Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano

Σχετικά έγγραφα
Technical Appendix for DSGE Models for Monetary Policy Analysis

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

A Suite of Models for Dynare Description of Models

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

A Simple Version of the Lucas Model

2 Composition. Invertible Mappings

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 12 Modulation and Sampling

Math221: HW# 1 solutions

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication

ω = radians per sec, t = 3 sec

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

PARTIAL NOTES for 6.1 Trigonometric Identities

Numerical Analysis FMN011

is the home less foreign interest rate differential (expressed as it

Concrete Mathematics Exercises from 30 September 2016

Notes on New-Keynesian Models

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Section 8.3 Trigonometric Equations

Matrices and Determinants

Section 7.6 Double and Half Angle Formulas

Example Sheet 3 Solutions

Notes on the Open Economy

Statistical Inference I Locally most powerful tests

Monetary Policy Design in the Basic New Keynesian Model

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu

Srednicki Chapter 55

The Simply Typed Lambda Calculus

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

derivation of the Laplacian from rectangular to spherical coordinates

EE512: Error Control Coding

Lecture 2. Soundness and completeness of propositional logic

Lecture 34 Bootstrap confidence intervals

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Parametrized Surfaces

CRASH COURSE IN PRECALCULUS

Uniform Convergence of Fourier Series Michael Taylor

Second Order Partial Differential Equations

Higher Derivative Gravity Theories

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Trigonometric Formula Sheet

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Συστήματα Διαχείρισης Βάσεων Δεδομένων

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

The challenges of non-stable predicates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Durbin-Levinson recursive method

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECON 381 SC ASSIGNMENT 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

The canonical 2nd order transfer function is expressed as. (ω n

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Math 6 SL Probability Distributions Practice Test Mark Scheme

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Démographie spatiale/spatial Demography

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Every set of first-order formulas is equivalent to an independent set

Second Order RLC Filters

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

C.S. 430 Assignment 6, Sample Solutions

Solution Series 9. i=1 x i and i=1 x i.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem Set 3: Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 9.2 Polar Equations and Graphs

Right Rear Door. Let's now finish the door hinge saga with the right rear door

( y) Partial Differential Equations

Internet Appendix for Uncertainty about Government Policy and Stock Prices

Fractional Colorings and Zykov Products of graphs

Homework 8 Model Solution Section

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

6.3 Forecasting ARMA processes

Solutions to Exercise Sheet 5

Transcript:

Tecnical Noes for Discussion of Eggersson Wa Fiscal Policy Is Effecive a Zero Ineres Raes? Larence J Crisiano Te model a as simulaed for e discussion is presened in e firs secion Te simulaion sraegy is described in e nex secion Houseold Te uiliy funcion of e j ouseold is: Tebudgeconsrainis: U (C j )logc A φ j φ P C B R B W j j Π j ere Π j denoes lump sum profis and lump sum axes Ineremporal Condiion Te discoun rae from o as e folloing represenaion: or β r µ βˆβ dr r ˆβ βdr Te firs order condiion associaed i bonds is: β C ( R ) C π Linearizing around a zero inflaion seady sae: Ĉ C βdr \ ( R ) ˆπ or Ĉ C βdr βdr ˆπ Ĉ Ĉ β (R r )ˆπ

Houseold Wage/Employmen Decision Te ouseold selecs e age rae o opimize: " # E ( ) i υ i W ji ji A φ ji φ ere υ i denoes e muliplier on e ouseold budge consrain in e Lagrangian represenaion of is problem Te ouseold reas is objec as an exogenous consan Eac ouseold a opimizes is age cooses e same age rae W : " E ( ) i φ # υ i W i A i ( φ) υ i ere i denoes e level of employmen in period i of a ouseold a opimizes is age in period : Ã! λ W λ i H i W i and H i denoes aggregae employmen Also W denoes e aggregae age rae Imposing e requiremen a e ouseold is alays on e labor demand curve implies: Ã! ³ λ λ W λ (φ) E ( ) i υ i W λ W W i H φ i H i A W i ( φ) υ i Differeniae i respec o W : µ E ( ) i υ i λ λ E µ ( ) i υ i λ λ µ W λ λ λ λ Hi λ A W i λ W λ λ λ λ (φ) µ W i W λ λ (φ) λ λ Hi λ A λ ³ ³ λ λ (φ) W i H φ i υ i λ λ (φ) W i H φ i υ i E ( ) i υ i W λ λ φ µ W i λ λ Hi λ A ³ λ W i λ (φ) H φ i υ i

E ( ) i υ i W λ λ φ Ã W λ λ W W i! λ λ H i λ A W λ λ (φ) ³ W W i λ υ i λ (φ) H φ i E Ã ( ) i υ i W W W i! ³ λ λ W λ W i H i λ A λ (φ) H φ i υ i or or E E " ( ) i φ # υ i W i λ A i υ i " W ( ) i υ i φ # ip i λ A i P i P i υ i " W E ( ) i φ # υ i ip i λ A i P i P i υ i Given our uiliy funcion e ave υ i U ci P i P i C i Noe a φ MRSi A i AC i φ P i υ i i ere MRSi denoes e marginal rae of subsiuion beeen consumpion and leisure in period i for a person a reopimizes in period and does no reopimize beeen and i Subsiue is ino e firs order condiion: " # E ( ) i i W λ MRSi C i P i No consider e folloing scaling: W W ½ π i π i i W P i Noe a i is definiion i P P i all i 3

Ten e firs order condiion reduces o: E ( ) i i i λ MRSi C i Noe ˆ i ˆπ ˆπ i We are ineresed in e case ere β is ime varying Aloug in e end e ime varying β as no impac on e reduced form age equaion i is useful o esablis is Tus β βˆβ r µ dr r β dr ˆβ βdr We rie ou e firs order condiion like is: β λ MRS C β β ξ λ MRS C β β β ξ λ MRS C β β β β 3 ξ 3 3 3 λ MRS3 C 3 Log-linearly expanding is expression and aking ino accoun a e objec in square brackes is zero in seady sae: β b ŵ (λ MRS) \MRS i C β ³ ³ ξ b ŵ ˆ λ MRS MRS \ i C ³ ³ b ŵ ˆ MRS \ i β 3 ξ C β 4 ξ 3 C λ MRS ³ b ŵ 3 ˆ ³ λ MRS MRS \ 3 i 4

(noeoeimevaryingβ disappeared) noing λ MRS β b C ŵ \MRS i β ξ C b ŵ ˆ \MRS i β 3 ξ C b ŵ ˆ \MRS i β 4 ξ 3 C b ŵ ˆ 3 \MRS i 3 dividing roug by β : C Ten b ŵ \MRS b ŵ ˆ \MRS β ξ b ŵ ˆ \MRS i β 3 ξ 3 b ŵ ˆ 3 \MRS i i 3 b ŵ \MRS b ŵ ˆπ \MRS β ξ b ŵ ˆπ ˆπ \MRS i β 3 ξ 3 b ŵ ˆπ ˆπ ˆπ 3 \MRS i 3 i and b ŵ \MRS ˆπ \MRS i β ξ ˆπ ˆπ \MRS i β 3 ξ 3 ˆπ ˆπ ˆπ 3 \MRS i 3 5

b ŵ ˆπ ( ) ˆπ () MRS \ \MRS ( ) \MRS i Noe \MRS i Ĉ i φĥ i Ĉ i φĥ i φ ³ĥ i Ĥ i Recall i à µ µ µ W W i W W i W! λ λ H i λ λ Hi W W Wi W W i π π i λ λ Hi λ λ Hi for i : so a Ten Subsiuing Ã! λ λ W H ( ) λ λ H i H i ½ ĥ i Ĥi W ³ λ λ π π i i> ( ) λ λ i λ λ (ŵ ˆπ ˆπ i ) i> λ \MRS i Ĉi φĥi φ ³ĥ i Ĥi λ ŵ i Ĉi φĥi φ λ λ (ŵ ˆπ ˆπ i ) 6

for i> Ten \MRS \MRS ( ) \MRS Ĉ φĥ φ λ ŵ λ Ĉ φĥ φ λ (ŵ ˆπ ) λ ( ) Ĉ φĥ φ λ (ŵ ˆπ ˆπ ) λ ( ) 3 Ĉ 3 φĥ3 φ λ (ŵ ˆπ ˆπ ˆπ 3 ) λ \MRS \MRS ( ) \MRS i ( ) i Ĉ i φĥ i φ λ ŵ φ λ λ λ ( ) i ˆπ i i Subsiuing e previous expression ino () e conclude a e firs order condiion for ages looks as follos: b ŵ ( ) i ³ Ĉ i φĥ i ( ) i ˆπ i () i φ λ λ ŵ φ λ λ We no deduce e implicaions of e aggregae resricions across ages: ³ λ W ( ξ ) W λ ξ (W ) λ Divide by W and use e scaling noaion: µ ( ξ )( ) λ ξ π λ Log-linearize is abou seady sae: ( ξ ) () λ ŵ ξ λ λ (π ) λ π ˆπ aking ino accoun π : ŵ ξ ξ ˆπ 7 ( ) i ˆπ i i

Subsiuing is ino (): ξ ξ ˆπ b ³ ( ) i Ĉ i φĥi ( ) i ˆπ i i φ λ λ ξ ξ ˆπ φ λ λ ( ) i ˆπ i i Muliply by κ ( )( ξ ) ξ κ ξ ξ b ˆπ ξ ξ ( ) i ˆπ i i ³ ( ) i Ĉ i φĥi φ λ λ ˆπ ξ ξ φ λ λ ( ) i ˆπ i i Noe S ( ) i ˆπ i (3) i ˆπ ( ) ˆπ ( ) 3 ˆπ 3 ˆπ ˆπ ( ) ˆπ 3 ˆπ S S ( ) i ˆπ i ˆπ S S o i ³ ( ) i Ĉ i φĥi Ĉ φĥ S o So e expression for e age can be rien Lead and muliply by : ξ ξ b ˆπ ξ S ξ κs o φ λ λ ˆπ ξ ξ φ λ λ S ξ ξ b ˆπ ξ ξ S κ S o φ λ λ ˆπ ξ ξ φ λ λ S 8

Subrac e second from e firs and make use of (3) Collecing erms: ξ b ξ Noe ξ ξ b ξ ξ b ˆπ ˆπ ξ ξ ˆπ κ ³Ĉ φĥ φ λ ˆπ φ λ λ λ ˆπ ξ ξ φ λ λ ˆπ ξ ξ b ξ ξ b ˆπ ˆπ ξ ξ ˆπ κ ³Ĉ φĥ φ λ ˆπ φ λ λ ξ λ ˆπ κ ³Ĉ φĥ φ λ λ ˆπ ξ ξ ˆπ b b b ˆπ ˆπ b b ˆπ ˆπ λ φ λ ξ ˆπ so a en ξ b ξ κ ³Ĉ φĥ φ λ λ κb φ λ λ κ ³Ĉ φĥ φ λ ˆπ λ ³ κ b Ĉ φĥ ˆπ ξ ξ b ˆπ ˆπ ξ ξ ˆπ λ φ λ ξ ˆπ λ φ λ ξ ˆπ ξ ξ ˆπ φ λ λ ξ ˆπ 9

or No divide by e erm on ˆπ : φ λ ˆπ λ ³ µ κ b Ĉ φĥ φ λ ξ λ φ λ ˆπ λ ³ κ b Ĉ φĥ ˆπ κ φ λ λ 3 Goods Producion and Price Seing ξ ˆπ µ φ λ βˆπ λ ³ b Ĉ φĥ βˆπ Suppose a a final good Y is produced using a coninuum of inpus as follos: Z λ Y Y f diλf i λ f < (4) Te good is produced by a compeiive represenaive firm ic akes e price of oupu P and e price of inpus P i as given Te firs order necessary condiion associaed i opimizaion is: µ λ f P λ f Y Y i (5) A useful resul is obained by subsiuing ou for Y i in (4) from (5): P i Z P (λ f ) (P i ) λ f di (6) Eac inermediae good is produced by a monopolis using e folloing producion funcion: Y i A i Te equilibrium condiion associaed i price seing is afer log-linearizing abou seady sae: p ξp ˆπ βˆπ ŝ ξ p Marginal cos in is model is s W P

so a ŝ b Te resource consrain is: C p H ere p denoes e Tak Yun disorion ic is uniy o a firs order approximaion 4 Equilibrium Condiions Te sysem as 6 unknons: ˆπ b Ĥ ˆπ R Z and e folloing equaions Te equaions a caracerize e privae economy are: b b ˆπ ˆπ p ξp ˆπ βˆπ b ξ p κ ˆπ b φ λ λ dτ τ Ĥ Ĥ β (dz dr )ˆπ ( φ) Ĥ βˆπ and moneary policy: dz ρ R dr ( ρ R ) i r πˆπ r y Ĥ β ³ dz dz β dr zero bound no binding ³ oerise zero bound binding β Te laer capures e fac a R ic means R R /β We rie is in marix form as follos Supppose e zero bound is no binding so a dr dz (7)

Tisgivesussixequaionsinesixunknons: dr β ˆπ ( p)( ξ p ) ξ p β Ĥ b κ(φ) κ φ λ φ λ λ λ ˆπ β β ( ρ dz R ) r β y ( ρ R ) r β π dr ˆπ µ Ĥ b dr κ φ λ τ λ dτ ρ R ˆπ β dz α z α z α z β s β s ere e definiions of e marices are obvious and Le dr ˆπ µ z Ĥ dr b s dτ ˆπ dz ere Te linearized sysem en e zero bound is binding is as follos: d α z α z α z β s β s d β and α is α i is 6 6 elemen replaced by zero Tis sysem is simply e previous one i (7) replaced by: µ dr β

Simulaing e Model Te general algorim appears in e ird subsecion belo I capures e feaure of our seing a e equaions a caracerize equilibrium cange during e simulaion Before e discuss e algorim in is full generaliy e provide o examples o illusrae feaures of e algorim no relaed o e equaion sicing Simple Example We use a slig perurbaion on a sandard sooing algorim Te perurbaion is designed so a e algorim is required o i a specific argeaaspecific dae as opposed o e usual sooing in ic a arge is reaced asympoically Because e general algorim involves oer complicaions i is useful o poin ou e perurbaion a e use in isolaion from e oer complicaions Suppose a e sysem obeys e folloing scalar difference equaion: α z α z α z d for T Here z is given For T Wriing e equaions ou explicily: z Az α z α z α z d α z T α z T α z T d T Given α 6 and given an arbirary z R e can use ese equaions o compue z z T Bu i as o be e case a z T Az T So e algorim is o adjus z unil e above equaion is saisfied Algorim Based on QZ Decomposiion Te problem e ave o confron in applying e simple algorim in e previous secion is a α is no inverible One ay o adap e algorim applies e QZ decomposiion Tus le Muliply (??) byq : Qα Z H Q α Z H Z z γ Qα ZZ z Q α ZZ z Qα ZZ z Qd Qβ s Qβ s 3

Summarizing for T Wrie H G H H D Q [d α z ] z } { H γ H γ Qα Zγ Q[d β s β s ] H H γ H γ D G H H d γ µ γ γ Z z µ L z L z ere H and H are upper riangular and e diagonal elemens of G are non-zero ile e l diagonal elemens of H are all zero I is necessary o verify numerically a all e elemens of H are zero We assume a e diagonal elemens of H are all non-zero Also d d β s β s Ten e sysem is rien G H γ γ G H γ 3 γ 3 G H γ T γ T G H γ T γ T G H H G H H G H H G H H γ γ γ γ γ T γ T γ T γ T D D D D D T D T D T D T ereeaveimposedh We ave found a numerically is is a propery of our model To simulae is sysem forard noe firs a D is deermined because γ Fix avalueforγ and compue: γ H D For : For T : D Q (d Qα Zγ ) γ H D γ G H γ G γ H γ D D Q (d α Zγ ) γ H D γ G H γ G γ H γ D 4

We no ave γ T γ T D T Recall a in period T so a afer muliplying by Z : z T Az T γ T Ãγ T Ã Z AZ µ γ T γ T Ã Ã γ T We mus sill saisfy e T equilibrium condiions: G H γ T G H γ γ T T H γ T D T D T Noe oever a e boom se of equaions are saisfied because of e ay γ T as cosen and because γ T does no ener ese equaions Te firs se of equaions need no be saisfied oever and so e use e requiremen a ese be saisfied o pin don γ In paricular e adjus γ unil e folloing expression is saisfied: G γ T H γ T G γ T H γ T D T Noe a is is a number of equaions equal o e dimension of γ 3 Exending e Algorim We no address e possibiliy a and T Ta is e loer bound sars o bind in some period afer e discoun rae goes negaive and before i urns posiive again Tus e loer bound is no binding for i is binding for and i is no binding for > Because e assume T e can apply a sraigforard adapaion of e algorim in e previous secion Firs e d sequence needs o be adjused so a e consan vec d in (??) is only urned on for Second e require e QZ decomposiion of e sysem bo for e ime en e loer bound is binding and e ime en i is binding: Qα Z H Qα Z H Qα Z H Q α Z H γ Z z γ Z z 3Te Iniial Non-Binding Regime For : α z α z [α z β s β s ] 5

To solve ese equaions proceed as before Afer applying e QZ decomposiion: G H γ G H γ γ D H γ D G H γ 3 G H γ γ D 3 H γ D G H γ G H γ γ H D γ D G H γ G H γ γ H D γ D Te basic idea of e simulaion is a e sar a given period i (γ γ ) and use e period equaion o solve forard o obain γ γ Tis ould be compleely sraigforard and sandard ifeleadmarixineqzdecomposiion ofedynamic equaion ere inverible I is no So o do e simulaion e compue γ using e equaion Ten ere is only γ o compue using e period equaion Tis compuaion is possible because e relevan block in e lead marix is inverible To begin e simulaion noe firs a D is deermined because z Fix a value for γ and compue: For : γ H D D Q (d α Zγ ) (consan erm in period equaion) γ H D (solving period equaion for γ ) γ G H γ G γ H γ D (using period equaion o find γ ) Weproceedinisayineacperiod : D Q (d α Zγ ) γ H D γ G H γ G γ H γ D Period requires special reamen because e subsequen period s equaion belongs o a differen regime We firs solve for γ using e equaion Te consan erm in e equaion is: µ µ γ D Q d α Z γ Noe a e Q ere belongs o e binding regime ile Z belongs o e non-binding regime We require e Z from e non-binding regime because a is needed o consruc e consan erm is z andaeacuallyaveinandaispoinisγ Z z Wi D in and e compue γ : ³ γ H D 6

We no reurn o e equaion o seek γ Te equaion is: α z α z [α z β s β s ] α Z γ α z [α z β s β s ] No apply e QZ decomposiion relevan for e non-binding regime: Qα ZZ Z γ Qα ZZ z D D [α z β s β s ] Le H Z Z γ H γ D Z Z M M {z} (m l) (m l) M {z} l (m l) M {z} (m l) l M {z} l l ere m denoes e leng of z and m l is e rank of α Ten e previous sysem can be rien: G H {z} M {z} M {z} γ {z} (m l) (m l) (m l) l (m l) (m l) (m l) l {z} (m l) {z} {z} M {z} M {z} γ {z} G H γ H D γ D l (m l) l l l (m l) l l l G M H M G M H M γ γ G H H γ γ D D We are no in a posiion o solve for γ Wriing ou e firs of e above equaions: G M H M γ G M H M γ G γ H γ D so a γ G M H M G M H M γ G γ H γ D 3Te Binding Regime We no urn o e period en e loer bound consrain on e ineres rae is binding Teequaionobesolvedis: α z α z [α z d β s β s ] Muliply by Q H γ H γ D 7

G H γ γ G H γ γ G H γ γ G H γ γ G H H G H H G H H G H H γ γ γ γ γ 3 γ 3 γ γ D D D D D 3 D 3 D D We ave γ in and Consider firs Asbeforeemuscompue γ using e period equaion Tus D Q ³d α Z γ γ ³ H D Ten using e period equaion: γ G H γ G γ H γ D i We proceed in is ay in eac period : D Q ³d α Z γ γ γ ³ H G D H γ G γ H γ D i Te equaion requires special adjusmens analogous o e ones used a e end of e non-binding regime because solving e equaion requires orking i e equaion firs Te consan erm in e equaion is: µ µ γ D Q d α Z γ As before Q is par of e QZ decomposiion relevan o e non-binding regime bu Z belongs o e binding regime because e ave γ in and and is mus be convered o z Wi D in and e compue γ as follos: γ H D We no reurn o e equaion: α z α Z γ α Z γ d β s β s i 8

afer muliplying by Q : H Z Zγ H γ D ere D is available from e previous compuaions Wriing is ou more carefully G H M M γ G M M γ H γ D H γ D ere M M M Z M Z ( M ) M Wriing ou e firs of e above equaions: G M H M i γ G M H M i γ G γ H γ D γ G M H M i ³ G M H M γ G γ H γ D i 33Te Final Non-Binding Regime Given γ γ e no solve e equaions in e non-binding regime T Consider period firs: α z α z [α z β s β s ] Muliplying by Q and applying e QZ decomposiion: Qα ZZ z Qα ZZ z Q [α z β s β s ] H γ H γ D G H γ γ G H H γ γ D D To solve for γ γ e firs obain γ using e equaion: D Q d α Zγ (consan erm in period equaion) γ H D (solving period equaion for γ ) Ten γ G H γ G γ H γ D For T : D Q (d α Zγ ) γ H D γ G H γ G γ H γ D 9

We no ave γ T γ T D T Recall a s for T so a afer muliplying by Z : z T Az T γ T Ãγ T Ã Z AZ µ γ T γ T Ã Ã γ T We mus sill saisfy e T equilibrium condiions: G H γ T G H γ γ T T H γ T D T D T Noe oever a e boom se of equaions are saisfied because of e ay γ T as cosen and because γ T does no ener ese equaions Te firs se of equaions need nobesaisfied oever and so e use e requiremen a ese be saisfied o pin don γ T In paricular e adjus γ unil e folloing expression is saisfied: G γ T H γ T G γ T H γ T D T Noe a is is a number of equaions equal o e dimension of γ