= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t)."

Transcript

1 Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e c L 2 ] ] L! + 25 e L ] ] L in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e c L 3 8 4] 3L ] 8L 4] 3L π π ] 3 π L π ] 8e 4 8e 4 3 8e 4 3 8e 4 π π 252 e L ] L ] ] L ] 3L ] 5 5 L co(5) + 5 in(5) 253 a From exercie 243 we have L in(ω)] 2ω ( 2 + ω 2) 2 y he definiion of he invere Laplace ranform lineariy i hen follow ha ] ] in(ω) L 2ω ( 2 + ω 2) 2ωL 2 ( 2 + ω 2) 2 Dividing hrough by 2ω hen yield L ] ( 2 + ω 2) 2 2ω in(ω)

2 96 The Invere Laplace Tranform 254 a L y + 9y ] L] L y ] + 9Ly] Y() y() ] + 9Y() }{{} 4 ( + 9)Y() 4 Y() Taking he invere: y() L Y()] L ] 4L ( 9)] 4e a Fir we mu find he parial fracion expanion: ( + 2)( ) A A( ) ( + 2)( ) + ( + 2) ( )( + 2) A( ) + ( + 2) ( + 2)( ) Cuing ou he middle muliplying hrough by ( + 2)( ) hen give A( ) + ( + 2) Solving for A i eaily done by repecively plugging 2 ino he la equaion olving : A( 2 ) + ( 2 + 2) 7( 2) + 5 A 7( 2) A( ) + ( + 2) Thu he parial fracion expanion of our funcion i ( + 2)( ) A Now we can ake he invere ranform: L L ( + 2)( )] ] 3L ] + 4L ] 3e 2 + 4e c 2 4 ( 2)( + 2) A A( + 2) ( 2)( + 2) + ( 2) ( + 2)( 2) A( + 2) + ( 2) ( 2)( + 2)

3 Worked Soluion 97 So A( + 2) + ( 2) Leing 2 yield A(2 + 2) + (2 2) A 4 while leing yield A( 2 + 2) + ( 2 2) 4 Thu L 2 4] 2 4 A 2 + L /4 2 + /4 + 2] 4 L /4 2 + /4 + 2 ] 4 L + 2 ] 4 e2 4 e e ( 4) A C 4 A( 4) + ( 4) + C2 2 ( 4) So A( 4) + ( 4) + C 2 Muliplying hi ou gahering like erm yield ( + C) 2 + (A 4) 4A giving u he yem which in urn mean ha + C A 4 4A A 4 A 4 6 C 6 So ] L A C 4 /4 2 /6 L /4 2 /6 + /6 4] ] 4 L 2 6 L + /6 4 ] + 6 L 4] e4 6 e4 4 6

4 98 The Invere Laplace Tranform 255 g ( + 6) ( ) A C ( ) A ( + C)( + 6) ( + 6) ( ) So ( ) A ( + C)( + 6) ( ) Muliplying hi ou gahering like erm yield (A + ) 2 + (6 + C) + (6A + 6C) giving u he yem A C 6 6A + 6C 4 ( ) The fir coefficien A i eaily found afer fir leing 6 in equaion ( ): ( ) A 6] ( 6] + C)( 6 + 6) 5 6] ] 4 A 5 6] ] 4 6] From hi yem ( ) we hen obain 5 A C So ( + 6) ( ) A C L ( + 6) ( )] L L + 6 2e 6 + 3L ] ] + 3L 2 2L + 6] 2 + 6] ] ] 4 4 L e co(4) 3 in(4) 255 i ( + ) ( ) ( + )( + 3)( + 7) A C + 7 A( + 3)( + 7) + ( + )( + 7) + C( + )( + 3) ( + )( + 3)( + 7)

5 Worked Soluion 99 So A( + 3)( + 7) + ( + )( + 7) + C( + )( + 3) ( ) Leing in equaion ( ): A( + 3)( + 7) + ( + 7) + C ( + 3) 6 ] ] + 92 A 6 ] ] + 92 ( + 3)( + 7) 3 Leing 3 in equaion ( ): A ( 3 + 7) + ( 3 + )( 3 + 7) + C( 3 + ) 6 3] ] ] ] + 92 ( 3 + )( 3 + 7) 5 Leing 7 in equaion ( ): A( 7 + 3) + ( 7 + ) + C( 7 + )( 7 + 3) 6 7] ] + 92 C 6 7] ] + 92 ( 7 + )( 7 + 3) 2 Thu ( + ) ( ) A C L 6 2 )] ( + ) ( L ] 3L + ] + 5L + 3 3e + 5e 3 2e 7 ] 2L + 7] 256 a Taking he ranform: L y 9y ] L] L y ] 9Ly]

6 2 The Invere Laplace Tranform 2 Y() y() y ] () 9Y() }{{}}{{} 4 9 ) ( 2 9 Y() 4 9 Y() Finding he parial fracion expanion for Y hen aking he invere ranform: ( 3)( + 3) A A( + 3) + ( 3) ( 3)( + 3) So A( + 3) + ( 3) Leing 3 3 repecively in hi la equaion: A(3 + 3) A A + ( 3 3) 4 3] ] Thu Y() A /2 3 + /2 + 3 y() L Y()] L 7/2 3 + /2 + 3] 7 ] 2 L + ] 3 2 L e3 + 2 e c Taking he ranform: L y + 8y + 7y ] L 65e 4] L y ] + 8L y ] + 7Ly] 65L e 4] 2 Y() y() y ] () }{{}}{{} 8 + 8Y() y() ] + 7Y() 65 }{{} 4 8 ( ) Y() Solving for Y : Y() 65 ( 4) ( ) (8 + 65)( 4) ( 4) ( ) ( 4)( + 7)( + )

7 Worked Soluion 2 Finding he parial fracion expanion of Y : Y() which require ha ( 4)( + 7)( + ) A C + A( + 7)( + ) + ( 4)( + ) + C( 4)( + 7) ( 4)( + 7)( + ) A( + 7)( + ) + ( 4)( + ) + C( 4)( + 7) ( ) Leing 4 in equaion ( ): A(4 + 7)(4 + ) + (4 + ) + C (4 + 7) A (4 + 7)(4 + ) Leing 7 in equaion ( ): 3 A ( 7 + ) + ( 7 4)( 7 + ) + C( 7 4) 8 7] ] ] ] 95 ( 7 4)( 7 + ) Leing in equaion ( ): A( + 7) + ( 4) + C( 4)( + 7) 8 ] ] 95 So C 8 ] ] 95 ( 4)( + 7) Y() A C y() L Y()] L ] 3L 4 ] + L 3e 4 + e 7 + 4e ( 7)] + 4L ( )] 257 a Uing he ranlaion ideniy we have ] L ( 7) 5 L F( 7)] e 7 f () ( )

8 22 The Invere Laplace Tranform where Replacing 7 wih X hi mean F( 7) ( 7) 5 Hence F(X) X 5 F() 5 f () L F()] L 5 ] 4! L 4! 4+ ] 24 4 Thu equaion ( ) become ] L ( 7) 5 e 7 f () e c Since he denominaor doe no facor we complee he quare of he denominaor: } 2 2 {{ } ( 3) ( 3) 2 So L ] L ( 3) ] L F( 3)] e 3 f () ( ) wih F( 3) ( 3) To ge F() fir le X 3 (equivalenly X + 3 ) in hi equaion: which mean Thu F(X) X + 3 X F() f () L F()] ] L ] L ] 6 6 L co(6) + 2 in(6) equaion ( ) coninue a L ] e 3 f () e 3 co(6) + 2 in(6) ]

9 Worked Soluion e Since he denominaor facor a ( + 4) 2 ( 4] ) 2 we can apply he ranlaion ideniy a follow: ] L 2 L ] ( ) 2 4] F( 4]) e 4 f () ( ) wih F( 4]) ( 4] ) 2 Leing X 4] hi become F(X) X 2 So F() 2 f () L F()] L 2 ] equaion ( ) become L ] e 4 f () e 4 e g Since we have ( + 6) L 2 L ] ( + 6) 2 + 4] F( + 6) F( 6]) e 6 f () ( ) wih Leing X + 6 hi become F( + 6) ( + 6) F(X) X Hence F() ] f () L F()] L ] 2 2 L in(2) equaion ( ) become L ] e 6 f () e 6 2 in(2) ] 2 in(2)e 6

10 24 The Invere Laplace Tranform 258 a L y 8y + 7y ] L] L y ] 8L y ] + 7Ly] 2 Y() y() y ] () }{{}}{{} 3 2 8Y() y() ] + 7Y() }{{} 3 ( ) Y() So wih Y() y() L 3 2 ( 4) 2 + ] F( 4) 3 2 ( 4) 2 + L F( 4)] e 4 f () ( ) 3 2 ( 4) 2 + Leing X 4 (equivalenly X + 4 ) we have F(X) 3X + 4] 2 X 2 + 3X X 2 + Thu F() f () L 3 2 3L + ] 2 + ] y() e 4 f () 3 co()e 4 3 co() 258 c L y + 6y + 3y ] L] L y ] + 6L y ] + 3Ly] 2 Y() y() y ] () }{{}}{{} Y() y() ] + 3Y() }{{} 2 ( ) Y() 2 2

11 Worked Soluion 25 So Y() ( + 3) ( ) 2 3] + 4 ] y() L ( ) 2 L 3] + 4 F( 3])] e 3 f () ( ) wih F( 3]) ( 3] ) Leing X 3] + 3 (equivalenly X 3 ) we have Thu F(X) F() 2X 3] ] f () L X ] ] 2L L X + 4 X co(2) + 7 in(2) y() e 3 f () e 3 2 co(2) + 7 in(2)] 259 a L y ] L e in() ] 2 Y() y() }{{} y () }{{} Le in() ] }{{} f () where 2 Y() F( ) So he la line conaining Y become F() L f ()] Lin()] 2 Y() F( }{{ } ) F(X) X 2 + X 2 + ( ) 2 + Solving for Y aring o find he correponding parial fracion expanion lead o Y() A 2 2( ( ) 2 + ) + + C + D ( ) 2 + A( ( ) 2 + ) + ( ( ) 2 + ) + (C + D) 2 2( ( ) 2 + )

12 26 The Invere Laplace Tranform which require ha A ( ( ) 2 + ) + ( ( ) 2 + ) + (C + D) 2 Muliplying hi ou gahering like erm hen yield 3 + A 2 + D] 2 + 2A + 2] + 2A which in urn require ha + C A 2 + D 2A + 2 2A From hi i follow ha A 2 A 2 D 2 A 2 C 2 hu he parial fracion expanion of Y i Y() A C + D ( ) 2 + ( ) + + ( ) ( 2 + ) ( ) 2 + Conequenly ( y() L ( ) 2 + )] ( L ] 2 2 +L ] ) L ( ) 2 + ] ) ( + L G( )] 2 ( ) + e g() 2 where Leing X hi become G( ) ( ) 2 + Hence G(X) X X 2 + g() L G()] L 2 + ] co() he la formula above for y become y() ( ) + e g() ( + e co() ) 2 2

13 Worked Soluion c L y 9y ] L 24e 3] L y ] L9y] 24L e 3] 2 Y() y() y ] 24 () 9Y() }{{}}{{} 3] 6 2 ) ( 2 9 Y() So Y() 24 ( + 3) ( 2 9 ) (6 + 2)( + 3) ( + 3) ( 2 9 ) ( + 3) 2 ( 3) Thi require ha A ( + 3) C 3 A( 3) + ( + 3)( 3) + C( + 3)2 ( + 3) 2 ( 3) A( 3) + ( + 3)( 3) + C( + 3) ( ) Muliplying hi ou gahering like erm yield + C] 2 + A + 6C] + 3A 9 + 9C] which in urn yield he yem + C 6 A + 6C 2 3A 9 + 9C 3 ( ) Leing 3 in ( ): A( 3 3) + ( 3 3) + C 2 6 3] ] + 3 A 6 3] ] Leing 3 in ( ): A + (3 + 3) + C(3 + 3) 2 63] ] + 3 C 23]2 + 23] + 3 (3 + 3) 2 4 Uing hee value wih he fir equaion in yem ( ): 6 C 6 4 2

14 28 The Invere Laplace Tranform Thu Y() A ( + 3) C 3 4 ( + 3) y() L 4 ( + 3) ] ] 4L ( + 3) 2 + 2L ] + 4L + 3 3] 4L F( 3]) ] + 2e 3 + 4e 3 4e 3 f () + 2e 3 + 4e 3 wih F( 3]) F( + 3) ( + 3) 2 F(X) X 2 f () L F()] L 2 ] y So y() 4e 3 f () + 2e 3 + 4e 3 4e 3 + 2e 3 + 4e 3 2e 3 4e 3 + 4e 3 25 a From heorem 245 on page 473 he definiion of he invere ranform we have L ] F() f (τ) dτ wih f (τ) L F()] τ In hi problem ( ) F() wih F() So )] L ( τ f (τ) L 2 + 9] L ] F() ] 3 L 3 τ f (τ) dτ 3 in(3τ) 3 in(3τ) dτ co(3)] 9 25 c In hi problem ( 3) 2 F() wih F() ( 3) 2 So ] τ f (τ) L ( 3) 2 LF( 3)] τ e 3 f () τe 3τ

15 Worked Soluion 29 ] L ( 3) 2 L ] F() f (τ) dτ τe 3τ dτ 3 τe3τ e 3τ dτ 3 3 e3 ] e (3 )e 3]

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

Appendix A. Stability of the logistic semi-discrete model.

Appendix A. Stability of the logistic semi-discrete model. Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

Xiaoquan (Michael) Zhang

Xiaoquan (Michael) Zhang RESEARCH ARTICLE HO DOES THE INTERNET AFFECT THE FINANCIAL MARKET? AN EQUILIBRIUM MODEL OF INTERNET-FACILITATED FEEDBACK TRADING Xiaoquan (Michael) Zhang School of Buine and Managemen, Hong Kong Unieriy

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION Yang X. e al.: General Fracional Calculu Operaor Conaining he Generalize... THERMAL SCIENCE: Year 217 Vol. 21 Suppl. 1 pp. S317-S326 S317 GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Almost all short intervals containing prime numbers

Almost all short intervals containing prime numbers ACTA ARITHMETICA LXXVI (6 Almos all shor inervals conaining prime nmbers by Chaoha Jia (Beijing Inrocion In 37, Cramér [] conjecred ha every inerval (n, n f(n log 2 n conains a prime for some f(n as n

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model Inernaional Journal of Modern Nonlinear Theory and Applicaion, 6, 5, 8-9 Publihed Online March 6 in SciRe hp://wwwcirporg/journal/ijmna hp://dxdoiorg/36/ijmna659 Global Aracor for a la of Nonlinear Generalized

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 6 ( )( ) 8 ( ) 1.145 0.7 ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

Chapter 6 ( )( ) 8 ( ) 1.145 0.7 ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6. Micelectnic: icuit Analyi and Dein, 4 th editin hapte 6 y D. A. Neaen xecie Slutin xecie Slutin X6. (a ( n 0.85 0.7 80 ( 0 ( 0.000833 0. 0 Q 3.3 0. 5. β A 0. (b 3. 846 A/ 0.06 β ( 0( 0.06 0. 8 3. k Ω hapte

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&

Διαβάστε περισσότερα

ΕΝΑ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΥΨΗΛΗΣ ΠΟΙΟΤΗΤΑΣ ΜΕ ΙΔΙΟΤΗΤΕΣ ΤΑΧΕΙΑΣ ΑΡΧΙΚΗΣ ΑΝΤΙΔΡΑΣΗΣ

ΕΝΑ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΥΨΗΛΗΣ ΠΟΙΟΤΗΤΑΣ ΜΕ ΙΔΙΟΤΗΤΕΣ ΤΑΧΕΙΑΣ ΑΡΧΙΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 303-310 ΕΝΑ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΥΨΗΛΗΣ ΠΟΙΟΤΗΤΑΣ ΜΕ ΙΔΙΟΤΗΤΕΣ ΤΑΧΕΙΑΣ ΑΡΧΙΚΗΣ ΑΝΤΙΔΡΑΣΗΣ

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼

þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼ Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼ þÿ Ä Æ Á Â, Á ÃÄ Â þÿ Á̳Á±¼¼±

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ Συστήματα γεωγραφικών πληροφοριών 1 ος Κύκλος Εκπαίδευσης ο σεμινάριο Ιουνίου 0 Δρομολόγηση Η δρομολόγηση (rouing) είναι η διαδικασία εύρεσης των «καλύτερων» μονοπατιών

Διαβάστε περισσότερα

(As on April 16, 2002 no changes since Dec 24.)

(As on April 16, 2002 no changes since Dec 24.) ~rprice/area51/documents/roswell.tex ROSWELL COORDINATES FOR TWO CENTERS As on April 16, 00 no changes since Dec 4. I. Definitions of coordinates We define the Roswell coordinates χ, Θ. A better name will

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ Page 1 of 67 Page 2 of 67 Page 3 of 67 Page 4 of 67 1. Page 5 of 67 Page 6 of 67 Page 7 of 67 2. Page 8 of 67 Page 9 of 67 Page 10 of 67 Page 11 of 67 Page 12 of 67 Page 13 of 67 Page 14 of 67 Page 15

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Technical Appendix. Uncertainty about Government Policy and Stock Prices

Technical Appendix. Uncertainty about Government Policy and Stock Prices Technical Appendix o accompany Uncerainy abou Governmen Policy and Sock Prices Ľuboš Pásor Universiy of Chicago, CEPR, and NBER Piero Veronesi Universiy of Chicago, CEPR, and NBER July 8, 0 Conens. Learning

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Υπόδειγµα Προεξόφλησης

Υπόδειγµα Προεξόφλησης Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος

Διαβάστε περισσότερα

Fourier Transform. Fourier Transform

Fourier Transform. Fourier Transform ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Internet Appendix for Uncertainty about Government Policy and Stock Prices

Internet Appendix for Uncertainty about Government Policy and Stock Prices Inerne Appendix for Uncerainy abou Governmen Policy and Sock Prices ĽUBOŠ PÁSTOR and PIETRO VERONESI This Inerne Appendix provides proofs and addiional heoreical resuls in suppor of he analysis presened

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V February 5, 006 CHAPTER 0 P.P.0. 0 in(t 0 0, ω H jωl j4 0. F -j.5 jωc Hence, e circuit in e frequency dmain i a hwn belw. -j.5 Ω 4 Ω 0 0 A Ω x j4 Ω x At nde, At nde, 0 - j.5 00 (5 j4 j ( 4 x where x j4

Διαβάστε περισσότερα

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

These derivations are not part of the official forthcoming version of Vasilaky and Leonard Target Input Model with Learning, Derivations Kathryn N Vasilaky These derivations are not part of the official forthcoming version of Vasilaky and Leonard 06 in Economic Development and Cultural Change.

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα