[Note] Geodesic equation for scalar, vector and tensor perturbations

Σχετικά έγγραφα
Geodesic Equations for the Wormhole Metric

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Higher Derivative Gravity Theories

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order Partial Differential Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Space-Time Symmetries

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Cosmological Space-Times

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Srednicki Chapter 55

derivation of the Laplacian from rectangular to spherical coordinates

EE512: Error Control Coding

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Orbital angular momentum and the spherical harmonics

Statistical Inference I Locally most powerful tests

Geometry of the 2-sphere

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

Parallel transport and geodesics

6.3 Forecasting ARMA processes

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Homework 8 Model Solution Section

Solutions Ph 236a Week 5

Numerical Analysis FMN011

Second Order RLC Filters

Spherical Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

1 String with massive end-points

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Solutions to Exercise Sheet 5

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

(As on April 16, 2002 no changes since Dec 24.)

Sixth lecture September 21, 2006

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

D Alembert s Solution to the Wave Equation

Finite difference method for 2-D heat equation

Tutorial problem set 6,

w o = R 1 p. (1) R = p =. = 1

Section 8.3 Trigonometric Equations

Homework 3 Solutions

Section 8.2 Graphs of Polar Equations

Approximation of distance between locations on earth given by latitude and longitude

4.6 Autoregressive Moving Average Model ARMA(1,1)

Uniform Convergence of Fourier Series Michael Taylor

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Matrices and Determinants

Empirical best prediction under area-level Poisson mixed models

Congruence Classes of Invertible Matrices of Order 3 over F 2

Symmetric Stress-Energy Tensor

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CORDIC Background (2A)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CORDIC Background (4A)

5. Choice under Uncertainty

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Math221: HW# 1 solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Physics 554: HW#1 Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Concrete Mathematics Exercises from 30 September 2016

Reminders: linear functions

If we restrict the domain of y = sin x to [ π 2, π 2

Variational Wavefunction for the Helium Atom

Dual null formulation (and its Quasi-Spherical version)

Parametrized Surfaces

C.S. 430 Assignment 6, Sample Solutions

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ST5224: Advanced Statistical Theory II

Lecture 26: Circular domains

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Inverse trigonometric functions & General Solution of Trigonometric Equations

Trigonometry 1.TRIGONOMETRIC RATIOS

Derivation of Optical-Bloch Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Forced Pendulum Numerical approach

Tridiagonal matrices. Gérard MEURANT. October, 2008

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2 Composition. Invertible Mappings

The Simply Typed Lambda Calculus

Transcript:

[Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element up to first order is given by ds 2 = a 2 (η)[ (1 + 2A)dη 2B i dηdx i + (γ ij + 2C ij )dx i dx j ]. (1) Since the path of null geodesic is not affected by conformal transformation, we set the scale factor a = 1. The first order perturbation of the affine connection, δγ µ νρ, is given by δγ µ νρ = 1 2ḡµν [ 2h ρσ Γσ νλ + h ρν,λ + h ρλ,ν h νλ,ρ ]. (2) Then, the affine connection Γ µ νρ(= Γ µ νρ + δγ µ νρ) up to first order becomes Γ = A, Γ i = Γ i = A,i, Γ ij = 1 2 (B i j + B j i ) + (C ij ), Γ i = γ ij A,j (γ ij B j ), Γ χ ij = (δ iθ δ jθ + δ iφ δ jφ sin 2 θ)χ, Γ i j = 1 2 (B i j Bi j) + (C i j), Γ θ ij = 1 χ (δ iθδ jχ + δ iχ δ jθ δ iφ δ jφ χ sin θ cos θ), Γ φ ij = 1 χ sin θ [(δ iφδ jχ + δ iχ δ jφ ) sin θ + (δ iφ δ jθ + δ iθ δ jφ )χ cos θ], δγ i jk = 1 2ḡii [ 2C il Γl jk + C ij,k + C ik,j C jk,i ], (3) where the prime denotes the derivative with respect to η. Note that components of the affine connection except for Γ i jk are first order quantity. 1

1.2 Geodesic Equation 1.2 Geodesic Equation The null geodesics parametrized by the affine parameter ˆλ are solutions of the geodesic equation, d 2 x µ (ˆλ) + Γ µ νρ(x(ˆλ)) dxν (ˆλ) dx ρ (ˆλ) =, (4) dˆλ 2 dˆλ dˆλ with ĝ µν (dx µ /dˆλ)(dx ν /dˆλ) = and dŝ 2 =. The -component of the geodesic equation (4) gives ( ) = d2 η dˆλ + dx ν dx ρ 2 2 Γ νρ dˆλ dˆλ = d2 η dη dˆλ + 2 Γ + 2Γ dη dx i i dˆλ dˆλ dˆλ + dx i dx j Γ ij dˆλ dˆλ ( ) 2 [ ] = d2 η dη dˆλ + Γ 2 + 2Γ dx i i dˆλ dη + dx i dx j Γ ij dη dη The i-component of the geodesic equation gives (5) ( ) = d2 x i dˆλ + dx ν dx ρ 2 Γi νρ dˆλ dˆλ = d2 x i 2 dη dˆλ + 2 Γi + 2Γ i dη dx j j dˆλ dˆλ dˆλ + dx j dx k Γi jk [ dˆλ dˆλ ( ) ] 2 [ ] ( ) dη d 2 x i = dˆλ dη + dxi d 2 η + Γ i 2 dη dˆλ 2 + 2Γ i dx j j dη + dx j dx k 2 dη Γi jk dη dη dˆλ [ ] ( ) = dxi d 2 η d 2 dη dˆλ + x i 2 dη + 2 Γi + 2Γ i dx j j dη + dx j dx k 2 dη Γi jk. (6) dη dη dˆλ Using Eq.(5), we obtain = F ẋ i + ẍ i + Γ i + 2Γ i jẋ j + Γ i jkẋ j ẋ k, (7) where the overdot represents the derivative with respect to η and we define 1.3 Solution of Geodesic Equations F Γ + 2Γ iẋ i + Γ ijẋ i ẋ j. (8) In the absence of the metric perturbation, the photons emitted at the last scattering surface would go straight. This means that, if we observe the photons in a direction (θ, ϕ), the unperturbed photons path is given by x i = (η η, θ, ϕ), where the quantity η is the conformal time at the observer. To solve Eq. (7), we introduce the perturbed components of the null geodesic, ξ i, such that x i = x i + ξ i. Then, at first order, Eq. (7) becomes = F δ i χ + ξ i + Γ i 2Γ i χ 2 Γ i χk ξ k + 2δΓ i χχ = ξ i 2 Γ i χk ξ k + F n i + Γ i 2Γ i χ + 2δΓ i χχ = ξ i 2 Γ i χk ξ k + G i, (9) where we define G i F δ i χ + Γ i 2Γ i χ + 2δΓ i χχ. (1) 2

1.3 Solution of Geodesic Equations Using Eq. (3), we obtain = ξ χ + G χ, (11) = ξ a 2 χ ξ a + G a. (12) where a = 2 and 3. Under the condition ξ i (η ) = x i, the solutions of Eq. (12) are η η1 ξ χ (η) = dη 1 G χ dη 2, (13) η η η [ η1 ] [ ξ a (η) = x a 2dη η1 ( η2 )] 2 + dη 1 exp C a G a 2dη 3 dη 2 exp, (14) η η χ η χ with the quantities C θ and C φ being constant. If we use the Born approximation, the expression for ξ a becomes η [ ξ a (η) x a ɛ 2 dη η1 ( )] 1 G = lim C a a (η 2, χ(η 2 )ˆn)dη 2 (η η 2 ) 2 (15) ɛ η ɛ (η η 1 ) 2 η ɛ ɛ 2 η η1 (η η 2 ) 2 = dη 1 dη 2 η η (η η 1 ) 2 Ga (η 2, χ(η 2 )ˆn) (16) = = = η η dη 2 η η η η 2 dη 1 (η η 2 ) 2 (η η 1 ) 2 Ga (η 2, χ(η 2 )ˆn) (17) (η η 2 )(η η 2 ) dη 2 G a (η 2, χ(η 2 )ˆn) η η η (18) χ (χ χ ) G a (η χ, χ ˆn). χ (19) χ Using the expression for the affine connection, we can rewrite Eq. (1) as G a = Γ a 2Γ a χ + 2δΓ a χχ (2) = γ aa A,a (γ aa B a ) γ aa (B χ a B a χ ) 2(γ aa C aχ ) + ḡ aa (2C aχ,χ C χχ,a ) (21) = γ aa {A,a (B a + 2C aχ ) B χ,a + B a,χ + 2C aχ,χ C χχ,a } (22) { } = γ aa a (A B χ C χχ ) (B a + 2C aχ ) + B a,χ + 2C aχ,χ (23) { = γ aa a (A B χ C χχ ) d } (B a + 2C aχ ), (24) where we use Hereafter, we use d = η + dxi dη x. (25) i Ψ = A B χ C χχ, (26) Ω a = B a 2C aχ. (27) 3

1.4 Deflection Angle 1.4 Deflection Angle Using the basis in the polar coordinate the deflection angle, d, is defined by [1] e r = e x sin θ cos ϕ + e y sin θ sin ϕ + e z cos θ (28) = e x 1 µ2 cos ϕ + e y 1 µ2 sin ϕ + e z µ, (29) e θ = e x cos θ cos ϕ + e y cos θ sin ϕ e z sin θ (3) = e x µ cos ϕ + e y µ sin ϕ e z 1 µ2, (31) e ϕ = e x sin ϕ + e y cos ϕ, (32) d(θ, ϕ) e r (θ + ξ θ, ϕ + ξ ϕ ) e r (θ, ϕ) e θ ξ θ + e ϕ ξ ϕ sin θ + O(ξ 2 ). (33) The convergence and rotation (D and D [2]) are given by 2D d = (χ [ ( s χ) Ψ χ s χ e θ θ dω ) θ + e ( ϕ Ψ sin θ ϕ dω )] ϕ (34) = (χ [ ( s χ) χ s χ dω θ Ψ e θ + e )] (35) sin θ = (χ [ ( s χ) 2 dω θ Ψ e θ χ s χ + e )], (36) sin θ 2D ( ) d = (χ [ ( s χ) χ s χ ( ) dω θ Ψ e θ + e )] (37) sin θ = (χ ( s χ) e ϕ χ s χ θ e ) ( θ dω θ e θ sin θ ϕ + e ) (38) sin θ = (χ ( s χ) 1 dω θ χ s χ sin θ ϕ ) dω ϕ. (39) θ Note that, if we only consider the scalar perturbations in the metric, the rotation vanishes and the expression for convergence is consistent with the results obtained in Ref. [3]. 1.5 Angular Power Spectrum Let us consider the vector mode in the metric perturbation, Ω; Ω(η χ, χ, θ, ϕ) = e ik (χer) {Ω (2π) 3 k,+ e + + Ω k, e }. (4) The perturbation Ω is divergence-less ( Ω = ). Note that the quantities Ω k,+ and Ω k, are the function of χ. If we choose we obtain k = ke z, e ± = e x ± ie y, (41) k e r = kµ, e ± e θ = µe ±iϕ, e ± e ϕ = sin ϕ ± i cos ϕ = ±i e ±iϕ. (42) 4

1.5 Angular Power Spectrum Since Ω i dx i = Ω dx (43) = ( Ω r e r + Ω θ e θ + Ω ϕ e ϕ ) (e r + χe θ dθ + χe ϕ sin θdϕ) (44) = Ω r + Ω θ χdθ + Ω ϕ χ sin θdϕ (45) we obtain Ω θ = χ(ω e θ ) = χµ (2π) 3 e ikχµ {Ω k,+ e iϕ + Ω k, e iϕ }, (46) Ω ϕ = χ 1 µ 2 (Ω e ϕ ) = iχ 1 µ 2 (2π) 3 e ikχµ {Ω k,+ e iϕ Ω k, e iϕ }, (47) Ω θ,ϕ = iχµ (2π) 3 e ikχµ {Ω k,+ e iϕ Ω k, e iϕ }, (48) Ω ϕ,θ = (2π) [iχµ 3 kχ2 (1 µ 2 )]e ikχµ {Ω k,+ e iϕ Ω k, e iϕ } (49) Substituting this into Eq. (39), the rotation becomes D = 1 2 = 1 2 (χ s χ) d χ s χ (2π) 3 e ikχµ kχ 2 1 µ 2 {Ω k,+ e iϕ Ω k, e iϕ } (5) (2π) 3 e ikχµ k 1 µ 2 {Ω k,+ e iϕ Ω k, e iϕ }. (51) The multipole coefficients of the rotation then become D l,m = 1 2 (2π) 3 = 1 2l + 1 (l m)! 2 4π (l + m)! 1 1 dµe ikχµ k(1 µ 2 ) 1/2 P l,m (µ) = 1 2l + 1 (l m)! 2 4π (l + m)! (2π) 3 1 2l + 1 (l 1)! = π 4π (l + 1)! 2π dµ dϕy l,m (ˆn)e ikχµ k(1 µ 2 ) 1/2 {Ω k,+ e iϕ Ω k, e iϕ } (52) (2π) 3 2π dϕe imϕ {Ω k,+ e iϕ Ω k, e iϕ } (53) dµe ikχµ k(1 µ 2 ) 1/2 2π{Ω k,+ P l, (µ)δ m, Ω k, P l,1 (µ)δ m,1 } (54) d 3 k (2π) 3 k {Ω k,+ () m δ m, Ω k, δ m,1 } 1 dµe ikχµ (1 µ 2 ) 1/2 P l,1 (µ). (55) 5

REFERENCES REFERENCES Using the following relation 1 dµe ±ikχµ (1 µ 2 ) 1/2 P l,1 (µ) = (±i) l+1 2l(l + 1) j l(x) x, (56) x=kχ Eq. (55) is rewritten as D l,m = 2l + 1 (l 1)! j l (x) 2π( i)l+1 l(l + 1) 4π (l + 1)! (2π) 3 x k {Ω k,+ () m δ m, Ω k, δ m,1 }. x=kχ (57) Finally, the angular power spectrum of rotation becomes References C 1 l l = D l,m 2l + 1 2 = 1 ( ) D l, 2l + 1 2 + D l,1 2 (58) m= l = 4π2 l 2 (l + 1) 2 2l + 1 (l 1)! d 3 k d 3 k (59) 2l + 1 4π (l + 1)! (2π) 3 (2π) 3 k j l(x) x k j l(x ) ( x=kχ x Ω k,+ Ω k,+ + Ω k, Ω k, ) (6) x =k χ l(l + 1) = dk k 2 j 2π χ χ l (kχ)j l (kχ )P ω (k, χ, χ ). (61) [1] A. Lewis, Lensed CMB simulation and parameter estimation, Phys. Rev. D71 (25) 838, [astro-ph/52469]. [2] C. Li and A. Cooray, Weak lensing of the cosmic microwave background by foreground gravitational waves, Phys. Rev. D74 (26) 23521, [astro-ph/64179]. [3] A. Lewis and A. Challinor, Weak Gravitational Lensing of the CMB, Phys. Rept. 429 (26) 1 65, [astro-ph/61594]. 6