Approximations for the distribution of the discrete scan statistics when the scanning window has arbitrary shape

Σχετικά έγγραφα
Discrete scan statistics with windows of arbitrary shape

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

Solution Series 9. i=1 x i and i=1 x i.

Biostatistics for Health Sciences Review Sheet

Statistical Inference I Locally most powerful tests

Μηχανική Μάθηση Hypothesis Testing

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Reminders: linear functions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Numerical Analysis FMN011

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2 Composition. Invertible Mappings

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fractional Colorings and Zykov Products of graphs

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Example Sheet 3 Solutions

Probability and Random Processes (Part II)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.3 Forecasting ARMA processes

5.4 The Poisson Distribution.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Matrices and Determinants

Homework 8 Model Solution Section

Homework 3 Solutions

Parametrized Surfaces

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Problem Set 3: Solutions

5. Choice under Uncertainty

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Lecture 34 Bootstrap confidence intervals

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

C.S. 430 Assignment 6, Sample Solutions

Section 8.3 Trigonometric Equations

Fundamentals of Probability: A First Course. Anirban DasGupta

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

TMA4115 Matematikk 3

Abstract Storage Devices

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

SOME PROPERTIES OF FUZZY REAL NUMBERS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

New bounds for spherical two-distance sets and equiangular lines

ER-Tree (Extended R*-Tree)

Jordan Form of a Square Matrix

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Module 5. February 14, h 0min

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Optimal Impartial Selection

Supplementary Appendix

A summation formula ramified with hypergeometric function and involving recurrence relation

Every set of first-order formulas is equivalent to an independent set

FORMULAS FOR STATISTICS 1

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Bayesian modeling of inseparable space-time variation in disease risk

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Theorem 8 Let φ be the most powerful size α test of H

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Areas and Lengths in Polar Coordinates

Lecture 12: Pseudo likelihood approach

Lecture 21: Properties and robustness of LSE

Approximation of distance between locations on earth given by latitude and longitude

Section 9.2 Polar Equations and Graphs

Tridiagonal matrices. Gérard MEURANT. October, 2008

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Quick algorithm f or computing core attribute

An Inventory of Continuous Distributions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Transcript:

Approximations for the distribution of the discrete scan statistics when the scanning window has arbitrary shape Alexandru Am rioarei National Institute of Research and Development for Biological Sciences The 9 th Conference of the Romanian Society of Probability and Statistics 27-28 May, 206, Bucure³ti, România A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 / 34

A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 2 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Introduction Framework A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 3 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Introduction Framework A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 4 / 34 Denitions and notations

Introduction Framework A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 5 / 34 Preliminary notations Let T, T 2 be positive integers.. s. T s 2 T 2,s 2 T 2 T Rectangular region R 2 = [0, T ] [0, T 2 ] (,s 2 ) s T s 2 T 2 i.i.d. r.v.'s Bernoulli(B(, p)) Binomial(B(n, p)) Poisson(P(λ)) Normal(N (µ, σ 2 )),s 2 number of observed events in the elementary subregion r s,s 2 = [s, s ] [s 2, s 2 ]

Introduction Framework A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 6 / 34 Two dimensional scan statistic Let 2 m s T s, s {, 2} be positive integers Dene for i s T s m s + and j s m s the 2-way tensor X i,i 2 R m m 2, X i,i 2 (j, j 2 ) = X i +j,i 2 +j 2 Take S : R m m 2 R to be a measurable real valued function (score function) and dene Y i,i 2 (S) = S (X i,i 2 ) Definition The two dimensional scan statistic with score function S is dened by S m,m 2 (T, T 2 ; S) = max i T m + i 2 T 2 m 2 + Y i,i 2 (S)

Introduction Framework A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 7 / 34 Shape of the scanning window Let G be the geometrical shape of the scanning window (rectangle, quadrilateral, ellipse, etc.) and G be its corresponding discrete form. Rasterization algorithms (omputer vision): continuous shape discrete shape Line - Bresenham line algorithm ([Bresenham, 965]) Circle - Bresenham circle algorithm ([Bresenham, 977]) Bezier curves - [Foley, 995]

Introduction Framework Shape of the scanning window To each discrete shape G it corresponds an unique matrix (2-way tensor) A (G) = A ( G ) (of smallest size) with 0 and entries ( if there is a point and 0 otherwise): G A ( G ) A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 8 / 34

Introduction Framework Arbitrary window scan statistic Let G be a geometric shape and A = A(G) its corresponding {0, } matrix of size m m 2. Dene the score function S associated to the shape G by S (X i,i 2 ) = A X i,i 2 = Remark i +m s =i i 2 +m 2 s 2 =i 2 A(s i +, s 2 i 2 + ),s 2 If, in particular, the shape G is a rectangle of size m m 2 than its corresponding {0, } matrix of the same size has all the entries equal to so the score function S (X i,i 2 ) = i +m s =i i 2 +m 2 s 2 =i 2,s 2 is the classical rectangular window of the two dimensional scan statistics. A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 9 / 34

Introduction Problem A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 0 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Introduction Problem A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 / 34 Problem and related work

Introduction Problem Objective Find a good estimate for the distribution of the two dimensional discrete scan statistic with score function S Q m (T; S) = P (S m (T; S) τ) with m = (m, m 2 ) and T = (T, T 2 ) Previous work: Continuous scan statistics Rectangles: [Loader, 99], [Glaz et al., 200], [Glaz et al., 2009] Circles: [Anderson and Titterington, 997] Triangles, ellipses and other convex shapes: [Alm, 983, Alm, 997, Alm, 998], [Tango and Takahashi, 2005], [Assunção et al., 2006] Discrete scan statistics No results! A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 2 / 34

Methodology Approximation A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 3 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Methodology Approximation A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 4 / 34 Approximation methodology for the general scan statistic

Methodology Approximation A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 5 / 34 Approximation and error bounds Theorem (Generalization of [Am rioarei, 204]) Let t, t 2 {2, 3}, Q t,t2 = P (Sm (t (m ), t 2 (m 2 ); S) τ) and L s = Ts, m s s {, 2}. If ˆQt,t2 is an estimate of Qt,t2, ˆQt,t2 Qt,t2 β t,t2 and τ is such that ˆQ2,2 (τ) 0. then ( ) [ ] L P (Sm(T; S) τ) 2 ˆQ2 ˆQ3 + ˆQ2 ˆQ3 + 2( ˆQ2 ˆQ3 ) 2 E sf + E sapp, where, for t {2, 3} ) ˆQ t = (2 ˆQt,2 ˆQt,3 [ + ˆQt,2 ˆQt,3 + 2( ˆQt,2 ˆQt,3 ) 2] L2 E sf = (L )(L 2 ) (β 2,2 + β 2,3 + β 3,2 + β 3,3 ) ( ) ] 2 E sapp = (L ) [F ˆQ2 + A 2 + C 2 + (L2 )(F 2 C 2 + F 3 C 3 ) A 2 = (L 2 ) (β 2,2 + β 2,3 ) C t = (L 2 )F t ( ˆQt,2 + β t,2 ) 2.

Methodology Approximation A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 6 / 34 Illustration of the approximation process T 2 T R 2 Find Approximation m m 2 T T T 2 Q 2 T 2 Q 3 m 2 m 2 2(m ) 3(m ) T T T T T 2 T 2 T 2 T 2 Q 22 Q 3(m 2 ) 2(m 2 ) 23 Q 32 Q 3(m 2 ) 2(m 2 ) 33 2(m ) 2(m ) 3(m ) 3(m )

Methodology Approximation A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 6 / 34 Illustration of the approximation process T 2 T R 2 First Step Approximation m m 2 T 2 T 2 T Q 2 T Q 3 m m 2(m 2 ) 3(m 2 ) T T T T T 2 T 2 T 2 T 2 Q 22 Q 3(m 2 ) 2(m ) 23 Q 32 Q 3(m 2 ) 2(m 2 ) 33 2(m ) 2(m ) 3(m ) 3(m )

Methodology Approximation A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 6 / 34 Illustration of the approximation process T 2 T R 2 Second Step Approximation m m 2 T 2 T 2 T Q 2 T Q 3 m m 2(m 2 ) 3(m 2 ) T 2 T 2 T 2 T 2 T T T T Q 22 Q 3(m ) 2(m ) 23 Q 32 Q 3(m ) 2(m ) 33 2(m 2 ) 2(m 2 ) 3(m 2 ) 3(m 2 )

Methodology Simulation methods: Normal data A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 7 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Methodology Simulation methods: Normal data A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 8 / 34 Simulation methods for Normal data

Methodology Simulation methods: Normal data A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 9 / 34 Importance sampling algorithm Test the null hypothesis of randomness against an alternative of clustering H 0 : The r.v.'s,s 2 are i.i.d. N (µ, σ 2 ) H : There exists R(i, i 2 ) = [i, i + m ] [i 2, i 2 + m 2 ] R 2 where the r.v.'s,s 2 N (µ, σ 2 ), µ > µ and,s 2 N (µ, σ 2 ) outside R(i, i 2 ) Objective Find a good estimate for P H0 (Sm(T; S) τ). We are interested in evaluating the probability P H0 (Sm(T; S) τ) = P where E i,i 2 (S) = {Y i,i 2 (S) τ}. ( T m + i = T 2 m 2+ i 2= E i,i 2 (S) )

Methodology Simulation methods: Normal data A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 20 / 34 Importance sampling algorithm Algorithm Importance Sampling Algorithm for Scan Statistics Begin Repeat for each k from to ITER (iterations number) : Generate uniformly the couple (i (k), i (k) 2 ) from the set {,..., T m + } {,..., T 2 m 2 + }. { } 2: Given the couple (i (k), i (k) 2 ), generate a sample of the random eld X ~ (k) (k) =,s2, with s j { } {,..., T j } and j {, 2}, from the conditional distribution of X given Y (k) (k) (S) τ. i,i 2 3: Take c k = C( X ~ (k) ) the number of all couples (i, i 2 ) for which Ỹ i,i2 (S) τ and put ρ k (2) =. c k End Repeat Return ρ(2) = ITER ρ k (2), ITER End k= Var [ ρ(2)] ITER ITER k= ( ρ k (2) ITER ρ k (2) ITER k= ) 2

Methodology Simulation methods: Normal data A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 2 / 34 Importance sampling algorithm: N (µ, σ 2 ) Step 2 requires to sample: ( (S) from the tail distribution P Y i (k) (k),i 2 Y i (k) (k),i 2 for the other indices, from the conditional distribution given ) (S) τ ([Devroye, 986]) { Y i (k) (k),i 2 } (S) τ Lemma (Generalization of [Am rioarei, 204, Lemma 3.4.4]) Let N be a positive integer, X = (X, X 2,..., X N ) be a vector of i.i.d. N (µ, σ 2 ) and a = (a,..., a N ) R N a non zero constant vector ( a j 0 for some particular j). Then conditionally given a, X = t, the r.v.'s with s j are jointly distributed as = a s a t µa j a a a j i j a i ( Z i µ a j a ) + Z s where Z s are i.i.d. N (µ, σ 2 ) r.v.s.

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 22 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 23 / 34 Numerical examples

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 24 / 34 Scanning a region of size T T 2 = 250 250 Table : Numerical results for P(S τ): Triangle Window's shape Triangle (m = 4, m2 = 8, Nt = 33, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.9675 0.99820 0.00823 59 0.86250 0.89485 0.0202 4 0.99747 0.997507 0.000257 60 0.93563 0.948980 0.00556 5 0.999946 0.999946 0.000005 6 0.972665 0.975087 0.002637 6 0.999999 0.999999 0 62 0.986982 0.988558 0.00273 7 0.999999 0.999999 0 63 0.994493 0.994676 0.000599 8.000000.000000 0 64 0.997532 0.997604 0.000280 9.000000.000000 0 65 0.998943 0.998978 0.00026 0.000000.000000 0 66 0.999556 0.999562 0.000057.000000.000000 0 67 0.999824 0.99989 0.000025,s 2 P(0.25),s 2 N (0, ) 59 0.737933 0.822902 0.024424 50 0.9285 0.93266 0.007379 60 0.87787 0.903293 0.003 5 0.94649 0.957850 0.004762 6 0.93894 0.95589 0.005389 52 0.96694 0.974052 0.003052 62 0.97229 0.975560 0.002639 53 0.980486 0.982878 0.00962 63 0.987388 0.988468 0.00309 54 0.98829 0.989444 0.00243 64 0.99428 0.994332 0.000642 55 0.993024 0.993292 0.000805 65 0.997330 0.997386 0.000307 56 0.995643 0.99603 0.000505 66 0.998794 0.998844 0.00047 57 0.99753 0.997494 0.00038 67 0.999474 0.999490 0.000068 58 0.998482 0.998597 0.00098

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 24 / 34 Scanning a region of size T T 2 = 250 250 Table : Numerical results for P(S τ): Triangle Window's shape Triangle (m = 4, m2 = 8, Nt = 33, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.9675 0.99820 0.00823 59 0.86250 0.89485 0.0202 4 0.99747 0.997507 0.000257 60 0.93563 0.948980 0.00556 5 0.999946 0.999946 0.000005 6 0.972665 0.975087 0.002637 6 0.999999 0.999999 0 62 0.986982 0.988558 0.00273 7 0.999999 0.999999 0 63 0.994493 0.994676 0.000599 8.000000.000000 0 64 0.997532 0.997604 0.000280 9.000000.000000 0 65 0.998943 0.998978 0.00026 0.000000.000000 0 66 0.999556 0.999562 0.000057.000000.000000 0 67 0.999824 0.99989 0.000025,s 2 P(0.25),s 2 N (0, ) 59 0.737933 0.822902 0.024424 50 0.9285 0.93266 0.007379 60 0.87787 0.903293 0.003 5 0.94649 0.957850 0.004762 6 0.93894 0.95589 0.005389 52 0.96694 0.974052 0.003052 62 0.97229 0.975560 0.002639 53 0.980486 0.982878 0.00962 63 0.987388 0.988468 0.00309 54 0.98829 0.989444 0.00243 64 0.99428 0.994332 0.000642 55 0.993024 0.993292 0.000805 65 0.997330 0.997386 0.000307 56 0.995643 0.99603 0.000505 66 0.998794 0.998844 0.00047 57 0.99753 0.997494 0.00038 67 0.999474 0.999490 0.000068 58 0.998482 0.998597 0.00098

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 25 / 34 Scanning a region of size T T 2 = 250 250 Table 2 : Numerical results for P(S τ): Rectangle Window's shape Rectangle (m =, m2 = 2, Nt = 32, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.947673 0.947757 0.005972 59 0.857404 0.856832 0.0264 4 0.997963 0.997979 0.00080 60 0.920590 0.99603 0.005960 5 0.999942 0.999942 0.000004 6 0.956954 0.956530 0.002886 6 0.999998 0.999998 0 62 0.97755 0.97779 0.00395 7 0.999999 0.999999 0 63 0.9886 0.988263 0.000669 8.000000.000000 0 64 0.994206 0.994089 0.00039 9.000000.000000 0 65 0.9974 0.9974 0.00049 0.000000.000000 0 66 0.998593 0.99863 0.000069.000000.000000 0 67 0.99934 0.99989 0.00003,s 2 P(0.25),s 2 N (0, ) 59 0.763228 0.763426 0.02599 50 0.864066 0.86608 0.00457 60 0.8565 0.85872 0.02264 5 0.90488 0.9036 0.00665 6 0.9830 0.98395 0.00594 52 0.93252 0.932663 0.00428 62 0.95483 0.95457 0.002958 53 0.95403 0.953874 0.00275 63 0.975084 0.975426 0.00483 54 0.968702 0.968700 0.00775 64 0.986979 0.98707 0.000735 55 0.97875 0.978566 0.0045 65 0.993240 0.993240 0.00036 56 0.98577 0.98582 0.00073 66 0.9965 0.996547 0.00076 57 0.990663 0.990575 0.000468 67 0.998276 0.998279 0.000084 58 0.993763 0.993827 0.000296

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 25 / 34 Scanning a region of size T T 2 = 250 250 Table 2 : Numerical results for P(S τ): Rectangle Window's shape Rectangle (m =, m2 = 2, Nt = 32, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.947673 0.947757 0.005972 59 0.857404 0.856832 0.0264 4 0.997963 0.997979 0.00080 60 0.920590 0.99603 0.005960 5 0.999942 0.999942 0.000004 6 0.956954 0.956530 0.002886 6 0.999998 0.999998 0 62 0.97755 0.97779 0.00395 7 0.999999 0.999999 0 63 0.9886 0.988263 0.000669 8.000000.000000 0 64 0.994206 0.994089 0.00039 9.000000.000000 0 65 0.9974 0.9974 0.00049 0.000000.000000 0 66 0.998593 0.99863 0.000069.000000.000000 0 67 0.99934 0.99989 0.00003,s 2 P(0.25),s 2 N (0, ) 59 0.763228 0.763426 0.02599 50 0.864066 0.86608 0.00457 60 0.8565 0.85872 0.02264 5 0.90488 0.9036 0.00665 6 0.9830 0.98395 0.00594 52 0.93252 0.932663 0.00428 62 0.95483 0.95457 0.002958 53 0.95403 0.953874 0.00275 63 0.975084 0.975426 0.00483 54 0.968702 0.968700 0.00775 64 0.986979 0.98707 0.000735 55 0.97875 0.978566 0.0045 65 0.993240 0.993240 0.00036 56 0.98577 0.98582 0.00073 66 0.9965 0.996547 0.00076 57 0.990663 0.990575 0.000468 67 0.998276 0.998279 0.000084 58 0.993763 0.993827 0.000296

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 26 / 34 Scanning a region of size T T 2 = 250 250 Table 3 : Numerical results for P(S τ): Quadrilateral Window's shape Quadrilateral (m = 4, m2 = 8, Nt = 3, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.925258 0.92674 0.009722 59 0.93203 0.926709 0.007540 4 0.99765 0.99769 0.000235 60 0.958806 0.963738 0.003582 5 0.999945 0.999945 0.000005 6 0.98433 0.982643 0.00725 6 0.999999 0.999999 0 62 0.99635 0.9989 0.000823 7 0.999999 0.999999 0 63 0.99670 0.996220 0.000387 8.000000.000000 0 64 0.998287 0.998322 0.00080 9.000000.000000 0 65 0.999243 0.999240 0.000082 0.000000.000000 0 66 0.999679 0.999693 0.000037.000000.000000 0 67 0.999866 0.999869 0.00006,s 2 P(0.25),s 2 N (0, ) 59 0.83677 0.876 0.05388 50 0.92057 0.935366 0.006875 60 0.98389 0.93407 0.007235 5 0.949483 0.95763 0.004378 6 0.960554 0.963979 0.003555 52 0.968977 0.972699 0.002844 62 0.98340 0.982444 0.00754 53 0.980772 0.982865 0.00823 63 0.9948 0.99396 0.000863 54 0.98882 0.989097 0.0075 64 0.995798 0.996026 0.000423 55 0.992870 0.992982 0.000758 65 0.99848 0.99868 0.000205 56 0.995739 0.995736 0.00048 66 0.99926 0.99957 0.000097 57 0.997355 0.997429 0.000302 67 0.99968 0.99962 0.000045 58 0.998397 0.998445 0.00090

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 26 / 34 Scanning a region of size T T 2 = 250 250 Table 3 : Numerical results for P(S τ): Quadrilateral Window's shape Quadrilateral (m = 4, m2 = 8, Nt = 3, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.925258 0.92674 0.009722 59 0.93203 0.926709 0.007540 4 0.99765 0.99769 0.000235 60 0.958806 0.963738 0.003582 5 0.999945 0.999945 0.000005 6 0.98433 0.982643 0.00725 6 0.999999 0.999999 0 62 0.99635 0.9989 0.000823 7 0.999999 0.999999 0 63 0.99670 0.996220 0.000387 8.000000.000000 0 64 0.998287 0.998322 0.00080 9.000000.000000 0 65 0.999243 0.999240 0.000082 0.000000.000000 0 66 0.999679 0.999693 0.000037.000000.000000 0 67 0.999866 0.999869 0.00006,s 2 P(0.25),s 2 N (0, ) 59 0.83677 0.876 0.05388 50 0.92057 0.935366 0.006875 60 0.98389 0.93407 0.007235 5 0.949483 0.95763 0.004378 6 0.960554 0.963979 0.003555 52 0.968977 0.972699 0.002844 62 0.98340 0.982444 0.00754 53 0.980772 0.982865 0.00823 63 0.9948 0.99396 0.000863 54 0.98882 0.989097 0.0075 64 0.995798 0.996026 0.000423 55 0.992870 0.992982 0.000758 65 0.99848 0.99868 0.000205 56 0.995739 0.995736 0.00048 66 0.99926 0.99957 0.000097 57 0.997355 0.997429 0.000302 67 0.99968 0.99962 0.000045 58 0.998397 0.998445 0.00090

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 27 / 34 Scanning a region of size T T 2 = 250 250 Table 4 : Numerical results for P(S τ): Circle Window's shape Circle (m = 3, m2 = 3, Nt = 29, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.949902 0.950399 0.006284 59 0.92034 0.920987 0.005962 4 0.9983 0.998099 0.00087 60 0.95687 0.95737 0.002840 5 0.999947 0.999947 0.000004 6 0.977475 0.977539 0.00366 6 0.999998 0.999998 0 62 0.988597 0.988595 0.00065 7 0.999999 0.999999 0 63 0.994265 0.994274 0.000306 8.000000.000000 0 64 0.997227 0.997257 0.00042 9.000000.000000 0 65 0.998698 0.998675 0.000065 0.000000.000000 0 66 0.999377 0.99938 0.000029.000000.000000 0 67 0.999709 0.99975 0.00003,s 2 P(0.25),s 2 N (0, ) 59 0.860740 0.860278 0.02220 50 0.889276 0.889385 0.00824 60 0.98923 0.99454 0.005955 5 0.92070 0.920950 0.005242 6 0.955942 0.955339 0.00295 52 0.945380 0.94554 0.00335 62 0.97565 0.975720 0.00449 53 0.962727 0.962884 0.00242 63 0.987403 0.98734 0.00072 54 0.974988 0.974968 0.00370 64 0.993559 0.993485 0.000347 55 0.983200 0.98388 0.000875 65 0.996698 0.996696 0.00067 56 0.989078 0.988928 0.000556 66 0.998365 0.998353 0.000079 57 0.992649 0.992725 0.000350 67 0.99923 0.999202 0.000037 58 0.995300 0.995278 0.000220

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 27 / 34 Scanning a region of size T T 2 = 250 250 Table 4 : Numerical results for P(S τ): Circle Window's shape Circle (m = 3, m2 = 3, Nt = 29, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.949902 0.950399 0.006284 59 0.92034 0.920987 0.005962 4 0.9983 0.998099 0.00087 60 0.95687 0.95737 0.002840 5 0.999947 0.999947 0.000004 6 0.977475 0.977539 0.00366 6 0.999998 0.999998 0 62 0.988597 0.988595 0.00065 7 0.999999 0.999999 0 63 0.994265 0.994274 0.000306 8.000000.000000 0 64 0.997227 0.997257 0.00042 9.000000.000000 0 65 0.998698 0.998675 0.000065 0.000000.000000 0 66 0.999377 0.99938 0.000029.000000.000000 0 67 0.999709 0.99975 0.00003,s 2 P(0.25),s 2 N (0, ) 59 0.860740 0.860278 0.02220 50 0.889276 0.889385 0.00824 60 0.98923 0.99454 0.005955 5 0.92070 0.920950 0.005242 6 0.955942 0.955339 0.00295 52 0.945380 0.94554 0.00335 62 0.97565 0.975720 0.00449 53 0.962727 0.962884 0.00242 63 0.987403 0.98734 0.00072 54 0.974988 0.974968 0.00370 64 0.993559 0.993485 0.000347 55 0.983200 0.98388 0.000875 65 0.996698 0.996696 0.00067 56 0.989078 0.988928 0.000556 66 0.998365 0.998353 0.000079 57 0.992649 0.992725 0.000350 67 0.99923 0.999202 0.000037 58 0.995300 0.995278 0.000220

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 28 / 34 Scanning a region of size T T 2 = 250 250 Table 5 : Numerical results for P(S τ): Ellipse Window's shape Ellipse (m = 9, m2 = 9, Nt = 35, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.94549 0.94408 0.006856 59 0.76436 0.764423 0.022290 4 0.997692 0.997783 0.00027 60 0.86070 0.858224 0.020 5 0.999934 0.999935 0.000005 6 0.922564 0.920545 0.005593 6 0.999998 0.999998 0 62 0.956994 0.956925 0.002803 7 0.999999 0.999999 0 63 0.97724 0.977 0.0039 8.000000.000000 0 64 0.98864 0.98870 0.000678 9.000000.000000 0 65 0.993942 0.99403 0.000328 0.000000.000000 0 66 0.99706 0.997005 0.00055.000000.000000 0 67 0.99856 0.998565 0.000072,s 2 P(0.25),s 2 N (0, ) 59 0.638328 0.638600 0.04242 50 0.845330 0.842760 0.0460 60 0.76953 0.769090 0.02264 5 0.887757 0.887823 0.007568 6 0.860703 0.859829 0.00885 52 0.92023 0.920804 0.005026 62 0.98782 0.99289 0.005606 53 0.94475 0.944745 0.00332 63 0.954499 0.95497 0.002890 54 0.96667 0.96830 0.00276 64 0.975360 0.97527 0.00468 55 0.973786 0.973964 0.0043 65 0.986788 0.986846 0.000746 56 0.982379 0.982058 0.000929 66 0.993076 0.993056 0.000372 57 0.988009 0.98842 0.000599 67 0.996464 0.996456 0.00083 58 0.99239 0.99260 0.000385

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 28 / 34 Scanning a region of size T T 2 = 250 250 Table 5 : Numerical results for P(S τ): Ellipse Window's shape Ellipse (m = 9, m2 = 9, Nt = 35, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.94549 0.94408 0.006856 59 0.76436 0.764423 0.022290 4 0.997692 0.997783 0.00027 60 0.86070 0.858224 0.020 5 0.999934 0.999935 0.000005 6 0.922564 0.920545 0.005593 6 0.999998 0.999998 0 62 0.956994 0.956925 0.002803 7 0.999999 0.999999 0 63 0.97724 0.977 0.0039 8.000000.000000 0 64 0.98864 0.98870 0.000678 9.000000.000000 0 65 0.993942 0.99403 0.000328 0.000000.000000 0 66 0.99706 0.997005 0.00055.000000.000000 0 67 0.99856 0.998565 0.000072,s 2 P(0.25),s 2 N (0, ) 59 0.638328 0.638600 0.04242 50 0.845330 0.842760 0.0460 60 0.76953 0.769090 0.02264 5 0.887757 0.887823 0.007568 6 0.860703 0.859829 0.00885 52 0.92023 0.920804 0.005026 62 0.98782 0.99289 0.005606 53 0.94475 0.944745 0.00332 63 0.954499 0.95497 0.002890 54 0.96667 0.96830 0.00276 64 0.975360 0.97527 0.00468 55 0.973786 0.973964 0.0043 65 0.986788 0.986846 0.000746 56 0.982379 0.982058 0.000929 66 0.993076 0.993056 0.000372 57 0.988009 0.98842 0.000599 67 0.996464 0.996456 0.00083 58 0.99239 0.99260 0.000385

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 29 / 34 Scanning a region of size T T 2 = 250 250 Table 6 : Numerical results for P(S τ): Annulus Window's shape Annulus (m = 7, m2 = 7, Nt = 24, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.88687 0.882372 0.009897 59 0.9532 0.95283 0.00572 4 0.995456 0.995488 0.00020 60 0.975645 0.975784 0.000654 5 0.999882 0.999883 0.000004 6 0.9889 0.988284 0.000280 6 0.999997 0.999997 0 62 0.99445 0.99445 0.00020 7 0.999999 0.999999 0 63 0.997437 0.997444 0.00005 8.000000.000000 0 64 0.998835 0.998838 0.00002 9.000000.000000 0 65 0.99948 0.999483 0.000009 0.000000.000000 0 66 0.999774 0.999774 0.000003.000000.000000 0 67 0.999903 0.999903 0.00000,s 2 P(0.25),s 2 N (0, ) 59 0.902926 0.903783 0.003972 50 0.860688 0.860266 0.006625 60 0.948792 0.94906 0.00623 5 0.9057 0.904708 0.00357 6 0.973906 0.973904 0.000700 52 0.936387 0.935930 0.0099 62 0.986863 0.98697 0.0003 53 0.957907 0.957630 0.0037 63 0.993560 0.993580 0.00038 54 0.97230 0.972343 0.00066 64 0.996904 0.99690 0.00006 55 0.98234 0.98227 0.000386 65 0.998536 0.998536 0.000027 56 0.988540 0.988555 0.000228 66 0.99938 0.99938 0.0000 57 0.992783 0.992775 0.00035 67 0.999688 0.999689 0.000005 58 0.995458 0.995467 0.000079

Simulation study Numerical examples A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 29 / 34 Scanning a region of size T T 2 = 250 250 Table 6 : Numerical results for P(S τ): Annulus Window's shape Annulus (m = 7, m2 = 7, Nt = 24, IS = e4, IA = e5),s 2 B(, 0.0),s 2 B(5, 0.05) 3 0.88687 0.882372 0.009897 59 0.9532 0.95283 0.00572 4 0.995456 0.995488 0.00020 60 0.975645 0.975784 0.000654 5 0.999882 0.999883 0.000004 6 0.9889 0.988284 0.000280 6 0.999997 0.999997 0 62 0.99445 0.99445 0.00020 7 0.999999 0.999999 0 63 0.997437 0.997444 0.00005 8.000000.000000 0 64 0.998835 0.998838 0.00002 9.000000.000000 0 65 0.99948 0.999483 0.000009 0.000000.000000 0 66 0.999774 0.999774 0.000003.000000.000000 0 67 0.999903 0.999903 0.00000,s 2 P(0.25),s 2 N (0, ) 59 0.902926 0.903783 0.003972 50 0.860688 0.860266 0.006625 60 0.948792 0.94906 0.00623 5 0.9057 0.904708 0.00357 6 0.973906 0.973904 0.000700 52 0.936387 0.935930 0.0099 62 0.986863 0.98697 0.0003 53 0.957907 0.957630 0.0037 63 0.993560 0.993580 0.00038 54 0.97230 0.972343 0.00066 64 0.996904 0.99690 0.00006 55 0.98234 0.98227 0.000386 65 0.998536 0.998536 0.000027 56 0.988540 0.988555 0.000228 66 0.99938 0.99938 0.0000 57 0.992783 0.992775 0.00035 67 0.999688 0.999689 0.000005 58 0.995458 0.995467 0.000079

Simulation study Power A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 30 / 34 Outline Introduction Framework Problem 2 Methodology Approximation Simulation methods: Normal data 3 Simulation study Numerical examples Power 4 References

Simulation study Power A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 3 / 34 Power of the scan statistic test

Simulation study Power Power evaluation for B(, 0.00) model Triangular simulated cluster 0.9 0.8 0.7 Rectangular simulated cluster 0.9 0.8 0.7 Power 0.6 0.5 0.4 0.3 0.2 0. Shape of the scanning window Triangle (33) Rectangle (32) Quadrillater (3) Circle (29) Ellipse (35) Annulus (24) 0 0 0.05 0. 0.5 p Power 0.6 0.5 0.4 0.3 0.2 0. Shape of the scanning window Triangle (33) Rectangle (32) Quadrillater (3) Circle (29) Ellipse (35) Annulus (24) 0 0 0.05 0. 0.5 p A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 32 / 34

Simulation study Power Power evaluation for B(, 0.00) model Quadrilateral simulated cluster 0.9 0.8 0.7 Circular simulated cluster 0.9 0.8 0.7 Power 0.6 0.5 0.4 0.3 0.2 0. Shape of the scanning window Triangle (33) Rectangle (32) Quadrillater (3) Circle (29) Ellipse (35) Annulus (24) 0 0 0.05 0. 0.5 p Power 0.6 0.5 0.4 0.3 0.2 0. Shape of the scanning window Triangle (33) Rectangle (32) Quadrillater (3) Circle (29) Ellipse (35) Annulus (24) 0 0 0.05 0. 0.5 p A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 33 / 34

Simulation study Power Power evaluation for B(, 0.00) model Ellipsoidal simulated cluster 0.9 0.8 0.7 Annular simulated cluster 0.9 0.8 0.7 Power 0.6 0.5 0.4 0.3 0.2 0. Shape of the scanning window Triangle (33) Rectangle (32) Quadrillater (3) Circle (29) Ellipse (35) Annulus (24) 0 0 0.05 0. 0.5 p Power 0.6 0.5 0.4 0.3 0.2 0. Shape of the scanning window Triangle (33) Rectangle (32) Quadrillater (3) Circle (29) Ellipse (35) Annulus (24) 0 0 0.05 0. 0.5 p A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 34 / 34

Simulation study Power A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 34 / 34

References Anderson, N. H. and Titterington, D. M. (997). Some methods for investigating spatial clustering, with epidemiological applications. Journal of the Royal Statistical Society: Series A (Statistics in Society), 60():8705. A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 34 / 34 Alm, S. E. (983). On the distribution of scan statistic of poisson process. In Gut, A. and Helst, L., editors, Probability and Mathematical Statistics, pages 0. Upsalla University Press. Alm, S. E. (997). On the distributions of scan statistics of a two-dimensional poisson process. Advances in Applied Probability, pages 8. Alm, S. E. (998). Approximation and simulation of the distributions of scan statistics for poisson processes in higher dimensions. Extremes, ():26. Am rioarei, A. (204). Approximations for the multidimensional discrete scan statistics. PhD thesis, University of Lille.

References Assunção, R., Costa, M., Tavares, A., and Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, 25(5):723742. Bresenham, J. (965). Algorithm for computer control of a digital printer. IBM Systems Journal, 4(). Bresenham, J. (977). A linear algorithm for incremental digital display of circular arcs. Communications of the ACM, 20(2):0006. Devroye, L. (986). Non uniform random variate generation. Springer-Verlag, New York. Foley, J. (995). Computer Graphics, Principles and Practice in C. Addison-Wesley Professional. Glaz, J., Naus, J., and Wallenstein, S. (200). Scan Statistics. A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 34 / 34

References Springer. Glaz, J., Pozdnyakov, V., and Wallenstein, S. (2009). Scan Statistics: Methods and Applications. Birkhaüser Boston. Loader, C. R. (99). Large-deviation approximations to the distribution of scan statistics. Advances in Applied Probability, pages 7577. Tango, T. and Takahashi, K. (2005). A exibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr, 4:. Tango, Toshiro Takahashi, Kunihiko England Int J Health Geogr. 2005 May 8;4:. A. Am rioarei (INCDSB) Scan statistics with arbitrary shape SPSR 206 34 / 34