Errata 18/05/2018. Chapter 1. Chapter 2

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Space-Time Symmetries

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Derivation of Optical-Bloch Equations

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Srednicki Chapter 55

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Congruence Classes of Invertible Matrices of Order 3 over F 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Galatia SIL Keyboard Information

derivation of the Laplacian from rectangular to spherical coordinates

Math 6 SL Probability Distributions Practice Test Mark Scheme

2 Composition. Invertible Mappings

Finite Field Problems: Solutions

C.S. 430 Assignment 6, Sample Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Solar Neutrinos: Fluxes

Section 7.6 Double and Half Angle Formulas

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homework 8 Model Solution Section

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

How to register an account with the Hellenic Community of Sheffield.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Constitutive Relations in Chiral Media

The Simply Typed Lambda Calculus

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Strain gauge and rosettes

Analytical Expression for Hessian

w o = R 1 p. (1) R = p =. = 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

EE512: Error Control Coding

the total number of electrons passing through the lamp.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Non-Abelian Gauge Fields

Second Order RLC Filters

Lecture 34 Bootstrap confidence intervals

( ) 2 and compare to M.

Numerical Analysis FMN011

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Symmetric Stress-Energy Tensor

Tridiagonal matrices. Gérard MEURANT. October, 2008

ST5224: Advanced Statistical Theory II

3+1 Splitting of the Generalized Harmonic Equations

Approximation of distance between locations on earth given by latitude and longitude

Variational Wavefunction for the Helium Atom

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jordan Form of a Square Matrix

Second Order Partial Differential Equations

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Heisenberg Uniqueness pairs

Partial Trace and Partial Transpose

[1] P Q. Fig. 3.1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Bounding Nonsplitting Enumeration Degrees

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CRASH COURSE IN PRECALCULUS

2.1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

6.4 Superposition of Linear Plane Progressive Waves

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

The challenges of non-stable predicates

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version ΗΜΙΤΕΛΗΣ!!!!

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Matrices and Determinants

Assalamu `alaikum wr. wb.

Math221: HW# 1 solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Solutions to Exercise Sheet 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Fractional Colorings and Zykov Products of graphs

Section 8.3 Trigonometric Equations

Correction Table for an Alcoholometer Calibrated at 20 o C

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

On the Galois Group of Linear Difference-Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Three coupled amplitudes for the πη, K K and πη channels without data

Other Test Constructions: Likelihood Ratio & Bayes Tests

Transcript:

Errata 8/05/08 Fundamentals of Neutrino Physics and Astrophysics C. Giunti and C.W. Kim Oxford University Press publication date: 5 March 007; 78 pages ± Lines are calculated before or after + the Anchor. If the Anchor is a page, t and b indicate, respectively, top and bottom. page iii t + 5 Universita Università Chapter page 4 b 9 967 96 Chapter eqn.3 eqn.89 /p P mγ 0 u h p P = 0 /p mγ 0 u h p P = 0 eqn.76 + following eqn.76 following eqn.78 eqn.36 transform as transform as normal ordering is implicitly assumed eqn.378 a parity transformation a passive parity transformation eqn.385 he transformation he active transformation eqn.404 he transformation he active transformation eqn.408 transform as transform as normal ordering is implicitly assumed eqn.44 V µ A µ W µ V ba µ A ba µ W µ eqn.44 V ba µ Aba µ W µ V µ A µ W µ eqn.46 a time reversal a passive time reversal eqn.46 x µ = x0, x = x µ x µ = x0, x = x µ eqn.44 the transformation the active transformation

Chapter eqn.434 eqn.435 V µ = S = ξ a ξb ψ bψ a = S = ξ ξ a ξs b aξb ψ a ψ b = ba ξξ a b S ξb V ba µ eqn.436 µν = ξ a eqn.437 eqn.438 eqn.439 eqn.440 ξ a ξ b ba µν ξb ψ bγ µ ψ a = ξb ψ bσ µν ψ a = A µ = ξb ψ bγ µ γ 5 ψ a = ξb Aba µ V µ = ξ aξb ψ aγ µ ψ b = ξ aξb V µ µν = ξ a ξb ξ a ξ b µν ψ aσ µν ψ b = A µ = ξ a ξb ψ aγ µ γ 5 ψ b = ξ aξb A µ P = ξ a ξb ψ bγ 5 ψ a = P = ξ ξ a ξp b aξb ψ a γ 5 ψ b = ba ξξ a b P W µ ξ W W µ W µ ξ W ξ a ξb ξw V µ A µ W µ + ξξ a b ξ W ξ aξb ξw V Vµ ba A ba µ W µ ξξ b W V ba ξ a W µ µ A µ µ A ba µ W µ + W µ

Chapter eqn.454 transform as transform as normal ordering is implicitly assumed eqn.454 S CP = CP ξb CP ψ aψ b = CP ξb CP S eqn.455 V µ CP = ξcp a ξb CP ψ aγ µ ψ b = ξcp a ξb CP V µ eqn.456 µν CP = CP ξb CP ψ aσ µν ψ b = CP ξb CP µν eqn.457 A µ CP = ξ a CP ξb CP ψ aγ µ γ 5 ψ b = ξ a CP ξb CP Aµ eqn.458 P CP = CP ξb CP ψ aγ 5 ψ b = CP ξb CP P eqn.458 + Since all the covariant bilinears are left invariant by a CP transformation, apart for a possible irrelevant phase which is the same for the vector and axial currents, any possible interaction Lagrangian is invariant under CP, in agreement with the CP theorem, which says that CP is a symmetry of any relativistic local field theory. S CP = ξ a CP ξb CP ψ bψ a = ξ a CP ξb CP S ba V µ CP = ξ a CP ξb CP ψ bγ µ ψ a = ξcp a ξb CP V µ ba µν CP = ξcp a ξb CP ψ bσ µν ψ a = ξ a CP ξb CP µν ba A µ CP = ξcp a ξb ξcp a ξb CP Aµ ba P CP = ξ a CP ξb CP ψ bγ µ γ 5 ψ a = CP ψ bγ 5 ψ a = ξcp a ξb CP P ba Choosingξ a CP = ξb CP, CP transforms each covariant bilinear into its Hermitian conjugate, with a minus sign for V µ,aµ and P. Since an interaction Lagrangian containing a covariant bilinear must contain also its Hermitian conjugate the Lagrangian is Hermitian, it is invariant under CP. he minus sign in the transformation ofv µ, Aµ and P is compensated by a corresponding minus sign in the transformation of the fields to which they are coupled. he invariance under CP of any interaction Lagrangian containing a covariant bilinear is in agreement with the CP theorem, which says that CP is a symmetry of any relativistic local field theory. 3

Chapter eqn.487 fp,h = fp,h = EV ah p 0, EV bh p 0 fp,h = EV a h p 0, fp,h = EV b h p 0 Chapter 3 eqn 3.44 eqn 3. k his equation is wrong. Erase all the sentence. [ I k I k + ] [ I3 k v k k I k I k + ] I k 3 vk k I k 3 v k k I k 3 vk eqn 3.99 + ε 0 µ p p = ω ε 0 p p = ω eqn 3.99 + ε µ p p = ε µ p p = 0 ε p p = ε p p = 0 eqn 3.99 + ε 3 µ p p = ω ε 3 p p = ω Chapter 4 cosϑe eqn 4. iω sinϑe iω +η cosϑe iω sinϑe iω η cosϑe iω ω 0 e iω 0 eqn 4.3 0 ω 0 e ω eqn 4.6 W 3 = W 3 ϑ 3,η 3 = D η 3 R 3 D η 3 sinϑe iω +η sinϑe iω η cosϑe iω W 3 = W 3 ϑ 3,η 3 η η 3 eqn 4.78 η 3 η 3 η η 3 eqn 4.08 + One can parameterize the mixing matrix as a product of the type in eqn 4.65 with W ϑ = π/,η on the extreme left or the extreme right. Using IfW ϑ = π/,η is on the extreme left or on the extreme right of the product in eqn 4.45 which parameterizes the mixing matrix, using eqn 4.78 δ 3 = η 3 δ 3 = η 3 +η +η 3 eqn 4.7 + eqn 4.5 eqn 4.6 4

Chapter 5 eqn 5.0 eqn 5. eqn 5.37 + th e g νe = g νe g νe = +g νe g νe = g νe g νe = g νe = 0.9 GeV Eth eqn 5.50 A π l ν l Aūd l ν l ν = 0.9 GeV eqn 5.50 u ν p ν γ ρ γ 5 v l p l u l p l γ ρ γ 5 v ν p ν eqn 5.5 v u p u γ ρ γ 5 u d p d m π 0 h ρ W 0 π p π eqn 5.5 + he factor/m π serves to keep the dimensions right the left-hand side has dimension of energy, the current h ρ W has dimension ofe 3, and the one-pion state has dimension of E, with the normalization π p π π p π = π 3 E π δ 3 p π p π as the one-fermion state in eqn.34. eqn 5.54 eqn 5.55 v u p u γ ρ γ 5 u d p d = 0 h ρ W 0 ūp u,dp d 0 h ρ W 0 π p π Note the change of dimensions in Eq. 5.5: the left-hand side has dimension of energy E, whereas the right-hand side has dimension ofe the current h ρ W has dimension ofe 3, and each one-particle state of a fermion or a boson has dimension ofe. In this way, the amplitude acquires the correct dimension ofe needed in eqn E.44 for a two-body decay rate. u ν p ν / p π γ 5 v l p l m π u l p l /p π γ 5 v ν p ν m l u ν p ν +γ 5 v l p l m π m l u l p l +γ 5 v ν p ν eqn 5.83 v ρ x v ρ W x eqn 5.84 a ρ x a ρ W x eqn 5.86 v ρ 0 v ρ W 0 eqn 5.4 Q 6 rn i G N i 0 Q 6 rn i eqn 5.47 Erase in the loratory frame. eqn 5.47 eqn 5.54 eqn 5.87 p Ni eqn 5.5 4 + Q 4m N p N G P 4 + Q G 4m P N 5

Chapter 5 eqn 5.60 G F V ud m N 4π G F V ud m N 4π eqn 5.87 + A ZN, B ZN, and C ZN A N, B N, and C N eqn 5.56 eqn 5.57 eqn 5.58 F,Q ZN F,q ZN F,Q ZN = xfzn,q F,q ZN = xf,q ZN F3,Q ZN F3,q ZN Chapter 6 eqn 6. L αl L αl eqn 6.69 iγµ ν L i / ν L page 08 t + 5 [53,79,79,408] [53,79,N,408] New Reference: [N] P. Langacker, M.-X. Luo, Phys. Rev. D44, 87, 99. eqn 6.06 ν L ML Cν L ν L ML Cν L eqn 6.0 ν L W L ML W L Cν L ν L W L ML W L Cν L eqn 6. +5 M l. M l = 0. page 7 t + [53,79,79,408] [53,79,N,408] page 8 b [84] [N,N3] New References: [N] G. Lazarides, Q. Shafi, C. Wetterich, Nucl. Phys. B8, 87, 98. [N3] R.N. Mohapatra and G. Senjanovic, Phys. Rev. D3 65, 98. eqn 6.345 n i M n i n M eqn 6.48 l αl γ ρ U αk ν kl l αl γ ρ U αk ν kl W ρ eqn 6.48 l L γ ρ U n L l L γ ρ U n L W ρ n 6

Chapter 7 [ ] [ ] L/E L/E eqn 7.95 exp σl/e exp L/E L/E σl/e eqn 7.97 +6 eqn 7.70 eqn 7.93 eqn 7.3 m m kj twice eqn 7.56 + j NA k>n A Im... j N A Chapter 8 eqn 8.9 M P αk ormd αk M P αk and MD αk eqn 8.77 +3 σ I t σi p σ I t σi x page 309 t+3 eqn 8.5 eqn 8.4 eqn 8.44 twice m Chapter 9 m kj eqn 9. G F G F eqn 9. G F G F eqn 9.57 σ M = U M σ FU M = H M σ M = U M σ FU M Chapter 0 k>n A Im... eqn 0.70 3 as an effectively incoherent sum as effectively incoherent sums Chapter eqn.67 R multi-gev µ/e R sub-gev µ/e Chapter eqn.3 Neglecting the small recoil energy of the neutron, the he 7

Chapter 3 page 476 b 9 m 3 03 ev m 3 0 3 ev Chapter 6 eqn 6.40 = eqn 6.90 + χ-dec χ decoupling = χ-dec γ at the eqn 6.3 +6 because γ is the monopole moment of the temperature: γ = γ θ,φyl m θ,φ dcosθ dφ. eqn 6.3 + the wavelength of each Fourier mode χ-dec χ = χ-dec γ becausey0 0 = / 4π and γ = γ θ,φ dcosθ dφ. 4π the amplitude of each wavelength Chapter 7 eqn 7.3.3 0 4 Ω 0 M. 0 4 Ω 0 M eqn 7.49 9 He H eqn 7.70 +6 an upper limit a lower limit Appendix A δ eqn A.9 ǫ ijk ǫ lmn = il δ im δ in δ δ jl δ jm δ in δ kl δ km δ kn ǫ ijk ǫ lmn = il δ im δ in δ jl δ jm δ jn δ kl δ km δ kn σ eqn A.05 σd 0k = iαk D = i k 0 0 σ 0 σ k σd 0k = iαk D = i k σ k 0 Appendix B eqn B.7 g αρ Λ ρ µ g µν Λ ρ ν = δ α ν g αρ Λ ρ µ g µν Λ ν σ = δ α σ 8

Appendix C eqn C. [ψ r t, x, π s t, y] ± = iδ rs δ 3 x y eqn C. [ψ r t, x, ψ s t, y] ± = [π r t, x, π s t, y] ± = 0 [ψ r t, x, π s t, y] ± = iδ rs δ 3 x y [ψ r t, x, ψ s t, y] ± = [π r t, x, π s t, y] ± = 0 Bibliography Ref. [83] J. Phys. Conf. Ser., 53, 44-8, 006 page 693 [73] and [73] are the same Ann. Rev. Nucl. Part. Sci., 56, 569-68, 006 9