= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
|
|
- Μαθθαῖος Αλεξανδρίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e c L 2 ] ] L! + 25 e L ] ] L in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e c L 3 8 4] 3L ] 8L 4] 3L π π ] 3 π L π ] 8e 4 8e 4 3 8e 4 3 8e 4 π π 252 e L ] L ] ] L ] 3L ] 5 5 L co(5) + 5 in(5) 253 a From exercie 243 we have L in(ω)] 2ω ( 2 + ω 2) 2 y he definiion of he invere Laplace ranform lineariy i hen follow ha ] ] in(ω) L 2ω ( 2 + ω 2) 2ωL 2 ( 2 + ω 2) 2 Dividing hrough by 2ω hen yield L ] ( 2 + ω 2) 2 2ω in(ω)
2 96 The Invere Laplace Tranform 254 a L y + 9y ] L] L y ] + 9Ly] Y() y() ] + 9Y() }{{} 4 ( + 9)Y() 4 Y() Taking he invere: y() L Y()] L ] 4L ( 9)] 4e a Fir we mu find he parial fracion expanion: ( + 2)( ) A A( ) ( + 2)( ) + ( + 2) ( )( + 2) A( ) + ( + 2) ( + 2)( ) Cuing ou he middle muliplying hrough by ( + 2)( ) hen give A( ) + ( + 2) Solving for A i eaily done by repecively plugging 2 ino he la equaion olving : A( 2 ) + ( 2 + 2) 7( 2) + 5 A 7( 2) A( ) + ( + 2) Thu he parial fracion expanion of our funcion i ( + 2)( ) A Now we can ake he invere ranform: L L ( + 2)( )] ] 3L ] + 4L ] 3e 2 + 4e c 2 4 ( 2)( + 2) A A( + 2) ( 2)( + 2) + ( 2) ( + 2)( 2) A( + 2) + ( 2) ( 2)( + 2)
3 Worked Soluion 97 So A( + 2) + ( 2) Leing 2 yield A(2 + 2) + (2 2) A 4 while leing yield A( 2 + 2) + ( 2 2) 4 Thu L 2 4] 2 4 A 2 + L /4 2 + /4 + 2] 4 L /4 2 + /4 + 2 ] 4 L + 2 ] 4 e2 4 e e ( 4) A C 4 A( 4) + ( 4) + C2 2 ( 4) So A( 4) + ( 4) + C 2 Muliplying hi ou gahering like erm yield ( + C) 2 + (A 4) 4A giving u he yem which in urn mean ha + C A 4 4A A 4 A 4 6 C 6 So ] L A C 4 /4 2 /6 L /4 2 /6 + /6 4] ] 4 L 2 6 L + /6 4 ] + 6 L 4] e4 6 e4 4 6
4 98 The Invere Laplace Tranform 255 g ( + 6) ( ) A C ( ) A ( + C)( + 6) ( + 6) ( ) So ( ) A ( + C)( + 6) ( ) Muliplying hi ou gahering like erm yield (A + ) 2 + (6 + C) + (6A + 6C) giving u he yem A C 6 6A + 6C 4 ( ) The fir coefficien A i eaily found afer fir leing 6 in equaion ( ): ( ) A 6] ( 6] + C)( 6 + 6) 5 6] ] 4 A 5 6] ] 4 6] From hi yem ( ) we hen obain 5 A C So ( + 6) ( ) A C L ( + 6) ( )] L L + 6 2e 6 + 3L ] ] + 3L 2 2L + 6] 2 + 6] ] ] 4 4 L e co(4) 3 in(4) 255 i ( + ) ( ) ( + )( + 3)( + 7) A C + 7 A( + 3)( + 7) + ( + )( + 7) + C( + )( + 3) ( + )( + 3)( + 7)
5 Worked Soluion 99 So A( + 3)( + 7) + ( + )( + 7) + C( + )( + 3) ( ) Leing in equaion ( ): A( + 3)( + 7) + ( + 7) + C ( + 3) 6 ] ] + 92 A 6 ] ] + 92 ( + 3)( + 7) 3 Leing 3 in equaion ( ): A ( 3 + 7) + ( 3 + )( 3 + 7) + C( 3 + ) 6 3] ] ] ] + 92 ( 3 + )( 3 + 7) 5 Leing 7 in equaion ( ): A( 7 + 3) + ( 7 + ) + C( 7 + )( 7 + 3) 6 7] ] + 92 C 6 7] ] + 92 ( 7 + )( 7 + 3) 2 Thu ( + ) ( ) A C L 6 2 )] ( + ) ( L ] 3L + ] + 5L + 3 3e + 5e 3 2e 7 ] 2L + 7] 256 a Taking he ranform: L y 9y ] L] L y ] 9Ly]
6 2 The Invere Laplace Tranform 2 Y() y() y ] () 9Y() }{{}}{{} 4 9 ) ( 2 9 Y() 4 9 Y() Finding he parial fracion expanion for Y hen aking he invere ranform: ( 3)( + 3) A A( + 3) + ( 3) ( 3)( + 3) So A( + 3) + ( 3) Leing 3 3 repecively in hi la equaion: A(3 + 3) A A + ( 3 3) 4 3] ] Thu Y() A /2 3 + /2 + 3 y() L Y()] L 7/2 3 + /2 + 3] 7 ] 2 L + ] 3 2 L e3 + 2 e c Taking he ranform: L y + 8y + 7y ] L 65e 4] L y ] + 8L y ] + 7Ly] 65L e 4] 2 Y() y() y ] () }{{}}{{} 8 + 8Y() y() ] + 7Y() 65 }{{} 4 8 ( ) Y() Solving for Y : Y() 65 ( 4) ( ) (8 + 65)( 4) ( 4) ( ) ( 4)( + 7)( + )
7 Worked Soluion 2 Finding he parial fracion expanion of Y : Y() which require ha ( 4)( + 7)( + ) A C + A( + 7)( + ) + ( 4)( + ) + C( 4)( + 7) ( 4)( + 7)( + ) A( + 7)( + ) + ( 4)( + ) + C( 4)( + 7) ( ) Leing 4 in equaion ( ): A(4 + 7)(4 + ) + (4 + ) + C (4 + 7) A (4 + 7)(4 + ) Leing 7 in equaion ( ): 3 A ( 7 + ) + ( 7 4)( 7 + ) + C( 7 4) 8 7] ] ] ] 95 ( 7 4)( 7 + ) Leing in equaion ( ): A( + 7) + ( 4) + C( 4)( + 7) 8 ] ] 95 So C 8 ] ] 95 ( 4)( + 7) Y() A C y() L Y()] L ] 3L 4 ] + L 3e 4 + e 7 + 4e ( 7)] + 4L ( )] 257 a Uing he ranlaion ideniy we have ] L ( 7) 5 L F( 7)] e 7 f () ( )
8 22 The Invere Laplace Tranform where Replacing 7 wih X hi mean F( 7) ( 7) 5 Hence F(X) X 5 F() 5 f () L F()] L 5 ] 4! L 4! 4+ ] 24 4 Thu equaion ( ) become ] L ( 7) 5 e 7 f () e c Since he denominaor doe no facor we complee he quare of he denominaor: } 2 2 {{ } ( 3) ( 3) 2 So L ] L ( 3) ] L F( 3)] e 3 f () ( ) wih F( 3) ( 3) To ge F() fir le X 3 (equivalenly X + 3 ) in hi equaion: which mean Thu F(X) X + 3 X F() f () L F()] ] L ] L ] 6 6 L co(6) + 2 in(6) equaion ( ) coninue a L ] e 3 f () e 3 co(6) + 2 in(6) ]
9 Worked Soluion e Since he denominaor facor a ( + 4) 2 ( 4] ) 2 we can apply he ranlaion ideniy a follow: ] L 2 L ] ( ) 2 4] F( 4]) e 4 f () ( ) wih F( 4]) ( 4] ) 2 Leing X 4] hi become F(X) X 2 So F() 2 f () L F()] L 2 ] equaion ( ) become L ] e 4 f () e 4 e g Since we have ( + 6) L 2 L ] ( + 6) 2 + 4] F( + 6) F( 6]) e 6 f () ( ) wih Leing X + 6 hi become F( + 6) ( + 6) F(X) X Hence F() ] f () L F()] L ] 2 2 L in(2) equaion ( ) become L ] e 6 f () e 6 2 in(2) ] 2 in(2)e 6
10 24 The Invere Laplace Tranform 258 a L y 8y + 7y ] L] L y ] 8L y ] + 7Ly] 2 Y() y() y ] () }{{}}{{} 3 2 8Y() y() ] + 7Y() }{{} 3 ( ) Y() So wih Y() y() L 3 2 ( 4) 2 + ] F( 4) 3 2 ( 4) 2 + L F( 4)] e 4 f () ( ) 3 2 ( 4) 2 + Leing X 4 (equivalenly X + 4 ) we have F(X) 3X + 4] 2 X 2 + 3X X 2 + Thu F() f () L 3 2 3L + ] 2 + ] y() e 4 f () 3 co()e 4 3 co() 258 c L y + 6y + 3y ] L] L y ] + 6L y ] + 3Ly] 2 Y() y() y ] () }{{}}{{} Y() y() ] + 3Y() }{{} 2 ( ) Y() 2 2
11 Worked Soluion 25 So Y() ( + 3) ( ) 2 3] + 4 ] y() L ( ) 2 L 3] + 4 F( 3])] e 3 f () ( ) wih F( 3]) ( 3] ) Leing X 3] + 3 (equivalenly X 3 ) we have Thu F(X) F() 2X 3] ] f () L X ] ] 2L L X + 4 X co(2) + 7 in(2) y() e 3 f () e 3 2 co(2) + 7 in(2)] 259 a L y ] L e in() ] 2 Y() y() }{{} y () }{{} Le in() ] }{{} f () where 2 Y() F( ) So he la line conaining Y become F() L f ()] Lin()] 2 Y() F( }{{ } ) F(X) X 2 + X 2 + ( ) 2 + Solving for Y aring o find he correponding parial fracion expanion lead o Y() A 2 2( ( ) 2 + ) + + C + D ( ) 2 + A( ( ) 2 + ) + ( ( ) 2 + ) + (C + D) 2 2( ( ) 2 + )
12 26 The Invere Laplace Tranform which require ha A ( ( ) 2 + ) + ( ( ) 2 + ) + (C + D) 2 Muliplying hi ou gahering like erm hen yield 3 + A 2 + D] 2 + 2A + 2] + 2A which in urn require ha + C A 2 + D 2A + 2 2A From hi i follow ha A 2 A 2 D 2 A 2 C 2 hu he parial fracion expanion of Y i Y() A C + D ( ) 2 + ( ) + + ( ) ( 2 + ) ( ) 2 + Conequenly ( y() L ( ) 2 + )] ( L ] 2 2 +L ] ) L ( ) 2 + ] ) ( + L G( )] 2 ( ) + e g() 2 where Leing X hi become G( ) ( ) 2 + Hence G(X) X X 2 + g() L G()] L 2 + ] co() he la formula above for y become y() ( ) + e g() ( + e co() ) 2 2
13 Worked Soluion c L y 9y ] L 24e 3] L y ] L9y] 24L e 3] 2 Y() y() y ] 24 () 9Y() }{{}}{{} 3] 6 2 ) ( 2 9 Y() So Y() 24 ( + 3) ( 2 9 ) (6 + 2)( + 3) ( + 3) ( 2 9 ) ( + 3) 2 ( 3) Thi require ha A ( + 3) C 3 A( 3) + ( + 3)( 3) + C( + 3)2 ( + 3) 2 ( 3) A( 3) + ( + 3)( 3) + C( + 3) ( ) Muliplying hi ou gahering like erm yield + C] 2 + A + 6C] + 3A 9 + 9C] which in urn yield he yem + C 6 A + 6C 2 3A 9 + 9C 3 ( ) Leing 3 in ( ): A( 3 3) + ( 3 3) + C 2 6 3] ] + 3 A 6 3] ] Leing 3 in ( ): A + (3 + 3) + C(3 + 3) 2 63] ] + 3 C 23]2 + 23] + 3 (3 + 3) 2 4 Uing hee value wih he fir equaion in yem ( ): 6 C 6 4 2
14 28 The Invere Laplace Tranform Thu Y() A ( + 3) C 3 4 ( + 3) y() L 4 ( + 3) ] ] 4L ( + 3) 2 + 2L ] + 4L + 3 3] 4L F( 3]) ] + 2e 3 + 4e 3 4e 3 f () + 2e 3 + 4e 3 wih F( 3]) F( + 3) ( + 3) 2 F(X) X 2 f () L F()] L 2 ] y So y() 4e 3 f () + 2e 3 + 4e 3 4e 3 + 2e 3 + 4e 3 2e 3 4e 3 + 4e 3 25 a From heorem 245 on page 473 he definiion of he invere ranform we have L ] F() f (τ) dτ wih f (τ) L F()] τ In hi problem ( ) F() wih F() So )] L ( τ f (τ) L 2 + 9] L ] F() ] 3 L 3 τ f (τ) dτ 3 in(3τ) 3 in(3τ) dτ co(3)] 9 25 c In hi problem ( 3) 2 F() wih F() ( 3) 2 So ] τ f (τ) L ( 3) 2 LF( 3)] τ e 3 f () τe 3τ
15 Worked Soluion 29 ] L ( 3) 2 L ] F() f (τ) dτ τe 3τ dτ 3 τe3τ e 3τ dτ 3 3 e3 ] e (3 )e 3]
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Διαβάστε περισσότεραApproximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Διαβάστε περισσότεραFractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat
Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.
Διαβάστε περισσότεραAppendix A. Stability of the logistic semi-discrete model.
Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic
Διαβάστε περισσότεραAppendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Διαβάστε περισσότεραI.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey
Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic
Διαβάστε περισσότερα16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Διαβάστε περισσότεραVidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
Διαβάστε περισσότεραXiaoquan (Michael) Zhang
RESEARCH ARTICLE HO DOES THE INTERNET AFFECT THE FINANCIAL MARKET? AN EQUILIBRIUM MODEL OF INTERNET-FACILITATED FEEDBACK TRADING Xiaoquan (Michael) Zhang School of Buine and Managemen, Hong Kong Unieriy
Διαβάστε περισσότεραRG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
Διαβάστε περισσότεραis the home less foreign interest rate differential (expressed as it
The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model
Διαβάστε περισσότερα( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det
Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor
Διαβάστε περισσότερα2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.
Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός
Διαβάστε περισσότεραα ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
Διαβάστε περισσότεραω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραThe choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl
EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραGENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION
Yang X. e al.: General Fracional Calculu Operaor Conaining he Generalize... THERMAL SCIENCE: Year 217 Vol. 21 Suppl. 1 pp. S317-S326 S317 GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED
Διαβάστε περισσότεραLecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Διαβάστε περισσότεραAlmost all short intervals containing prime numbers
ACTA ARITHMETICA LXXVI (6 Almos all shor inervals conaining prime nmbers by Chaoha Jia (Beijing Inrocion In 37, Cramér [] conjecred ha every inerval (n, n f(n log 2 n conains a prime for some f(n as n
Διαβάστε περισσότεραd dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
Διαβάστε περισσότεραGlobal Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model
Inernaional Journal of Modern Nonlinear Theory and Applicaion, 6, 5, 8-9 Publihed Online March 6 in SciRe hp://wwwcirporg/journal/ijmna hp://dxdoiorg/36/ijmna659 Global Aracor for a la of Nonlinear Generalized
Διαβάστε περισσότεραElectronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution
i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion
Διαβάστε περισσότεραJackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραThe Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραNecessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραNonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραChapter 6 ( )( ) 8 ( ) 1.145 0.7 ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.
Micelectnic: icuit Analyi and Dein, 4 th editin hapte 6 y D. A. Neaen xecie Slutin xecie Slutin X6. (a ( n 0.85 0.7 80 ( 0 ( 0.000833 0. 0 Q 3.3 0. 5. β A 0. (b 3. 846 A/ 0.06 β ( 0( 0.06 0. 8 3. k Ω hapte
Διαβάστε περισσότεραManaging Production-Inventory Systems with Scarce Resources
Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,
Διαβάστε περισσότεραUniversity of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραDerivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B
Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&
Διαβάστε περισσότεραΕΝΑ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΥΨΗΛΗΣ ΠΟΙΟΤΗΤΑΣ ΜΕ ΙΔΙΟΤΗΤΕΣ ΤΑΧΕΙΑΣ ΑΡΧΙΚΗΣ ΑΝΤΙΔΡΑΣΗΣ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 303-310 ΕΝΑ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΥΨΗΛΗΣ ΠΟΙΟΤΗΤΑΣ ΜΕ ΙΔΙΟΤΗΤΕΣ ΤΑΧΕΙΑΣ ΑΡΧΙΚΗΣ ΑΝΤΙΔΡΑΣΗΣ
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότερα6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Διαβάστε περισσότεραCHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Διαβάστε περισσότεραA Simple Version of the Lucas Model
Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure
Διαβάστε περισσότερα6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Διαβάστε περισσότεραDerivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
Διαβάστε περισσότεραOscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
Διαβάστε περισσότεραw o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότερα= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Διαβάστε περισσότεραþÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼
Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼ þÿ Ä Æ Á Â, Á ÃÄ Â þÿ Á̳Á±¼¼±
Διαβάστε περισσότερα6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
Διαβάστε περισσότεραLaplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ
ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ Συστήματα γεωγραφικών πληροφοριών 1 ος Κύκλος Εκπαίδευσης ο σεμινάριο Ιουνίου 0 Δρομολόγηση Η δρομολόγηση (rouing) είναι η διαδικασία εύρεσης των «καλύτερων» μονοπατιών
Διαβάστε περισσότερα(As on April 16, 2002 no changes since Dec 24.)
~rprice/area51/documents/roswell.tex ROSWELL COORDINATES FOR TWO CENTERS As on April 16, 00 no changes since Dec 4. I. Definitions of coordinates We define the Roswell coordinates χ, Θ. A better name will
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότερα( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Διαβάστε περισσότεραThe Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Διαβάστε περισσότεραMacromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότεραThe one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
Διαβάστε περισσότεραJ. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
Διαβάστε περισσότεραECE145a / 218a Tuned Amplifier Design -basic gain relationships
ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36
Διαβάστε περισσότεραEE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Διαβάστε περισσότεραOscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραVariational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Διαβάστε περισσότεραForced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Διαβάστε περισσότερα10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Διαβάστε περισσότεραΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ
Page 1 of 67 Page 2 of 67 Page 3 of 67 Page 4 of 67 1. Page 5 of 67 Page 6 of 67 Page 7 of 67 2. Page 8 of 67 Page 9 of 67 Page 10 of 67 Page 11 of 67 Page 12 of 67 Page 13 of 67 Page 14 of 67 Page 15
Διαβάστε περισσότεραLinear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραTechnical Appendix. Uncertainty about Government Policy and Stock Prices
Technical Appendix o accompany Uncerainy abou Governmen Policy and Sock Prices Ľuboš Pásor Universiy of Chicago, CEPR, and NBER Piero Veronesi Universiy of Chicago, CEPR, and NBER July 8, 0 Conens. Learning
Διαβάστε περισσότεραMATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραEcon Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)
Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X
Διαβάστε περισσότεραΥπόδειγµα Προεξόφλησης
Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος
Διαβάστε περισσότεραFourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραInternet Appendix for Uncertainty about Government Policy and Stock Prices
Inerne Appendix for Uncerainy abou Governmen Policy and Sock Prices ĽUBOŠ PÁSTOR and PIETRO VERONESI This Inerne Appendix provides proofs and addiional heoreical resuls in suppor of he analysis presened
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότεραCHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V
February 5, 006 CHAPTER 0 P.P.0. 0 in(t 0 0, ω H jωl j4 0. F -j.5 jωc Hence, e circuit in e frequency dmain i a hwn belw. -j.5 Ω 4 Ω 0 0 A Ω x j4 Ω x At nde, At nde, 0 - j.5 00 (5 j4 j ( 4 x where x j4
Διαβάστε περισσότεραOn local motion of a general compressible viscous heat conducting fluid bounded by a free surface
ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραThese derivations are not part of the official forthcoming version of Vasilaky and Leonard
Target Input Model with Learning, Derivations Kathryn N Vasilaky These derivations are not part of the official forthcoming version of Vasilaky and Leonard 06 in Economic Development and Cultural Change.
Διαβάστε περισσότεραMulti-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Διαβάστε περισσότεραReservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότερα