 587 692 66 119 1214 2 461 638 747 711 971 995 4. 6. 8. 1. 12. 14. 16. 18. 1341 Time

Abundance GC/MS of Musk Ketone Using EI, APPI, and APCI 55 5 45 4 35 EI-MS Scan 3171 (2.49 min): chuck 2.D\data.ms 279 C 13 H 15 O 5 N 2 279 O OH 3 C N CH 3 CH 3 O N O 3 25 2 128 H 3 C CH 3 15 115 1 143 16 294 O CH 3 5 172 189 m/z--> 22 215 247 152 223 232 262 18 121314151617181922122232425262728293 Photoionization MS Perfume4 DB1 photo_perfume4 1313 (12.812) 1 APPI-MS 277.3 TOF MS ES+ 1.3e3 % 189.2 277. 294.3 149.2 161.2 147.2 163.2 apciperfume4_cv32 1173 (12.793) 1 APCI-MS 177.2 189. 188.2 191.2 24.3 22.2 232.3 214.3 217.3 23.3 242.3 244.3 259.3 261.3 259.1 262.3 278.3 C 14 H 19 O 5 N 2 293. 295.3 295.3 TOF MS ES+ 959 295 % 295. 296.4 149.1 171.3 232.3 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 m/z

PrefumeX_51219134717 #8-18 RT:.18-.29 AV: 11 NL: 2.3E7 T: FTMS + p APCI corona Full ms [ 1.-8.] 147.442 C 9 H 7 O 2 1 95 C 9 H 7 O 2 ASAP of Perfume on Orbitrap 9 85 8 75 7 65 27.1747 C 14 H 23 O 1 C 14 H 23 O 295 295.1292 C 14 H 19 O 5 N 2 C 14 H 19 O 5 N 2 6 Relative Abundance 55 5 45 4 C 14 H 21 189.1641 C 14 H 21 279 C 13 H 15 O 5 N 2 279.981 C 13 H 15 O 5 N 2 35 3 137.1325 C 1 H 17 118.411 C 8 H 6 O 1 178.991 C 11 H 14 O 2 273.2585 C 2 H 33 25 2 15 161.1327 C 12 H 17 343.163 225.141 C 19 H 13 O 2 N 5 C 6 H 19 O 4 N 5 1 5 25.2297 C 17 H 3 O 1 34.244 C 2 H 32 O 2 326.152 C 21 H 18 N 4 37.36 C 27 H 46 391.285 C 25 H 35 N 4 426.3863 C 3 H 5 O 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 m/z

EPA 827 Megamix by ASAP as a Function of Time/Temperature Temperature 1 8 6 4 2 1 8 6 4 2 8 6 4 2 1 Relative Abundance1 8 6 4 2 1 8 6 4 2 1 8 6 4 2 56.1768 77.379 91.536 77.38 91.536 277.111 253.113 123.311 149.231 179.854 23.854 229.112 269.965 293.96 253.19 149.231 229.111 277.111 139.1115 163.388 215.854 123.311 179.854 23.854 269.962 245.964 293.961 149.231 23.851 168.85 229.11 122.47 182.32 91.536 129.542 253.111 111.435 77.379 219.82 245.96 259.194 279.159 149.231 179.853 163.389 122.471 185.19 23.853 77.38 92.489 139.5 214.1589 18.439 229.111 249.9812 139.1114 149.23 163.387 17.961 6 8 1 12 14 16 18 2 22 24 26 28 m/z 283.897 77.379 91.536 131.1175 183.914 69.328 17.486 24.334 231.8824 247.9831 279.1592 75.546 124.864 139.1114 67.284 91.536 94.645 19.642 145.9681 162.228 179.9292 Mass 236.846 24.334 271.896 294.312 NL: 1.25E8 EPA827_652413595#59 RT: 1. AV: 1 SB: 3.-.3 T: FTMS + p APCI corona Full m s [ 5.-1.] NL: 1.61E8 EPA827_652413595#45 RT:.76 AV: 1 SB: 3.-.3 T: FTMS + p APCI corona Full m s [ 5.-1.] NL: 1.36E8 EPA827_652413595#34 RT:.57 AV: 1 SB: 3.-.3 T: FTMS + p APCI corona Full m s [ 5.-1.] NL: 5.51E7 EPA827_652413595#23 RT:.38 AV: 1 SB: 3.-.3 T: FTMS + p APCI corona Full m s [ 5.-1.] NL: 5.8E7 EPA827_652413595#11 RT:.18 AV: 1 SB: 3.-.3 T: FTMS + p APCI corona Full m s [ 5.-1.] NL: 9.9E6 EPA827_652413595#5 RT:.7 AV: 1 SB: 3.-.3 T: FTMS + p APCI corona Full m s [ 5.-1.]

EPA827_6524143111 #4 RT:.6 AV: 1 NL: 6.3E7 T: FTMS + p APCI corona Full m s [ 5.-1.] Relative Abundance 1 95 9 85 8 75 7 65 6 55 5 45 4 35 3 25 2 15 1 5 1 94.6 C 6 H 8 N 1 2 96.5 C 1 H 8 O 3 N 2 ASAP of Restek EPA 827 Megamix 17.5 C 7 H 7 O 1 15.7 C 8 H 9 3 19.6 C 7 H 9 O 1 111.4 C 6 H 7 O 2 115.5 C 9 H 7 123.8 C 8 H 11 O 1 121.6 C 8 H 9 O 1 119.9 C 9 H 11 4 131.12 C 6 H 15 O 1 N 2 128.3 C 9 H 4 O 1 5 135.8 C 9 H 11 O 1 139.11 C 9 H 15 O 1 143.9 C 11 H 11 145.6 C 1 H 9 O 1 149.2 C 8 H 5 O 3 155.9 C 12 H 11 153.7 C 12 H 9 163.4 C 9 H 7 O 3 166.8 C 13 H 1 17.1 C 12 H 12 N 1 95 1 15 11 115 12 125 13 135 14 145 15 155 16 165 17 m/z 6 7 1. Aminobenzene 2. Phenol 3. Methylphenol 4. Dimethylphenol 5. Nitroso-di-propylamine 6. Isophorone 7. Methylnapthalene 8. Acenaphthylene 9. Diphenylamine 8 9

Polymer Additive Analysis Obtain additive elemental compositions in seconds No sample extraction required MS/MS for confirmation

MASSOUDA_1_PELLET_654125118 #42 RT: 1.26 AV: 1 NL: 1.76E7 T: FTMS + p APCI corona Full ms [ 1.-12.] 1 95 9 ASAP of Additives in Polymer Nonwoven polymer -C 14 H 21 O 441.2925 C 28 H 42 O 2 P 1 646.452 C 42 H 63 O 3 P 1 C 42 H 63 O 3 P Irgafos 168 85 8 75 7 65 647.4565 6 Relative Abundance 55 5 45 4 35 662.446 C 42 H 63 O 4 P 1 3 25 2 Erucamide C 22 H 44 ON 442.2956 C 27 H 4 O 4 N 1 Irgafos 168 oxidized 663.4512 15 1 5 111.1164 C 8 H 15 338.3422 C 22 H 44 O 1 N 1 -C 4 H 8 591.3965 C 38 H 56 O 3 P 1 664.4549 15 2 25 3 35 4 45 5 55 6 65 7 m/z

ASAP of Nonwoven Fiber nonwovan_fabric_6118155342 #63 RT: 1.89 AV: 1 NL: 1.E7 T: FTMS + p APCI corona Full ms [ 1.-2.] 1 95 9 85 8 75 7 65 6 646.457 C 42 H 63 O 3 P 1 4 1. Erucamide 2. Fragment of 4 3. Irganox 176 4. Irgafos 168 5. Irgafos 168 oxidized 6. Irganox 3114 Relative Abundance 55 5 45 4 35 3 25 2 15 1 1 338.3417 C 22 H 44 O 1 N 1 2 441.2917 C 28 H 42 O 2 P 1 3 53.4689 C 35 H 62 O 3 5 6 783.5173 C 48 H 69 O 6 N 3 5 3 35 4 45 5 55 6 65 7 75 8 m/z

ASAP of Drugs On objects In urine or spit without sample preparation Accurate mass MS/MS

ASAP of Ibuprofen Tablet Ibuprofen_672111146 #389 RT: 2.53 AV: 1 SB: 12.1-.1 NL: 9.63E8 T: FTMS + p APCI corona Full ms [ 5.-5.] 1 C 12 H 17 161.1326 C 12 H 17 95 9 (CH 3 ) 2 CHCH 2 C 6 H 4 CH(CH 3 )COOH 85 8 75 7 65 6 Relative Abundance 55 5 45 4 35 3 159.1171 C 12 H 15 25 2 C 9 H 11 119.855 C 9 H 11 C 1 H 11 O 2 163.754 C 1 H 11 O 2 15 1 5 C C 5 H 11 4 H 9 57.693 C 4 H 9 71.851 C 5 H 11 81.695 C 6 H 9 C 7 H 7 91.539 C 7 H 7 95.852 C 7 H 11 C 8 H 9 15.696 C 8 H 9 117.698 C 9 H 9 145.649 C 1 H 9 O 1 149.235 C 8 H 5 O 3 167.339 C 8 H 7 O 4 188.1198 C 13 H 16 O 1 C 13 H 18 O 2 27.1385 C 13 H 19 O 2 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 m/z

Direct ASAP Analysis of Urine Sample 9 hrs After 12 hr Sedafed cnmurin_psuedo_caf_632411339 #33 RT: 1.5 AV: 1 SB: 7.4-.24 NL: 5.77E7 T: FTMS + p APCI corona Full ms [ 1.-1.] 148.1118 C 1 H 14 N 1 1 95 HN CH 3 C 1 H 14 N 9 85 CH 3 8 75 7 65 6 Relative Abundance 55 5 45 HO HN CH 3 CH 3 4 35 -H 2 O 3 114.658 25 2 15 1 117.694 C 9 H 9 133.884 C 9 H 11 N 1 Ephedrine C 1 H 16 ON 166.1224 C 1 H 16 O 1 N 1 5 19.757 126.911 136.391 153.654 12.84 144.12 157.716 17.921 C 9 H 14 O 3 191.1177 C 11 H 15 O 1 N 2 29.1283 C 11 H 17 O 2 N 2 11 12 13 14 15 16 17 18 19 2 21 22 m/z

dollar_bills_51118165312 #198 RT: 1.72 AV: 1 NL: 8.56E8 T: FTMS + p APCI corona Full ms [ 1.-12.] 1 95 9 85 8 The Famous Cocaine on a Dollar Bill 149.233 C 8 H 5 O 3 Phthalate C 8 H 5 O 3 Cocaine C 17 H 22 O 4 N 34.1548 C 17 H 22 O 4 N 1 75 7 65 6 Relative Abundance 55 5 45 4 35 3 25 -PhCOOH C 1 H 16 O 2 N 182.1176 C 1 H 16 O 2 N 1 C 24 H 39 O 4 391.2849 C 24 H 39 O 4 2 15 1 5 117.97 C 6 H 13 O 2 135.1167 C 1 H 15 167.34 C 8 H 7 O 4 233.1751 C 12 H 25 O 4 279.1595 C 16 H 23 O 4 367.2696 C 18 H 39 O 7 353.356 C 22 H 41 O 3 425.3113 C 22 H 41 O 4 N 4 483.3528 C 25 H 47 O 5 N 4 15 2 25 3 35 4 45 5 m/z

ASAP of Biological Samples Rapid analysis of volatiles in tissue No sample preparation Accurate mass and MS/MS High resolution desirable

ASAP of Carrot carot_6329155429 #2 RT:.57 AV: 1 NL: 4.25E6 T: FTMS + p APCI corona Full ms [ 1.-8.] 1 95 9 127.388 C 6 H 7 O 3 C 4 H 56 536.4385 C 4 H 56 Beta-carotene 85 8 75 7 65 6 Relative Abundance 55 5 45 4 35 3 25 2 15 1 5 145.496 C 6 H 9 O 4 163.391 C 9 H 7 O 3 289.925 C 15 H 15 O 5 N 1 229.711 313.2745 C 19 H 37 O 3 397.3839 C 29 H 49 414.3866 C 29 H 5 O 1 337.2746 C 21 H 37 O 3 C 13 H 11 O 3 N 1 444.3756 383.3682 C 28 H 47 C 33 H 48 519.4766 C 34 H 63 O 3 575.535 C 37 H 67 O 4 616.57 C 39 H 68 O 5 639.4788 C 47 H 61 N 1 699.4998 C 49 H 65 O 2 N 1 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 m/z

ASAP of Catnip Leaf Normal Growth and After Growth in Cold and Dark Normal Catnip2_5128154135 #11 RT:.16 AV: 1 NL: 6.32E6 T: FTMS + p APCI corona Full ms [ 1.-2.] 167.162 C 1 H 15 O 2 1 catnip_cold_6111151518 #54 RT: 1.47 AV: 1 NL: 1.1E8 T: FTMS + p APCI corona Full ms [ 5.-1.] 1 nepetalactone 95 9 85 8 167.159 C 1 H 15 O 2 338.347 C 2 H 42 N 4 439.3558 C 28 H 45 O1 N 3 Cold and Dark 95 9 C 1 H 15 O 2 75 7 85 8 75 7 H 3 C O O Relative Abundance 65 6 55 5 45 Relative Abundance 65 6 55 5 45 4 35 3 25 121.16 C 9 H 13 149.956 C 1 H 13 O 1 CH 3 4 35 3 25 2 15 1 5 93.689 81.689 121.13 C 9 H 13 149.954 C 1 H 13 O 1 191.1786 C 14 H 23 247.1685 C 14 H 21 O1 N 3 321.3143 C 2 H 39 N 3 31.395 358.3668 C 2 H 46 O1 N 4 411.3611 C 27 H 45 N 3 393.356 C 29 H 45 457.3657 C 28 H 47 O2 N 3 C 18 H 38 N 4 481.4955 577.5166 C 3 H 63 O1 N 3 C 35 H 67 O3 N 3 1 15 2 25 3 35 4 45 5 55 6 m/z 2 15 1 5 198.8317 229.2157 C 14 H 29 O 2 257.2471 C 16 H 33 O 2 285.2784 C 18 H 37 O 2 411.3979 363.1239 C 3 H 51 C 22 H 19 O 5 459.5764 C 33 H 63 55.9594 C 37 O 3 N 1 565.918 C 42 O 3 N 1 15 2 25 3 35 4 45 5 55 6 m/z

Ergosterol Biosynthesis Squalene 2,3-Oxidosqualene Lanosterol Eburicol O Squalene Epoxidase H O Epoxysqualene Cyclase H O C24 Transmethylase H O C14 Demethylase C4 Demethylase H O C14 Reductase Ergosterol Fecosterol H O H O C22 Desaturase C5 Desaturase C24(28) Reductase Δ8 Isomerase

ASAP of Fungus Cells AG_FUNGUS_CONTROL_S_6228154133 #22 RT:.65 AV: 1 SB: 3.-.7 NL: 1.5E5 T: FTMS + p APCI corona Full ms [ 2.-1.] 1 95 9 85 8 75 7 65 Untreated Internal standard 396 396.3394 C 28 H 44 O 1 Ergosterol Relative Abundance 6 55 5 45 391.2852 C 24 H 39 O 4 H O 4 35 3 25 2 15 1 5 351.3993 C 25 H 51 368.3657 C 24 H 48 O 2 363.357 C 27 H 39 378 4.376 C 28 H 48 O 1 378.3289 C 28 H 42 44.419 C 31 H 52 O 1 389.4166 C 28 H 425.3785 442.3811 53 38.3448 C 3 H 49 O C 3 H 5 O 2 1 376.3133 C C 28 H 44 41.3916 28 H 4 C 3 H 5 421.4772 435.493 446.4855 C 3 H 61 C 31 H 63 C 32 H 62 36 37 38 39 4 41 42 43 44 m/z AG_FUNGUS_H6573_S_6228172336 #25 RT:.73 AV: 1 SB: 3.1-.7 NL: 3.85E4 T: FTMS + p APCI corona Full ms [ 2.-1.] 391.285 C 24 H 39 O 4 1 95 9 Treated with Inhibitor Eburicol 44.417 C 31 H 52 O 1 44 85 8 75 7 65 225 425.3784 C 3 H 49 O 1 RelativeAbundance 6 55 5 45 368.3657 C 24 H 48 O 2 HO 4 35 3 411 411.3627 442.482 25 C 29 H 47 O 1 427.3786 C 26 H 51 O 4 2 15 1 5 354.35 C 23 H 46 O 2 365.3785 C 25 H 49 O 1 371.3164 C 22 H 43 O 4 373.3484 387.49 47.3678 C 3 H 47 397.3475 C 28 H 45 O 1 4.9851 423.3989 C 31 H 51 415.372 419.3161 C 26 H 43 O 4 438.3863 C 31 H 5 O 1 436.375 C 31 H 48 O 1 447.3472 C 28 H 47 O 4 35 36 37 38 39 4 41 42 43 44 45 m/z

ASAP of Treated Fungus AG_FUNGUS_JP355_S_6228172336 #23 RT:.6 AV: 1 SB: 3.1-.7 NL: 2.53E5 T: FTMS + p APCI corona Full ms [ 2.-1.] 1 Inhibitor added 95 9 85 8 75 7 Lanosterol 411.363 C 29 H 47 O 1 411 426.3863 C 3 H 5 O 1 426 65 RelativeAbundance 6 55 5 45 4 35 3 25 2 382.3239 C 27 H 42 O 1 368.3659 C 24 H 48 O 2 391.2851 C 24 H 39 O 4 C 29 H 49 O 1 397.3475 C 28 H 45 O 1 428.3918 413.3769 15 49.3838 C 3 H 49 38.385 1 365.3219 C 27 H 4 O 1 424.379 442.3814 36.3763 374.3919 388.474 42.423 C 3 H 48 O 1 C 3 H 5 O 2 5 C 26 H 48 C 27 H 5 C 28 H 52 C 29 H 54 432.4697 C 31 H 6 36 37 38 39 4 41 42 43 44 m/z AG_FUNGUS_YB837_S_6228172336 #23-27 RT:.54-.63 AV: 5 SB: 3.1-.7 NL: 4.52E5 T: FTMS + p APCI corona Full ms [ 2.-1.] 368.3657 C 24 H 48 O 2 1 Inhibitor added 95 9 85 8 S IS Ignosterol ES 396 398.3557 C 28 H 46 O 1 398 HO 75 7 65 6 RelativeAbundance 55 5 45 HO 4 35 3 25 2 15 1 5 4.3896 C 25 H 52 O 3 412.348 C 24 H 46 O 4 N 1 384 356.3473 384.3781 48.3341 C 26 H 44 C 28 H 48 C 428.353 21 H 46 O 6 N 1 414.3697 376.3387 C 25 H 48 O 5 C 25 H 5 O 4 C 21 H 46 O 4 N 1 426.3476 373.3788 C 29 H 46 O 2 363.3148 C 27 H 49 C 23 H 41 O 2 N 1 44.3814 C 27 H 52 O 4 35 36 37 38 39 4 41 42 43 44 45 m/z

ASAP Probe for DESI Analysis of nonvolatiles such as peptides and proteins Patented technology

Sigma Peptide Mixture by ASAP Probe DESI SIGMAPEP_ESI_6629131637 #19 RT: 3.42 AV: 1 NL: 5.56E4 T: FTMS + p ESI Full ms [ 425.-2.] 523.77 1 95 523.77 ++ Ang III Single Acquisition 9 85 8 75 556.28 + 556.28 LeuEnk 7 65 6 Relative Abundance 55 5 45 146.54 + 146.54 Ang III 4 35 3 25 578.26 + 578.26 MetEnk 147.55 2 15 1 5 445.31 522.6 579.26 148.55 618.19 489.34 784.41 16.56 66.49 935.49 1111.54 722.5 79.59 841.92 878.64 957.47 992.74 168.52 113.5 45 5 55 6 65 7 75 8 85 9 95 1 15 11 115 m/z

Myoglobin by ASAP Probe DESI XtractTemp_2671162342 7/1/26 4:23:46 PM RT:. - 2.6 1 9 8 7 Relative Abundance 6 5 4.73 Myo 1.17 1.3 4 1.53 Total Ion Chromatogram Myo 1.76 1.8 2 1.6 3 1.9 9 NL: 6.21E6 TIC M S CYTOC_E SI_6629 13 16 3 7 3 2 1.6.28.16.23.36.44.52.61.87.97 2.9 2.16 2.29 2.39 2.46..1.2.3.4.5.6.7.8.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 Time (min) CYTOC_ESI_6629131637 # 28 RT:.73 AV: 1 NL: 1.4 9 E4 T: FTM S + p ESI Full ms [ 425.-2.] 1 893.12 Single Acquisition 9 16.45 8 942.63 Relative Abundance 7 6 5 4 3 2 1 13 4.9 4 848.66 113 1.15 88.35 998.7 12 11.6 6 738.6 739.1 14 13.4 5 771.4 7 992.8 1.13 136.2 14 9.9 4 77.43 1132.22 154 2. 1 944.1 12 12.8 8 894.96 681.65 1 6 2.8 3 113 7.6 8 945.68 12 14.9 5 12 9 7.4 13 4 3.6 6 14 2 2. 2 652.9 1 4 7. 773.33 921.19 1148.65 961.92 112 8.75 126.68 13 12.2 5 13 8 2.2 8 1 19.2 1 13 6 2.19 1425.1 154 3.8 3 16 2.2 5 826.17 871.63 1179.32 14 79.2 9 1512.2 4 65 7 75 8 85 9 95 1 1 5 11 115 12 12 5 13 13 5 14 14 5 15 155 16 m/ z XtractTemp_2671162342 # 1 RT: 1. AV: 1 NL: 1.3 6 E3 T: FTM S + p ESI Full ms [ 844.22-16961.16] 1 9 8 1695 16 9 5.12 16 9 51.13 16952.12 16 9 53.16 Deconvoluted molecular ion envelope 16 9 54.11 Relative Abundance 7 6 5 4 3 16949 16949.13 16 9 55.16 2 1 16 9 4 7.2 1 16 9 4 8.14 16 9 56.16 16 9 4 5 16 9 4 6 16 9 4 7 16 9 4 8 16949 16 9 5 16 9 51 16952 16 9 53 16 9 54 16 9 55 16956 16 9 57 16 9 58 16 9 59 16 9 6 m/ z

Conclusions ASAP is a rapid method for Analysis of Samples at Atmospheric Pressure ASAP is compatible with LC/MS and AP GC/MS and requires only a simple ion source modification Volatile and semivolatile compounds in solids, liquids, polymers, and biological tissue can be analyzed in seconds The method is especially powerful on high performance mass spectrometers

GC/MS on an LC/MS Instrument o Atmospheric Pressure Ionization (API) has primarily been interfaced with liquid chromatography, but it is also an ionization method that can be applied to gas chromatograph. o Any LC/MS instrument can also be used as a GC/MS instrument. o Either APCI or APPI can be used

LC/MS Ion Source: GC Interface Probe Replaces LC Probe Purge gas entrance GC Interface probe Advantages over LC/MS O GC provides higher chromatographic resolution and more peak capacity than LC. O Higher sensitivity for certain compounds. O Less problems with analyte solubility. HV Discharge needle Ground plate Purge gas exit Mass Spec Advantages over vacuum GC/MS O Uses high performance LC/MS instrumentation O Mass selected fragmentation for GC/MS Quantitation

Waters QTof Agilent GC With autosampler

Interface probe Syagen Photoionization Source

K25-574A 1 Perfume Analysis: Comparison of UV, LC/MS, GC/APMS UV Diode Array 1.95 3: Diode Array TIC 6.53e7 %.12 1.99 7.8 11.75 14.82 17.12 18.1 21.1 22.29 22.82 24.34 3.45 3.9-6 K25-574A 1 LC/MS Electrospray 17.16 24.42 1: TOF MS ES+ TIC 1.23e4 11.1 % 22.37 16.21 17.58 22.92 12.88 19.91 29.55 29.82 3.99 2.5 5. 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 3. 32.5 35. 37.5 4. Time A P G C M S P e r f u m e 4 3 m D B 1 a p c ip e r fu m e 4 _ c v 3 2 S m ( M n, 1 x 1 ) T O F M S E S + 8 4 5 1 B P I 1.1 e 3 8 2 2 GC/APCI MS 8 7 8 1 1 7 4 9 2 8 7 8 3 % 5 3 1 1 1 5 8 7 6 9 2 1 2 1 4 6 6 1 1 9 4 6 1 6 3 8 7 1 1 7 4 7 9 9 5 9 7 1 1 3 4 1 2 4. 6. 8. 1. 1 2. 1 4. 1 6. 1 8. T im e

Molecular and MH + Ion Generation A + e ---> A+. + 2e (EI) A + hν ---> A+. + e (APPI) A+. + H2O ---> AH+ +.OH N2 + e ---> N2+. + 2e (APCI) N2+. + 2N2 ---> N4+. + N-2 N4+. + H2O ---> H2O+. + 2N2 H2O+. + H2O ---> H3O+ +.OH H3O+ + A ---> AH+ + H2O N2+./N4+. + A ---> A+. + xn2

Comparison of AP GC/MS of n-butyrophenone Using APPI and APCI Photoionization MS photomix1 3m DB1 photo_mix1_cv32 818 (7.196) 1 Photoionization n-butyrophenone Odd-electron fragment ions 148.2 TOF MS ES+ 434 % 17.1 15.1 12. 12.1 121.1 148. 147.2 8 85 9 95 1 15 11 115 12 125 13 135 14 145 15 155 16 165 17 APGCMS photomix1 3m DB1 apcimix1cv32 53 (7.192) 149.2 1 APCI n-butyrophenone MH + fragment ions 13. 13.2 131.2 147. 149.2 15.2 151.2 m/z TOF MS ES+ 1.15e3 % 149. 15.2 17.1 8 85 9 95 1 15 11 115 12 125 13 135 14 145 15 155 16 165 17 131.2 m/z

photoperfume4_cv33 1 APPI 9.8 ev Perfume Analysis by API-GC/MS 1)Rose oil 2) Linalool 3) C14H12 4) Geraniol 5) Dimethyl-2,6-octadien-1-ol 6) Vanillin 7) Ionone 8) Coumarin 9)Cetone 1) Dimethoxypropenylbenenee 11) Isomethylionine 12) Diethylphthalate 13) Methyltetradecanoic acid 14) Methylpentadecanone 15) Musk Ketone 16) Civetone TOF MS ES+ BPI 693 % photo_perfume4 1 APPI 1.6 ev TOF MS ES+ BPI 1.52e3 % apciperfume4_cv32 1 APCI % 1 2 3 4 5 6 7 8 9 11 1 12 13 14 15 16 TOF MS ES+ BPI 1.49e3 1. 2. 3. 4. 5. 6. 7. 8. 9. 1. 11. 12. 13. 14. Time

APPI Spectra of Isomers of methyl-ionone Photoionization MS Perfume4 DB1 photo_perfume4 114 (9.964) 1 O 191.3 191 TOF MS ES+ 392 % 26.3 191.1 27.3 123.2 137.2 149. 8 9 1 Photoionization MS Perfume4 DB1 11 12 13 14 15 16 17 18 19 2 21 22 m/z photo_perfume4 936 (9.172) TOF MS ES+ 1 27.3 1.42e3 149 149.3 165.3 15.2 189.3 177.3 18.3 192.3 26.1 25.3 28.3 26.3 % H 3 C CH 3 CH 3 O CH 3 135.2 15 15.2 191 191.3 CH 3 26.1 17. 17.2 19.2 134.2 123.2 122.2 134. 122. 126.2 133.2 137.2 15. 149.2 149. 151.2 163.3 166.2 163.1 191.1 189.3 188.3 179.3 173.3 187.3 192.3 25.1 28.3 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 m/z

Abundance 45 Electron Impact Spectra of Methyl-ionone Isomers Scan 2424 (15.856 min): chuck 2.D\data.ms 191 O 4 35 3 25 2 77 91 15 15 1 69 149 119 5 133 Abundance 159 177 26 98 112 127 141 218 7 8 9 1 Scan 11236 12(15.137 13 14min): 15chuck 16 17 2.D\data.ms 18 19 2 21 22 m/z--> 35 91 77 121 3 25 CH 3 O CH 3 H 3 C 2 15 CH 3 15 135 CH 3 1 15 26 69 5 191 177 84 98 113 128 143 159 227 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 m/z-->

Abundance Comparison of Electron Impact to APPI Spectra of Benzopyran-2-one 9 8 EI Scan 2182 (14.381 min): chuck 2.D\data.ms 118 7 6 5 4 3 2 89 146 1 85 92 13 96 99 1619 115 123 12713133 138141 152 157 85 9 95 1 15 11 115 12 125 13 135 14 145 15 155 m/z--> 1 APPI 146.1 147.1 TOF MS ES+ 256 % 118.1 145.9 118. 119.1 148.2 9 1 11 12 13 14 15 m/z

GC/APMS Restek 827 EPA Mixture APGCMS Restek 833 827 APCI apci833cv33 827 1 % APCI APGCMS Restek 833 APCI apci833cv33 49 (5.577) 1 % Nitrobenzene 94.1 78.1 77.1 93.9 15.1 14.9 17.1 124.1 123.9 125.1 TOF MS ES+ 1.29e3 7 8 9 1 11 12 13 14 m/z APGCMS Restek 833 APCI apci833cv33 1 % photo833_cv32 1 % TOF MS ES+ BPI 1.42e3 5.2 5.4 5.6 5.8 6. 6.2 6.4 6.6 6.8 7. 7.2 7.4 7.6 7.8 8. 8.2 Time TOF MS ES+ BPI 1.47e3 TOF MS ES+ BPI 537 photo833_cv32 827 1 APPI 9.8 ev 827 Photoionization MS Restek833 3m DB1 photo833_cv32 57 (6.38) TOF MS ES+ 1 162.1 352 Dichlorophenol 164.1 TOF MS ES+ BPI 1.1e3 % % 161.9 149.1 166.1 m/z 12 13 14 15 16 17 2. 4. 6. 8. 1. 12. 14. 16. 18. Time

Reproducibility Study Restek 827 Megamix by GC/1.6 ev APPI-MS photo8271megamix3 1 Peak width 1.5 sec.5 sec acquisition TOF MS ES+ BPI 1.76e3 % photo8271megamix2 1 TOF MS ES+ BPI 1.73e3 %. 2. 4. 6. 8. 1. 12. 14. 16. Time

Conclusion o AP-GC/MS extends the capabilities of LC/MS instrumentation. o APPI GC/MS is almost a universal ionization method for volatile compounds. o High sensitivity. o Library search possible with APPI? o Positive/negative ionization, accurate mass, MS/MS, quantitation. o This work has shown that LC/MS instrumentation can be made more powerful and more universal by incorporating the ability to also perform AP GC/MS.

Additional Information ASAP: McEwen, McKay, Larsen Anal. Chem., 25, 77, 7826-7831. 7831. AP GC/MS: McEwen, McKay J. Am. Soc. Mass Spectrom., 25, 16, 173-1738. 1738. EMAIL: ASAPMS-info@comcast.net

Acknowledgements Richard G. McKay Barbara S. Larsen Patricia M. Peacock DuPont Corporate Center for Analytical Sciences Waters Corporation (Michael Balogh)