Models for Probabilistic Programs with an Adversary

Σχετικά έγγραφα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Lecture 2. Soundness and completeness of propositional logic

Fractional Colorings and Zykov Products of graphs

Bounding Nonsplitting Enumeration Degrees

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

EE512: Error Control Coding

Example Sheet 3 Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

2 Composition. Invertible Mappings

The challenges of non-stable predicates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 8.3 Trigonometric Equations

The Simply Typed Lambda Calculus

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Solutions to Exercise Sheet 5

C.S. 430 Assignment 6, Sample Solutions

Approximation of distance between locations on earth given by latitude and longitude

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

CRASH COURSE IN PRECALCULUS

Problem Set 3: Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math 6 SL Probability Distributions Practice Test Mark Scheme

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Congruence Classes of Invertible Matrices of Order 3 over F 2

Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Abstract Storage Devices

Chap. 6 Pushdown Automata

CE 530 Molecular Simulation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.6 Autoregressive Moving Average Model ARMA(1,1)

5. Choice under Uncertainty

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

TMA4115 Matematikk 3

Homework 8 Model Solution Section

Section 7.6 Double and Half Angle Formulas

From the finite to the transfinite: Λµ-terms and streams

Notes on the Open Economy

Μηχανική Μάθηση Hypothesis Testing

Uniform Convergence of Fourier Series Michael Taylor

Solution Series 9. i=1 x i and i=1 x i.

Homework 3 Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Srednicki Chapter 55

[1] P Q. Fig. 3.1

Math221: HW# 1 solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Lecture 13 - Root Space Decomposition II

Distances in Sierpiński Triangle Graphs

Reminders: linear functions

PARTIAL NOTES for 6.1 Trigonometric Identities

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Mean-Variance Analysis

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

the total number of electrons passing through the lamp.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ST5224: Advanced Statistical Theory II

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Elements of Information Theory

Repeated measures Επαναληπτικές μετρήσεις

If we restrict the domain of y = sin x to [ π 2, π 2

ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ

The ε-pseudospectrum of a Matrix

12. Radon-Nikodym Theorem

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Concrete Mathematics Exercises from 30 September 2016

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Example of the Baum-Welch Algorithm

Αλγόριθμοι και πολυπλοκότητα NP-Completeness

Transcript:

Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Interactive Proofs 2/47

Graph Non-Isomorphism A 4 B E 3 5 C D 1 2 3/47

Graph Non-Isomorphism A 4 B E 3 5 C D 1 2 3/47

Graph Non-Isomorphism A 4 B E 3 5 C D 1 2 α γ δ ɛ β 3/47

Graph Non-Isomorphism A 4 B E 3 5 C D 1 2 α γ δ ɛ β 3/47

Arthur Merlin Games 4/47

Arthur Merlin Games 4/47

Arthur Merlin Games 4/47

Arthur Merlin Games 4/47

Arthur Merlin Games 4/47

Arthur Merlin Games 4/47

Why Should We Care? Mixing probability and nondeterminism is powerful. Private vs. public coins matter. 5/47

Let s Start with a Deterministic Semantics... skip / σ σ σ(a) = n x := a / σ σ[x n] c 1 / σ σ c 2 / σ σ c 1 ; c 2 / σ σ σ(b) = T c 1 / σ σ if b then c 1 else c 2 / σ σ 6/47

For Point Distributions Θ ::= [σ] Θ p Θ skip / [σ] [σ] [σ](a) = n x := a / [σ] [σ[x n]] c 1 / [σ] Θ c 2 / Θ Θ c 1 ; c 2 / [σ] Θ σ(b) = T c 1 / [σ] Θ if b then c 1 else c 2 / [σ] Θ 7/47

Toss in Some Probability Θ ::= [σ] Θ p Θ c 1 / [σ] Θ 1 c 2 / [σ] Θ 2 (c 1 p c 2 ) / [σ] Θ 1 p Θ 2 8/47

Toss in Some Probability Θ ::= [σ] Θ p Θ c 1 / [σ] Θ 1 c 2 / [σ] Θ 2 (c 1 p c 2 ) / [σ] Θ 1 p Θ 2 [σ] (x := 0 1 3 x := 1) 1/3 σ[x 0] σ[x 1] 8/47

And Lift! c / Θ 1 Θ 1 c / Θ 2 Θ 2 c / Θ 1 p Θ 2 Θ 1 p Θ 2 9/47

And Lift! c / Θ 1 Θ 1 c / Θ 2 Θ 2 c / Θ 1 p Θ 2 Θ 1 p Θ 2 1/3 y := 5 1/3 σ 1 σ 2 σ 1 [y 5] σ 2 [y 5] 9/47

The Toss Command 1/3 c 1 1 5 c 2 1/5 1/2 c 1 σ 1 c 2 σ 1 1/5 1/5 c 1 σ 2 c 2 σ 2 c 1 σ 3 c 2 σ 3 10/47

The Skip Command 1/3 1/3 σ 1 1/2 σ 1 1/2 skip σ 2 σ 3 σ 2 σ 3 skip skip 11/47

More Direct 1/3 1/3 σ 1 1/2 skip σ 1 1/2 σ 2 σ 3 σ 2 σ 3 12/47

Direct Semantics skip / Θ Θ σ(a) = n x := a / Θ Θ[σ i (x) n] c 1 / Θ Θ c 2 / Θ Θ c 1 ; c 2 / Θ Θ Pr b (Θ 1 ) = 1 c 1 / Θ 1 Θ 1 c 2 / Θ 0 Θ 0 Pr b (Θ 0 ) = 0 if b then c 1 else c 2 / Θ 1 p Θ 0 Θ 1 p Θ 0 c 1 / Θ Θ 1 c 2 / Θ Θ 2 (c 1 p c 2 ) / Θ Θ 1 p Θ 2 13/47

Direct Toss 1/5 c 1 1 5 c 2 c 1 1/3 c 2 1/3 σ 1 1/2 σ 1 1/2 σ 2 σ 3 σ 2 σ 3 14/47

The Distinction Recursive c 1 / [σ] Θ 1 c 2 / [σ] Θ 2 (c 1 c 2 ) / [σ] Θ 1 (c 1 c 2 ) / [σ] Θ 2 vs. c 1 / Θ Θ 1 c 2 / Θ Θ 2 (c 1 c 2 ) / Θ Θ 1 (c 1 c 2 ) / Θ Θ 2 Direct 15/47

Let s Play a Game! 16/47

Let s Play a Game! P:= 1 3 ( 1 2 ) O:= 17/47

Let s Play a Game! c 1 P:= 1 3 ( 1 2 ) c 2 O:= 17/47

Direct Play c 1 : P:= 1 3 ( 1 2 ) 18/47

Direct Play c 1 : P:= 1 3 ( 1 2 ) 1/3 1/2 18/47

Direct Play c 2 : O:= c 2 1/3 1/2 18/47

Direct Play c 2 : O:= 1/3 1/2 18/47

Direct Play c 2 : O:= 1/3 1/2 18/47

Direct Play c 2 : O:= 1/3 L 1/2 T W 18/47

Recursive Play c 1 : P:= 1 3 ( 1 2 ) 19/47

Recursive Play c 1 : P:= 1 3 ( 1 2 ) 1/3 1/2 19/47

Recursive Play c 2 : O:= c 2 1/3 1/2 19/47

Recursive Play c 2 : O:= 1/3 c 2 1/2 c 2 c 2 19/47

Recursive Play c 2 : O:= 1/3 1/2 19/47

Recursive Play c 2 : O:= 1/3 L 1/2 L L 19/47

Knowledge The two levels of operational semantics reflect whether the adversary knows the outcome of coin flips. 20/47

Levels of Knowledge 1. Adversary is blind to probabilistic outcomes. Single choice in ((c 1 c 2 ) (c 1 c 2 )) Distinct choices in ((c1 c 2 ) (c 1 c 2 )) (Direct) 2. Adversary can see current program state 3. Adversary recalls program history (Recursive) 4. Adversary can foresee all outcomes. Single coin flip in ((c 1 c 2 ) (c 1 c 2 )) Distinct coin flips in ((c 1 c 2 ) (c 1 c 2 )) 21/47

Levels of Knowledge 1. Adversary is blind to probabilistic outcomes. Single choice in ((c 1 c 2 ) (c 1 c 2 )) Distinct choices in ((c1 c 2 ) (c 1 c 2 )) (Direct) 2. Adversary can see current program state 3. Adversary recalls program history (Recursive) 4. Adversary can foresee all outcomes. Single coin flip in ((c 1 c 2 ) (c 1 c 2 )) Distinct coin flips in ((c 1 c 2 ) (c 1 c 2 )) 21/47

Levels of Knowledge 1. Adversary is blind to probabilistic outcomes. Single choice in ((c 1 c 2 ) (c 1 c 2 )) Distinct choices in ((c1 c 2 ) (c 1 c 2 )) (Direct) 2. Adversary can see current program state 3. Adversary recalls program history (Recursive) 4. Adversary can foresee all outcomes. Single coin flip in ((c 1 c 2 ) (c 1 c 2 )) Distinct coin flips in ((c 1 c 2 ) (c 1 c 2 )) 21/47

Levels of Knowledge 1. Adversary is blind to probabilistic outcomes. Single choice in ((c 1 c 2 ) (c 1 c 2 )) Distinct choices in ((c1 c 2 ) (c 1 c 2 )) (Direct) 2. Adversary can see current program state 3. Adversary recalls program history (Recursive) 4. Adversary can foresee all outcomes. Single coin flip in ((c 1 c 2 ) (c 1 c 2 )) Distinct coin flips in ((c 1 c 2 ) (c 1 c 2 )) 21/47

So... What can we verify? 22/47

Verification: Direct {P} c 1 {Q} {P} (c 1 {P} c 2 {Q} c 2 ) {Q} 23/47

Verification: Recursive {True} b := T {Pr(b) = 1} {True} b := F {Pr(b) = 0} {True} (b := T b := F) {Pr(b) = 1 Pr(b) = 0} 24/47

Verification: Recursive 1/2 b = b = {True} b := T {Pr(b) = 1} {True} b := F {Pr(b) = 0} {True} (b := T b := F) {Pr(b) = 1 Pr(b) = 0} 24/47

Verification: Recursive 1/2 b = T b = F {True} b := T {Pr(b) = 1} {True} b := F {Pr(b) = 0} {True} (b := T b := F) {Pr(b) = 1 Pr(b) = 0} 24/47

Verification: Recursive 1/2 b = T b = F {True} b := T {Pr(b) = 1} {True} b := F {Pr(b) = 0} {True} (b := T b := F) {Pr(b) = 1 Pr(b) = 0} 24/47

Verification: Recursive 1/2 b = T b = F {True} b := T {Pr(b) = 1} {True} b := F {Pr(b) = 0} {True} (b := T b := F) {Pr(b) = 1 Pr(b) = 0} Q cannot include disjunctions 24/47

Verification: Recursive {Pr(b) = 1 2 } skip {Pr(b) = 1 2 } {Pr(b) = 1 2 } b := b {Pr(b) = 1 2 } {Pr(b) = 1 2 } (skip b := b) {Pr(b) = 1 2 } 25/47

Verification: Recursive 1/2 b = T b = F {Pr(b) = 1 2 } skip {Pr(b) = 1 2 } {Pr(b) = 1 2 } b := b {Pr(b) = 1 2 } {Pr(b) = 1 2 } (skip b := b) {Pr(b) = 1 2 } 25/47

Verification: Recursive 1/2 b = F b = F {Pr(b) = 1 2 } skip {Pr(b) = 1 2 } {Pr(b) = 1 2 } b := b {Pr(b) = 1 2 } {Pr(b) = 1 2 } (skip b := b) {Pr(b) = 1 2 } 25/47

Verification: Recursive 1/2 b = F b = F {Pr(b) = 1 2 } skip {Pr(b) = 1 2 } {Pr(b) = 1 2 } b := b {Pr(b) = 1 2 } {Pr(b) = 1 2 } (skip b := b) {Pr(b) = 1 2 } 25/47

Verification: Recursive 1/2 b = F b = F {Pr(b) = 1 2 } skip {Pr(b) = 1 2 } {Pr(b) = 1 2 } b := b {Pr(b) = 1 2 } {Pr(b) = 1 2 } (skip b := b) {Pr(b) = 1 2 } P cannot include probabilities in (0, 1) 25/47

Verification: Recursive {P} c 1 {Q} non-probabilistic P non-disjunctive Q {P} (c 1 c 2 ) {Q} {P} c 2 {Q} 26/47

Compositionality (c 1 c 2 ); (c 3 c 4 ) 27/47

Compositionality {P} (c 1 c 2 ); (c 3 c 4 ) {R} 27/47

Compositionality {P} (c 1 c 2 ) {Q} (c 3 c 4 ) {R} 27/47

Compositionality {P} (c 1 c 2 ) {Q} (c 3 c 4 ) {R} 27/47

Compositionality non-probabilistic P non-disjunctive Q {P} (c 1 c 2 ) {Q} (c 3 c 4 ) {R} 27/47

Compositionality non-probabilistic P non-disjunctive Q {P} (c 1 c 2 ) {Q} (c 3 c 4 ) {R} 27/47

Compositionality non-probabilistic P non-disjunctive Q non-probabilistic Q non-disjunctive R {P} (c 1 c 2 ) {Q} (c 3 c 4 ) {R} 27/47

Compositionality non-probabilistic P non-disjunctive Q non-probabilistic Q non-disjunctive R {P} (c 1 c 2 ) {Q} (c 3 c 4 ) {R} 27/47

Applications Are private coins applicable? 28/47

Game Theory Theorem (Minimax Theorem) For every two-person, zero-sum game with finitely many strategies, there exists a value V and a mixed strategy for each player, such that 1. Given player 2 s strategy, the best payoff possible for player 1 is V, and 2. Given player 1 s strategy, the best payoff possible for player 2 is V. 29/47

Game Theory game program with nondeterminism 30/47

Game Theory game program with nondeterminism zero sum returns a single value 30/47

Game Theory game program with nondeterminism zero sum returns a single value finitely many strategies no unbounded loops 30/47

Game Theory game program with nondeterminism zero sum returns a single value finitely many strategies no unbounded loops mixed strategy choice of p, q, r annotating the s 30/47

Game Theory Theorem (Minimax Theorem Restated) Any finite program combining probability and nondeterminism with a single output value has a dual program with the probabilistic and nondeterministic choices inverted, that returns the same value in the worst case. 31/47

Game Theory Questions Can we use this to find and prove Nash Equilibria in games? Does this yield useful generalizations of Nash Equilibrium? Can we discover useful compositionality results from this formulation? 32/47

More Open Questions How does a semantics using infinite bit streams compare to our distribution semantics? Can we enumerate the possible interactions between probability and nondeterminism via algebraic equivalences? Can we extend KAT to probabilistic-nondeterministic programs? Can we translate between Direct and Recursive Semantics? 33/47

Thank You Questions? 34/47

Thank You Questions? Answers? 34/47

Thank You Questions? Answers? Rebuttals? 34/47