CSS. DEIM Forum 2018 G2-4 CSS HTML/XML CSS CSS DTD

Σχετικά έγγραφα
HTML HTML5...CSS

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Γλώσσες Σήµανσης (Markup Languages) Τεχνολογία ιαδικτύου και Ηλεκτρονικό Εµπόριο

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

ΔΝΓΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ 3 εο ΓΡΑΠΣΗ ΔΡΓΑΙΑ

Kenta OKU and Fumio HATTORI

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks


Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

井上, 克郎 ; 神谷, 年洋 ; 楠本, 真二 コンピュータソフトウェア. 18(5) P.529-P

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)


Σημασιολογικός Ιστός (Semantic Web) - XML

C.S. 430 Assignment 6, Sample Solutions

Homomorphism in Intuitionistic Fuzzy Automata

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Probabilistic Approach to Robust Optimization


Βιογραφικό σημείωμα Δρ. Ψύχας Ηρακλής - Δημήτριος

Εισαγωγή(στη(γλώσσα(XML(

Simplex Crossover for Real-coded Genetic Algolithms

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

ER-Tree (Extended R*-Tree)

Statistical Inference I Locally most powerful tests

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Matrices and Determinants

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

CSS. Εισαγωγή & Βασικές έννοιες. Cascading Style Sheets. Επικαλυπτόμενα φύλλα στυλ

GREECE BULGARIA 6 th JOINT MONITORING

{takasu, Conditional Random Field

Βασικά στοιχεία του CSS

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΔΗΜΙΟΥΡΓΙΑΣ HTML ΣΕΛΙΔΩΝ


Web DEIM Forum 2009 A7-1. Web. Web. Web. Web. 4 Wikipedia. Wikipedia. Web.

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Σημασιολογικός Ιστός (Semantic Web) - XML

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

Hartree-Fock Theory. Solving electronic structure problem on computers

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

FAMICO Ηλεκτρονική Πλατφόρμα Εγχειρίδιο χρήσης για τον Διευκολυντή (Facilitator)

IEEE Xplore, Institute of Electrical and Electronics Engineers Inc.

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Εισαγωγή στον Παγκόσμιο ιστό και στη γλώσσα Html. Χρ. Ηλιούδης

DECO DECoration Ontology


Κεφάλαιο 4 HyperText Markup Language - HTML. Προγραμματιστικά εργαλεία για το διαδίκτυο Φίλιππος Κουτσάκας, Πολύγυρος 2013

3. Επερώτηση XML Εγγράφων: Η Γλώσσα XPath

ΕΜΜΕΛΗΣ ΑΠΑΓΓΕΛΙΑ. Γεωργίου Ε. Χατζηχρόνογλου

Σημασιολογικός Ιστός (Semantic Web) - XML

Εισαγωγή στην Επιστήμη Υπολογιστών. Εισαγωγή στην HTML. Άννα Κεφάλα Παναγιώτα Μιχόλια

Distances in Sierpiński Triangle Graphs


Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Διαδικτυακό Ημερολόγιο

entailment Hoare triple Brotherston Brotherston

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015


: ΗΥ-215, : ΗΥ-217, ΗΥ-370


Διάλεξη 2η Εισαγωγή στο CSS

CSS Εργαστήριο 1. Εισαγωγή - Σύνταξη - Εφαρμογή στην HTML

Answer Set Programming with External Sources

ΤΕΙ ΚΑΒΑΛΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής

Na/K (mole) A/CNK

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

DSSSLkai TEX. 1. Eisagwgă. Apìstoloc Surìpouloc. 28ης Οκτωβρίου Ξάνθη

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Άσκηση 6 Επαναληπτική Άσκηση HTML

ΕΠΛ 012. ιαδοχικά Φύλλα Στυλ

Stabilization of stock price prediction by cross entropy optimization


MathCity.org Merging man and maths

5. Επερώτηση XML Εγγράφων: Εισαγωγή στη Γλώσσα XQuery

ΣΗΜΑΣΙΟΛΟΓΙΚΟΣ ΙΣΤΟΣ - XML

Γλώσσα περιγραφής οδηγιών εµφάνισης-στοιχειοθέτησης

Web. Web p OutDegree(p) log 7 1/OutDegree(p) A New Difinition of Subjective Distance between Web Pages

Μαθηματικά Λογισμικά και Γλώσσες Αναπαράστασης Γνώσης

Ευρετικές Μέθοδοι. Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ

Applying Markov Decision Processes to Role-playing Game

ADVANCED STRUCTURAL MECHANICS

Εισαγωγή σε HTML και CSS. Παναγιώτης Τσαρχόπουλος

Στην τεχνολογία των CSS, οι κανόνες στυλ (style

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

ΕΠΛ 012 Εισαγωγή στο Παγκόσμιο Πλέγμα Πληροφοριών

Περιεχόμενα. Γαβαλάς Δαμιανός Τρέχον status της HTML


Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Biografiko Shmeiwma. Giwrgoc Gkotshc. Proswpika Stoiqeia. Ekpaideush. Xenec Glwssec.

Το βασικά χαρακτηριστικά που διαθέτει out-of-the-box (δηλαδή από την αρχική του έκδοση) είναι τα παρακάτω:

Transcript:

DEIM Forum 2018 G2-4 CSS 305-8550 1-2 305-8550 1-2 113-8657 1-1-1 E-mail: nsuzuki@slis.tsukuba.ac.jp, s1721657@s.tsukuba.ac.jp, ayekwon@mail.ecc.u-tokyo.ac.jp CSS HTML/XML D DTD R CSS CSS D R CSS r D XML r CSS CSS 4 CSS 1 DTD conp DTD P NP DTD PSPACE 1. CSS, DTD, XML, CSS HTML XML Doc- Book [1] MathML [2] CSS ul li {font-color:red} CSS CSS CSS CSS HTML/XML CSS CSS DTD CSS CSS r DTD D D XML r r D 1 DTD CSS 2 CSS c {font-family:sans-serif} 1 CSS c a 3 CSS a f {font-family:serif} f b c f 4 5 CSS CSS CSS CSS CSS CSS 1 CSS CSS CSS > + 1 DTD DTD conp DTD 4 1 conp DTD CSS 2 1 R1 R2 CSS R1 CSS r r R2 r CSS CSS 2 r

CSS Geneves CSS [3] DTD CSS Bosch CSS [4] Mazinanian CSS [5], [6] DTD DTD CSS CSS HTML FireBug [7] Chrome Developer Tools [8] HTML Hague HTML5 CSS [9] Mesbah HTML CSS [10] HTML DTD Web XML 1 CSS HTML/XML HTML/XML CSS r r r r HTML/XML XPath XPath p DTD D D p XML Benedikt [11] DTD XPath Montazerian child XPath DTD [12] DTD XPath [13] Ishihara MRW-DTD DTD DTD [14] XPath XPath CSS CSS DTD 2. 2. 1 CSS Σ Σ t v v l(v) s s = s s = l(v) s v >, + sel len(sel) sel sel = a > c len(sel) = 3 s, s (v, v ) t s v s v v v s s (v, v ) s v s v v v s > s (v, v ) s v s v v v s s (v, v ) s v s v v v s + s (v, v ) sel = s 1 c 1 s 2 c 2 s 3 s n 1 c n 1 s n (v, v ) t s i c i n v = v 1, v 2,, v n = v 2 < = i < = n s i 1 c i 1 s i (v i 1, v i) sel (v, v ) CSS sel p:v sel p v 1 CSS r r sel(r) r prop(r) sel sel head(sel) sel tail(sel) r = a b + c p:v sel(r) = a b + c prop(r) = p head(sel(r)) = a tail(sel(r)) = c CSS r tail(sel(r)) sel spec(sel) sel = a + c spec(sel) = 2 spec(sel) sel CSS CSS R CSS r R index R(r) R = [r, r, r ] index R(r) = 1 index R(r ) = 3 r R r R t t v CSS r R r v t v sel(r) (v, v) CSS r R sel(r ) v (v, v) prop(r) = prop(r ) (a) spec(sel(r)) > spec(sel(r )) (b) 1 CSS CSS CSS sel {p 1 : v 1, p 2 : v 2} CSS sel p 1 : v 1 sel p 2 : v 2

1 CSS DTD > + DTD DTD PSPACE ( 7) + - conp-hard ( 1) conp-hard ( 1) P NP ( 6) + - conp-hard ( 2) conp-hard ( 2) PSPACE ( 7) + - conp-hard ( 3) conp-hard ( 3) P NP ( 6) + - conp-hard ( 4) conp-hard ( 4) P NP ( 6) + + - conp-hard ( 2,4) conp-hard ( 2,4) + + + + - + + + + R1 PTIME ( 8) + + + + R2 PTIME ( 9) PSPACE ( 7) conp-hard ( 1 4) conp-hard ( 1 4) spec(sel(r)) = spec(sel(r )) index R(r) > index R(r ) CSS CSS CSS CSS {,>} > CSS 2. 2 DTD CSS DTD 2 D = (d, s) d Σ Σ s Σ a Σ d(a) a book DTD <!ELEMENT book (title, author+)> <!ELEMENT author (name, age)> <!ELEMENT title (#PCDATA)> <!ELEMENT name (#PCDATA)> <!ELEMENT age (#PCDATA)> DTD 2 (d, book) d(book) = title author + d(author) = name age d(title) = d(name) = d(age) = ϵ t DTD D = (d, s) t s t n d(l(n)) l(n 1)l(n 2) l(n m) t D n 1, n 2,, n m n R CSS r R. D t r r D R CSS DTD D CSS R CSS r R r D R 3. CSS CSS DTD DTD e Σ 1 e e DTD D D e e Kleene e DTD D D DTD D = (d, s) (1)b d(a) (2) c c a b d(c) b a a a a D 3. 1 CSS DTD CSS 1 CSS { } CSS DTD conp : 3DNF-tautology conp [15] CSS 3DNF-tautology 3DNF ϕ ϕ ϕ ϕ ϕ = (l 11 l 12 l 13) (l 21 l 22 l 23) (l m1 l m2 l m3) 3DNF l ij {x 1, x 2,, x n} ϕ (x 1 x 3 x 4) (x 1 x 4 x 3)

D t r 1, r 2,, r m 1 b ϕ ϕ CSS > conp 2 CSS {>} CSS DTD conp 2 1 2 ϕ DTD D CSS CSS R CSS r R DTD D = (d, s) d(s) = X 1T X 1F d(x 1T ) = d(x 1F ) = X 2T X 2F d(x 2T ) = d(x 2F ) = X 3T X 3F d(x n 1T ) = d(x n 1F ) = X nt X nf. d(x nt ) = d(x nf ) = b d(b) = ϵ 2 D X it x i X if x i D ϕ CSS R R = [r 1, r 2,, r m, r B] r i = L i1 L i2 L i3 b p:v i (1 < = i < = m) r B = b p:v L ij { X kt if l ij = x k L ij = (1< = i < = m, 1< = j < = 3) (1) X kf if l ij = x k ϕ r B D R ( ) ϕ ϕ (l i1 l i2 l i3) D t b CSS r i = L i1 L i2 L i3 b p:v i spec(r i) > spec(r B) r B b r B ( ) D t r B t b : 1 3DNF-tautology ϕ = (l 11 l 12 l 13) (l 21 l 22 l 23) (l m1 l m2 l m3) 3DNF DTD D = (d, s) 1 CSS R R = [r 1, r 2,, r m, r B] r B = b p:v r i (1 < = i < = m) > r i = L i1 > > > > L }{{} i2 > > > > }{{} > > dist(l i1, L i2) L i3 > > > > b p:v }{{} i > dist(l i3, b) dist(l i2, L i3) L ij (1) L ij {X kt, X kf } L ij+1 {X k T, X k F, b} dist(l ij, L ij+1) dist(l ij, L ij+1) { k k 1 if L ij+1 {X k = T, X k F } n k if L ij+1 = b n ϕ ϕ i (x 2 x 5 x 7) n = 9 r i = X 2T > > > X 5F > > X 7T > > > b p : v i (2) 1 ϕ r B D R CSS CSS conp 3 CSS { } CSS DTD conp : 1 3DNF-tautology ϕ = (l 11 l 12 l 13) (l 21 l 22 l 23) (l m1 l m2 l m3) 3DNF ϕ DTD D

3 3 4 DTD CSS CSS R CSS r R DTD D = (d, s) d(s) = (X 1T X 1F )(X 2T X 2F ) (X nt X nf )b d(x it ) = d(x if ) = ϵ (1 < = i < = n) d(b) = ϵ 3 D CSS R R = [r 1, r 2,, r m, r B] r i r B r i = L i1 L i2 L i3 b p:v i (1 < = i < = m) r B = b p:v L ij (1) 1 ϕ r B D R + CSS conp 4 CSS {+} CSS DTD conp : 3 ϕ = (l 11 l 12 l 13) (l 21 l 22 l 23) (l m1 l m2 l m3) 3DNF DTD D 3 CSS R R = [r 1, r 2,, r m, r B] r B = b p : v r i CSS r i = L i1 + + + + L }{{} i2 + + + + }{{} + + dist(l i1, L i2) L i3 + + + + b p:v }{{} i + dist(l i3, b) dist(l i2, L i3) L ij (1) dist() (2) ϕ r B D R 3. 2 CSS DTD DTD 3. 2. 1 DTD 5 CSS {,>,+, } CSS DTD P NP : NP DTD D = (d, s) CSS R CSS r R k < = n v 1 = v i1, v i2,, v ik = v n (i) (ii) path = v 1, v 2,, v n 4 (i) path D D t path path D v 1 t spath j = v ij, v ij +1,, v ij+1 j v ij j + 1 v ij+1 path 1 < = j < = k 1 spath j j i j < = h < = i j+1 1 v h+1 v h j i j < = h < = i j+1 1 v h+1 v h (ii) sel(r) path r R sel(r ) path prop(r ) = prop(r) (a)spec(sel(r )) > spec(sel(r)) (b)spec(sel(r )) = spec(sel(r)) index R(r ) > index R(r) (i) (ii) path D DTD path D (i) (ii) D R NP CSS P NP A A CSS 1 A (i) (ii) 2 (1) yes r r 3. 2. 2 DTD DTD 5 CSS r > + 5

6 Q a(b h ) Q b (c h ) 4 4 v 1, v 5, v 7, v 10 v 1 v 10 Q a M h (a) q 0 q s s δ a δ a M h (a) δ v δ a δ v δ v a Σ b d(a) c d(b) Q a b h Q a(b h ) Q a(b h ) = {q Q a q δ a(q, b h ), q Q a} 5 DTD (i) (ii) path path sel(r) (i) (ii) 6 CSS {>,+} CSS DTD P NP CSS DTD DTD 5 DTD D = (d, s) DTD d(s) = ab d(a) = ϵ d(b) = sc d(c) = ϵ D DTD D = (d, s) Σ DTD Σ v = {a v a Σ} Σ h = {a h a Σ} Σ v Σ h d(a) d(a) b b h d h (a) M h (a) = (Q a, Σ h, δ a, q0 a, F a) d h (a) ϵ NFA r CSS r D DTD NFAM M = (Q, Σ h Σ v, δ, q 0, F ) Q δ F Q Q = Q a {q 0, q s} a Σ q Q a(b h ) d h (a) b δ v(q, c v) c d(b) q Q a(b h ) c v Q b (c h ) 6) Q s(c h ) q = q s c d(s) Q b (c h ) a Σ d(a) b δ v(q, c v) = d(b) c q Q a(b h ) δ δ a δ v {q s} q = q 0 c = s v δ a(q, c) a Σ c Σ h q Q a δ(q, c) = δ v(q, c) a Σ c Σ v q Q a F r r = s 1c 1s 1 c n 1s n p : v F sel(r) c n 1 s n { q Q δ(q, (s n) v) c n 1 {, >} F = q Q δ(q, (s n) h ) c n 1 {+, } 5 r = a c p : v F = {q2} b 7 CSS {,>,+, } CSS DTD PSPACE : sel = s 1c 1s 2 c n 1s n sel re(sel) re(sel) = c 0s 1c 1s 2 c n 1s n

0 < = i < = n (Σ v) (a) i = 0 c (b) i > i = = 1 c i 1 = (Σ h ) c i 1 = ϵ c i 1 {>, +} 1 < = i < = n (s i) v s i Σ i = 1 c i 1 {, >} s i = a Σa v s i = c i 1 {, >} (s i) h s i Σ c i 1 {+, } a Σa h s i = c i 1 {+, } sel = a b > c re(sel) = (Σ v) a v(σ h ) b h c v DTD r R DTD D R 1 D DTD M 2 sel(r) re(sel(r)) 3 r 1, r 2,, r k R r CSS 1 < = i < = k tail(sel(r i)) = tail(sel(r)) prop(r i) = prop(r) (a) spec(sel(r i)) > spec(sel(r)) (b) spec(sel(r i)) = spec(sel(r)) index R(r i) > index R(r) 1 < = i < = k sel(r i) re(sel(r i)) 4 L(re(sel(r))) L(M) = L(re(sel(r i))) L(M). 1< = i< = k r (4) PSPACE [16] PSPACE 4. CSS CSS 1 DTD DTD 4. 1 CSS R CSS r R CSS R r C R(r) C R(r) = {r R tail(sel(r)) = tail(sel(r )), prop(r) = prop(r ), 7 DTD spec(sel(r )) > spec(sel(r)) (spec(sel(r )) = spec(sel(r)) index R(r ) > index R(r))}. 8 D DTD R CSS r R CSS R1 r D R R1: C R(r) = : 7 r re(sel(r)) R1 r re(sel(r)) D DTD 4. 2 CSS C R(r) = 2 DTD CSS D = (d, s) Σ DTD D DTD G(D) (V, E) V = Σ E = {l l l d(l) } D = (d, a) d(a) = bc + d(c) = fe d(e) = c d(b) = d(f) = ϵ DTD D DTD 7 CSS r G(D) s head(sel(r)) tail(sel(r)) r R2 R2: len(sel(r)) < = 2 r C R(r) len(sel(r )) = 2 R2 C R(r) CSS c CR(r) c CR(r) c = {r C R(r) cmb(sel(r )) = c} c {, >,, +} cmb(sel(r )) sel(r ) len(sel(r )) = 2 sel(r ) 1

head(c c R(r)) = {head(sel(r )) r C c R(r)} R = [r 1, r 2, r 3, r 4] r 1 = a b p:v 1, r 2 = b p:v 2 r 3 = c b p : v 3 r 4 = d b p : v 4 C R(r 1) = {r 3, r 4} head(c R (r 1)) = {c, d} 8 cmb(sel(r)) = R2 len(sel(r)) = 2 sel(r) (2) Skip head(c R (r)) G(D) (3) (5) G(D) head(sel(r)) tail(sel(r)) r CSS p DTD D = (d, s), R2 CSS R CSS r R 1 D DTD G(D) 2 Skip head(c R (r)) 3 G(D) s head(sel(r)) Skip head(sel(r)) s 4 G(D) head(sel(r)) tail(sel(r)) Skip tail(sel(r)) head(sel(r)) 5 G(D) 3 tail(sel(r)) e a e (4) b e / head(c > R (r)) c L(d(e)) str str tail(sel(r)) head(c + R (r)) str tail(sel(r)) head(cr (r)) str tail(sel(r)) 6 8 CheckUnsatisfiability 9 D DTD R CSS r R CSS R2 r D R CheckUnsatisfiability CheckUnsatisfiability O( D + R ) D = d(a) d(a) a Σ d(a) 5. DTD CSS CSS first-child last-child R1 R2 CSS [1] N. Walsh, DocBookCssStylesheets. https://github.com/ docbook/wiki/wiki/docbookcssstylesheets/. [2] B. Bos, D. Carlisle, P.D.F. Ion, B.R. Miller, and eds., A MathML for CSS profile,. https://www.w3.org/tr/mathmlfor-css/. [3] P. Geneves, N. Layaida, and V. Quint, On the analysis of cascading style sheets, Proceedings of the 21st International Conference on World Wide Web, pp.809 818, 2012. [4] M. Bosch, P. Genevès, and N. Layaïida, Automated refactoring for size reduction of CSS style sheets, Proceedings of the 2014 ACM Symposium on Document Engineering, pp.13 16, 2014. [5] D. Mazinanian, N. Tsantalis, and A. Mesbah, Discovering refactoring opportunities in cascading style sheets, Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp.496 506, 2014. [6] D. Mazinanian and N. Tsantalis, Migrating cascading style sheets to preprocessors by introducing mixins, Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, pp.672 683, 2016. [7] Firebug Working Group, FireBug. https://www.getfirebug.com/. [8] Google Inc., Chrome developer tools. https://developers. google.com/web/tools/chrome-devtools/. [9] M. Hague, A.W. Lin, and C.H.L. Ong, Detecting redundant CSS rules in HTML5 applications: A tree rewriting approach, SIGPLAN Not., vol.50, no.10, pp.1 19, Oct. 2015. [10] A. Mesbah and S. Mirshokraie, Automated analysis of CSS rules to support style maintenance, Proceedings of the 34th International Conference on Software Engineering, pp.408 418, 2012. [11] M. Benedikt, W. Fan, and F. Geerts, XPath satisfiability in the presence of DTDs, J. ACM, vol.55, no.2, pp.8:1 8:79, May 2008. [12] M. Montazerian, P.T. Wood, and S.R. Mousavi, XPath query satisfiability is in ptime for real-world DTDs, Proceedings of the 5th International Conference on Database and XML Technologies, pp.17 30, 2007. [13] N. Suzuki, Y. Fukushima, and K. Ikeda, Satisfiability of simple XPath fragments under duplicate-free DTDs, IE- ICE Transactions, vol.96-d, no.5, pp.1029 1042, 2013. [14] Y. Ishihara, N. Suzuki, K. Hashimoto, S. Shimizu, and T. Fujiwara, XPath satisfiability with parent axes or qualifiers is tractable under many of real-world DTDs, Proceedings of the 14th International Symposium on Database Programming Languages, 2013. [15] M. Garey and D. Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979. [16] L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time(preliminary report), Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, pp.1 9, 1973.