/T interactions and chiral symmetry

Σχετικά έγγραφα
Three coupled amplitudes for the πη, K K and πη channels without data

Hadronic Tau Decays at BaBar

Andreas Peters Regensburg Universtity

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 34 Bootstrap confidence intervals

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Non-Gaussianity from Lifshitz Scalar

Finite Field Problems: Solutions

CP Violation in Kaon Decays

ST5224: Advanced Statistical Theory II

Calculating the propagation delay of coaxial cable

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Higher Derivative Gravity Theories

Space-Time Symmetries

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Capacitors - Capacitance, Charge and Potential Difference

Congruence Classes of Invertible Matrices of Order 3 over F 2

Right Rear Door. Let's now finish the door hinge saga with the right rear door

A Hierarchy of Theta Bodies for Polynomial Systems

The challenges of non-stable predicates

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Μηχανική Μάθηση Hypothesis Testing

Example Sheet 3 Solutions

( ) 2 and compare to M.

derivation of the Laplacian from rectangular to spherical coordinates

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

EE512: Error Control Coding

UV fixed-point structure of the 3d Thirring model

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

2 Composition. Invertible Mappings

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

6.003: Signals and Systems. Modulation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Strain gauge and rosettes

Section 9.2 Polar Equations and Graphs

Constitutive Relations in Chiral Media

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Large β 0 corrections to the energy levels and wave function at N 3 LO

Finite difference method for 2-D heat equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fermion anticommutation relations

Math 6 SL Probability Distributions Practice Test Mark Scheme

Matrices and Determinants

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Statistical Inference I Locally most powerful tests

[1] P Q. Fig. 3.1

Solar Neutrinos: Fluxes

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Numerical Analysis FMN011

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Instruction Execution Times

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

TMA4115 Matematikk 3

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Reminders: linear functions

CMOS Technology for Computer Architects

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

The Θ + Photoproduction in a Regge Model

Concrete Mathematics Exercises from 30 September 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Tridiagonal matrices. Gérard MEURANT. October, 2008

Repeated measures Επαναληπτικές μετρήσεις

ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΕΝΕΡΓΕΙΑΚΑ ΑΥΤΟΝΟΜΟΥ ΝΗΣΙΟΥ ΜΕ Α.Π.Ε

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Block Ciphers Modes. Ramki Thurimella

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CRASH COURSE IN PRECALCULUS

Solutions to Exercise Sheet 5

Durbin-Levinson recursive method

the total number of electrons passing through the lamp.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

6.4 Superposition of Linear Plane Progressive Waves

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

From the finite to the transfinite: Λµ-terms and streams

Precision Metal Film Fixed Resistor Axial Leaded

Modbus basic setup notes for IO-Link AL1xxx Master Block

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Transcript:

/T interactions and chiral symmetry Emanuele Mereghetti Los Alamos National Lab January 3th, 015 ACFI Workshop, Amherst

Introduction M T BSM probing CP with EDM entails physics at very different scales M /T v ew M m π... understanding nature of CP requires v EW several, orthogonal probes robust theoretical tools M nonptb Nucleon d n, d p Light nuclei d d, d t, d h atoms d 199 Hg, d05 Tl,... molecules d ThO,... m

Introduction M T BSM probing CP with EDM entails physics at very different scales M /T v ew M m π... understanding nature of CP requires v EW several, orthogonal probes robust theoretical tools M nonptb Nucleon d n, d p Light nuclei d d, d t, d h treated in same theory framework Chiral EFT m

Introduction M T BSM v EW M nonptb m 10 % nuclear uncertainty... when expressed in hadronic couplings summary of recent calculations of light nuclei EDM, from U. van Kolck, EM, in preparation

Introduction M T BSM probing CP with EDM entails physics at very different scales M /T v ew M m π... understanding nature of CP requires v EW M several, orthogonal probes Nucleon Light nuclei d n, d p d d, d 3 H, d3 He robust theoretical tools treated in same theory framework Chiral EFT nonptb m missing link: LECs from What do we learn from symmetry?

/T at the quark-gluon level θ term L 4 = θ g s 3π εµναβ TrG µνg αβ q L Me iρ q R q R Me iρ q L, dimension six L 6 = 1 q iσµν γ 5 d 0 + d 3 τ 3 q F µν 1 q iσµν γ 5 d0 + d 3 τ 3 G µνq + d W 6 f abc ε µναβ G a αβ Gb µρ Gc ν ρ + 1 4 ImΣ 18 qq qiγ 5 q qτ q qτ iγ 5 q + 1 qγ 4 Im Ξ 18ε 3ij µ τ i q qiγ µγ 5 τ j q qγ µ τ i q qiγ µγ 5 τ j q quark electric qedm and chromo-electric dipole moment qcedm see Jordy s talk d 0,3 = mδ 0,3 M/T, d0,3 = m δ 0,3 M/T chiral breaking, assume m u + m d δ 0,3, δ 0,3 are O1

/T at the quark-gluon level dimension four: θ term L 4 = θ g s 3π εµναβ TrG µνg αβ q L Me iρ q R q R Me iρ q L, dimension six L 6 = 1 q iσµν γ 5 d 0 + d 3 τ 3 q F µν 1 q iσµν γ 5 d0 + d 3 τ 3 G µνq + d W 6 f abc ε µναβ G a αβ Gb µρ Gc ν ρ + 1 4 ImΣ 18 qq qiγ 5 q qτ q qτ iγ 5 q + 1 qγ 4 Im Ξ 18ε 3ij µ τ i q qiγ µγ 5 τ j q qγ µ τ i q qiγ µγ 5 τ j q gluon chromo-electric dipole moment gcedm & χi four-quark d W, Σ 1,8 = {w, σ 1, σ 8 } 1 M /T chiral invariant see Jordy s talk

/T at the quark-gluon level dimension four: θ term L 4 = θ g s 3π εµναβ TrG µνg αβ q L Me iρ q R q R Me iρ q L, dimension six L 6 = 1 q iσµν γ 5 d 0 + d 3 τ 3 q F µν 1 q iσµν γ 5 d0 + d 3 τ 3 G µνq + d W 6 f abc ε µναβ G a αβ Gb µρ Gc ν ρ + 1 4 ImΣ 18 qq qiγ 5 q qτ q qτ iγ 5 q + 1 qγ 4 Im Ξ 18ε 3ij µ τ i q qiγ µγ 5 τ j q qγ µ τ i q qiγ µγ 5 τ j q left-right four-quark FQLR operators Ξ 1,8 = ξ 1 M /T isospin breaking, not v ew see Jordy s talk

/T at the hadronic level include dim-four and dim-six /T in χpt Lagrangian L /T = N d0 + d 1 τ 3 S µ v ν NF µν ḡ0 F π Nπ τ N ḡ1 F π π 3 NN F π π 3 π + C 1 NN µ NS µ N + C Nτ N µ NS µ τ N at LO, EDMs expressed in terms of a few couplings d0, d 1 neutron & proton EDM, one-body contribs. to A nuclei ḡ 0, ḡ 1, pion loop to nucleon & proton EDMs leading /T OPE potential C 1, C short-range /T potential relative size depends on /T source = different signals for one, two, three-nucleon EDMs Can we go beyond NDA?

Theta Term L 4 = θ g s 3π εµναβ TrG µνg αβ q L Me iρ q R q R Me iρ q L, rotate θ away physics depends on θ = θ n F ρ perform vacuum alignment i.e. kill /T iso-breaking terms qiγ 5 τ 3 q L 4 = mr θ qq + r 1 θ mε qτ 3 q + m sin θ qiγ 5 q CP-even quark mass and mass difference CP-odd isoscalar mass term m = m u + m d, mε = m d m u

Theta Term L 4 = θ g s 3π εµναβ TrG µνg αβ q L Me iρ q R q R Me iρ q L, rotate θ away physics depends on θ = θ n F ρ perform vacuum alignment i.e. kill /T iso-breaking terms qiγ 5 τ 3 q L 4 = mr θ qq + r 1 θ mε qτ 3 q + m sin θ qiγ 5 q CP-even quark mass and mass difference CP-odd isoscalar mass term m = mum d = m 1 ε m u + m d r θ = 1 1 ε θ +...

The Theta Term. Chiral Lagrangian and NDA ḡ 0 ḡ 1 /Fπ d0,1 Q C 1, Fπ Q θ m π 1 ε m π M M ε Q Q Q M M M NDA Chiral properties of θ determine size of LECs breaks chiral symmetry but not isospin isoscalar ḡ 0 at LO isobreaking requires insertion of mε ḡ 1 and suppressed higher dimensionality of Nγ and NN operators costs Q/M

Theta Term. Symmetry L 4 = mr θ qq + r 1 θ mε qτ 3 q + m sin θ qiγ 5 q θ term and mass splitting are chiral partners qiγ5 q SUA qτ q qα τ q α qiγ 5 q nucleon matrix elements are related i.e. one spurion enough to construct iso- and T-breaking couplings T violation isospin breaking = 1 ε sin θ ρ θ ε powerful at LO breaks down at OQ /M ignorance of CP-even LECs too many operators when including EM

Theta Term. ḡ 0 L 1 = m N 1 π NN Fπ + 1 [ δm N N τ 3 π 3π τ Fπ N ρ θ N π τ ] N F π m N nucleon sigma term δm N = m n m p st, strong mass splitting 1 ε ḡ 0 = δm N sin θ ε

Theta Term. ḡ 0 L 1 = m N 1 π NN Fπ + 1 [ δm N N τ 3 π 3π τ Fπ N ρ θ N π τ ] N F π m N nucleon sigma term δm N = m n m p st, strong mass splitting 1 ε ḡ 0 = δm N sin θ ε δm N not directly accessible experimentally, δ emm N δm N accessible via existing lattice calculations δm N =.39 ± 0.1 MeV A. Walker-Loud, 14; Borsanyi et al, 14. ε = 0.37 ± 0.03 MeV Aoki 13, FLAG Working group. precise 10% determination of ḡ 0 ḡ 0 F π = 15 ± 10 3 sin θ errors from lattice only

Theta Term. ḡ 0 [ ḡ 0 = ḡ0 1 + m π F π F π πf π 3g A + 1 log µ m π m n m p st = δm N [ 1 + m π πf π + g A + 1 3g A + 1 log µ m + g A + 1 π ] + δ3 m N ] + δ 3 m N ρ θ + δḡ 0 F π F π same loop corrections to ḡ 0 and δm N finite LEC δḡ 0 only correct πn coupling T violation isospin breaking = 1 ε sin θ ρ θ... but... ε corrections appear at NNLO and are not log enhanced

Theta term. ḡ 0 what about strangeness? in SU3 χpt ḡ 0 δm N = ρ θ F π F π and ḡ 0 = m Ξ m Σ m1 ε = 10 3 sin θ F π m s m F π J. de Vries, EM, A. Walker-Loud, in progress large Om K /M corrections to m n m p m K + m K 0, η-π mixing and ḡ 0 πkk, ππη CP-odd vertex

Theta term. ḡ 0 what about strangeness? in SU3 χpt ḡ 0 δm N = ρ θ F π F π and ḡ 0 = m Ξ m Σ m1 ε = 10 3 sin θ F π m s m F π a b c d a b c d e f e f g h i l m n large... too large... Om K /M corrections to m n m p m K + m K 0, η-π mixing and ḡ 0 πkk, ππη CP-odd vertex under control NNLO corrections

Theta term. ḡ 0 what about strangeness? in SU3 χpt ḡ 0 δm N = ρ θ F π F π and ḡ 0 = m Ξ m Σ m1 ε = 10 3 sin θ F π m s m F π a b c d a b c d e f e f g h i l m n same divergent loop corrections to m n m p and ḡ 0 different loop corrections to m Ξ m Σ and ḡ 0, starting at NLO ḡ 0 m Ξ m Σ at NLO ḡ 0 δm N violated by NNLO finite LECs, but δḡ 0 m, not m s m

Theta Term. ḡ 1 and 1 L = δ stm π π 3 π 3 π ρ θ F π δ stm π strong contrib. to m π + m π 0 δ stm π = 87 ± 55 MeV L 3 = m N δm st m π fit to meson data G. Amoros, J. Bijnens, P. Talavera, 01. π 3 ρ θ NN c 3 ππn F π tadpole induced, related to nucleon sigma term c 3 ππn tiny contrib. to π-n scattering beyond accuracy of current analysis [ 1 ] π3 π 3 Fπ + ρ θ NN F π

Theta Term. ḡ 1 and 1 L = δ stm π π 3 π 3 π ρ θ F π δ stm π strong contrib. to m π + m π 0 δ stm π = 87 ± 55 MeV L 3 = 3 ± 10 3 sin θ π 3 NN c 3 ππn tadpole induced, related to nucleon sigma term c 3 ππn tiny contrib. to π-n scattering beyond accuracy of current analysis fit to meson data G. Amoros, J. Bijnens, P. Talavera, 01. [ 1 ] π3 π 3 Fπ + ρ θ NN F π ḡ 1 poorly determined but somewhat larger than expected, & extremely important for deuteron

Theta Term. d 0 and d 1 symmetry relation breaks down [ L 3 Nγ = c 1γ + c γ π 3 F π too much isospin violation from EM & quark masses ] NS µ v ν N ef µν + c 1γ ρ θ [ N c 3γ + c 4γ π τ ] + c 4γ F ρ θτ 3 S µ v ν N ef µν π no info on d 0,1 from CP-even pion photoproduction needs genuine CP-odd non-ptb information: fit to data or fit to lattice

Theta Term. d 0 and d 1 a b c d At NLO F 1 Q = d 1 + eg Aḡ 0 πf π F 0 Q = d 0 + eg Aḡ 0 πf π [L + log µ m + 5π π 4 [ ] 3π m π 4 m N ] m π g A ḡ 0 Q + e m N πf π 6m π 1 5π 4m N + h Q m π EDFF at various m π and Q allows to simultaneously fit ḡ 0, d 1,0 when more precision extract d 0,1 check ḡ 0 from symmetry = Tom & Taku s talk

Theta Term. Summary θ ḡ 0 ḡ 1 /Fπ d0,1 Q C 1, F πq m π 1 ε m π M M ε Q M NDA θ 10 3 F π 15 3 3 symm. M Q Q M symmetry consideration very powerful at low order ḡ 0 well known and ḡ1 known with large errors no evident way to improve on ḡ 1 need experiment/lattice to determine d 0,1 four-nucleon C 1, are harder,... but power counting relegates them to subleading role Improving of lattice will allow to determine d 0,1 & check ḡ 0 in the near future

Quark CEDM L 6 = 1 qσµν g sg µν c 0 + iγ 5 τ 3 d3 q 1 qσµν g sg µν c 3 τ 3 + iγ 5 d0 q +r qiγ 5 d3 τ 3 ε q qcedm has CP-even chiral partner 1 qσ µν g sg µνq qσ µν iγ 5 τ g sg µνq isovector qcedm & isoscalar qcmdm 1 qσ µν iγ 5 g sg µνq qσ µν τ g sg µνq isoscalar qcedm & isovector qcmdm

Quark CEDM L 6 = 1 qσµν g sg µν c 0 + iγ 5 τ 3 d3 q 1 qσµν g sg µν c 3 τ 3 + iγ 5 d0 q +r qiγ 5 d3 τ 3 ε q qcedm has CP-even chiral partner 1 qσ µν g sg µνq qσ µν iγ 5 τ g sg µνq isovector qcedm & isoscalar qcmdm 1 qσ µν iγ 5 g sg µνq qσ µν τ g sg µνq isoscalar qcedm & isovector qcmdm d 3 causes vacuum misalignment re-alignment causes the appearance of a mass term r = 1 qσ µν g sg µνq = m π m qq m π c 0 need to know matrix elements of qσ µν iγ 5 G µνq and qiγ 5 q!

Quark CEDM L 6 = 1 qσµν g sg µν c 0 + iγ 5 τ 3 d3 q 1 qσµν g sg µν c 3 τ 3 + iγ 5 d0 q +r qiγ 5 d0 + d 3 τ 3 q qcedm has CP-even chiral partner 1 qσ µν g sg µνq qσ µν iγ 5 τ g sg µνq isovector qcedm & isoscalar qcmdm 1 qσ µν iγ 5 g sg µνq qσ µν τ g sg µνq isoscalar qcedm & isovector qcmdm if PQ solves strong CP problem θ d 0, d 3 isoscalar and isovector resume their original meaning r = 1 qσ µν g sg µνq = m π m qq m π c 0

Quark CEDM. Chiral Lagrangian and NDA ḡ 0 ḡ 1 /Fπ d0,1 Q C 1, Fπ Q θ m π 1 ε m π M M ε Q Q Q M M M M δ 0 M /T m π 1 ε m π M M ε Q Q Q M M M M δ 3 M /T m π Q Q ε 1 Q M M M M M δ 3 M /T m π ε m π Q Q M M 1 Q M M M assume d u m u, d d m d ; d m 0,3 = O δ 0,3 M /T Chiral Lagrangian very similar to θ but now iso-breaking! NDA NDA no PQ PQ if δ 0 δ 3, ḡ 0 ḡ 1, important for deuteron, N = Z nuclei

Quark CEDM. ḡ 0, and ḡ 1 no PQ mechanism ḡ 0 = δm d0 m N δm π d3 N c 3 m, π c 0 m ḡ 1 = m N m π d3 N m, π c 0 δm N correction to m n m p from c 3 m π, m N corrections to m π and sigma term from c 0

Quark CEDM. ḡ 0, and ḡ 1 PQ mechanism ḡ 0 = ḡ 1 = δm N correction to m n m p from c 3 m δm N + δm π N m π m N m N m π m π m π, m N corrections to m π and sigma term from c 0 ḡ 0 only depends on d 0 Do these hold beyond LO? c 3 d0, c 0 ε c 3 d3, c 0 ḡ 0 : yes for SU & SU3 loops violated by finite LECs ḡ 1 : yes for SU loops. SU3? violated by finite LECs ḡ 0,1 known if δm N, m π and m N

no symmetry relation; need lattice or experiment Quark CEDM. d 0 and d 1 a b c d F 1 Q = d 1 + eg Aḡ 0 [L πfπ + log µ m + 5π π 4 g A ḡ 0 Q +e πf π 1 5π + h 4m N F 0 Q = d 0 + eg Aḡ 0 πf π 6m π [ 3π 4 m π m N 1 + ḡ1 3ḡ 0 ] m π 1 + ḡ1 m N 5ḡ 0 Q m π ] ḡ 1 appears at NLO, only for d p EDFF at various m π and Q allows to simultaneously fit ḡ 0, d 1,0, & ḡ 1?

Four quark Left-Right Operators L 6 = ReΞ 1 qγ µ q qγ µq qγ µ γ 5 q qγ µγ 5 q τ τ τ 3 τ 3 +ImΞ 1 qγ µ q qγ µγ 5 q τ τ 3 more complicated transformation properties, 34 component of a symmetric tensor X = 1 4 τ i γ µ τ j γ µ τ i γ µ γ 5 τ j γ µγ 5 ɛ jkl τ k γ µ τ l γ µγ 5 ɛ ikl τ k γ µ τ l γ µγ 5 τ γ µ τ γ µ τ γ µ γ 5 τ γ µγ 5,

Four quark Left-Right Operators L 6 = ReΞ 1 X 44 X 33 ImΞ 1 X 34 +r LR qiγ 5 ImΞ 1 τ 3 εq more complicated transformation properties, 34 component of a symmetric tensor X = 1 4 τ i γ µ τ j γ µ τ i γ µ γ 5 τ j γ µγ 5 ɛ jkl τ k γ µ τ l γ µγ 5 ɛ ikl τ k γ µ τ l γ µγ 5 τ γ µ τ γ µ τ γ µ γ 5 τ γ µγ 5, ImΞ 1 causes vacuum misalignment re-alignment causes the appearance of a mass term r LR = LRm π m π m ReΞ 1

Four quark Left-Right Operators L 6 = ReΞ 1 X 44 X 33 ImΞ 1 X 34 +r LR qiγ 5 ImΞ 1 τ 3 q more complicated transformation properties, 34 component of a symmetric tensor X = 1 4 τ i γ µ τ j γ µ τ i γ µ γ 5 τ j γ µγ 5 ɛ jkl τ k γ µ τ l γ µγ 5 ɛ ikl τ k γ µ τ l γ µγ 5 τ γ µ τ γ µ τ γ µ γ 5 τ γ µγ 5, ImΞ 1 causes vacuum misalignment re-alignment causes the appearance of a mass term if PQ, no isoscalar component r LR = LRm π m π m ReΞ 1

Four-quark LR Operators. Chiral Lagrangian and NDA ḡ 0 ḡ 1 /Fπ d0,1 Q C 1, Fπ Q θ m π 1 ε m π M M ε Q Q Q M M M ξ M M M /T M ε 1 Q Q Q M M ξ M M /T M ε m π M M 1 Q Q Q M M NDA no PQ PQ isobreaking couplings are more important large three-pion coupling if PQ, no ḡ 0 at LO vector qiγ 5τ 3q vs tensor X 34 incomplete cancellation of π matrix elements, important mainly for nuclei e.g three-body force, large correction to ḡ 1

Four-quark LR operators. ḡ 0, ḡ 1 and no PQ mechanism LR m π ḡ 0 = δm N m π ḡ 1 = ImΞ 1 ReΞ 1, LR m N m N LR m π m π = LR m ImΞ 1 π ReΞ 1 ImΞ 1 ReΞ 1 LR m π, LR m N corrections to m π and sigma term from Re Ξ 1 if PQ, no ḡ 0 at LO

Four-quark LR operators. ḡ 0, ḡ 1 and PQ mechanism ḡ 0 = 0, = LR m ImΞ 1 π ReΞ 1 LR m ḡ 1 = π LR m N m N m π ImΞ 1 ReΞ 1 LR m π, LR m N corrections to m π and sigma term from Re Ξ 1 if PQ, no ḡ 0 at LO

Four-quark LR operators. ḡ 0, ḡ 1 and PQ mechanism ḡ 0 = 0, = LR m ImΞ 1 π ReΞ 1 LR m ḡ 1 = π LR m N m N m π ImΞ 1 ReΞ 1 LR m π, LR m N corrections to m π and sigma term from Re Ξ 1 if PQ, no ḡ 0 at LO ḡ 0,1 and known if LR m N, LR m π need to evaluate CP even four-quark already done? affected by loop corrections?

Chiral Invariant /T sources θ m π 1 ε m π M M w M m M /T M π M ε m π M ḡ 0 ḡ 1 /Fπ d0,1 Q C 1, F πq ε Q Q M M ε Q3 π Q M 3 M Q M Q M NDA NDA L = dw 6 gsf abc ε µναβ G a αβ Gb µρ Gc ν ρ + g s 4 ImΣ 1,8 [ qq qiγ 5 q qτ q qiγ 5 τ q] 1 1, t a t a no CP-even partner π-n couplings suppressed by m π nucleon EDFF dominated by d 0,1, momentum independent F 1 Q = d 1 + O Q M, F 0 Q = d 0 + O Q M. ḡ 0,1, C 1, should be important for light nuclei but found small de Vries, et al, 11; Bsaisou, et al, 14

Conclusions Connection EDM to BSM physics several, orthogonal EDMs e.g. d n, d p, d d... robust theory at different physics scales first principle determination of d n, d p & /T pion-nucleon couplings chiral symmetry provides powerful constraints θ ḡ 0 from θ determined by m n m p st qcedm ḡ 0 and ḡ 1 determined by corrections to meson and baryon spectrum induced by CP-even qcmdm FQLR ḡ 0, ḡ 1 & determined by CP-even FQLR operators no info from symmetry on d n, d p, genuine non-ptb CP-odd info needed no info on four-nucleon couplings C 1,, little info on subleading couplings ḡ 1 θ Lattice is or is getting there!