Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces



Σχετικά έγγραφα
Geometry of parallelizable manifolds in the context of generalized Lagrange spaces

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

On Curvature Tensors in Absolute Parallelism Geometry

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Extended Absolute Parallelism Geometry

α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

1 Complete Set of Grassmann States

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Finite Field Problems: Solutions

A Class of Orthohomological Triangles

Section 8.3 Trigonometric Equations

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

8.324 Relativistic Quantum Field Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ST5224: Advanced Statistical Theory II

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Congruence Classes of Invertible Matrices of Order 3 over F 2

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Example Sheet 3 Solutions

Lecture 2. Soundness and completeness of propositional logic

Higher Derivative Gravity Theories

The Simply Typed Lambda Calculus

arxiv: v2 [math.dg] 14 Oct 2017

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

LECTURE 4 : ARMA PROCESSES

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2 Composition. Invertible Mappings

arxiv: v1 [math.dg] 11 Oct 2017

derivation of the Laplacian from rectangular to spherical coordinates

Every set of first-order formulas is equivalent to an independent set

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Matrices and Determinants

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Concrete Mathematics Exercises from 30 September 2016

Class 03 Systems modelling

C.S. 430 Assignment 6, Sample Solutions

Journal of Theoretics Vol.4-5

Estimators when the Correlation Coefficient. is Negative

Approximation of distance between locations on earth given by latitude and longitude

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Lagrangian and Green functions in d dimensions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Section 9.2 Polar Equations and Graphs

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Constant Elasticity of Substitution in Applied General Equilibrium

n b n Mn3C = n Mn /3 = 0,043 mol free Fe n Fe = n Fe 3n Fe3C = 16,13 mol, no free C b Mn3C = -Δ f G for Mn 3 C +3 b Mn + b C = 1907,9 kj/mol

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

Fractional Colorings and Zykov Products of graphs

LINEAR CONNECTIONS AND CURVATURE TENSORS IN THE GEOMETRY OF PARALLELIZABLE MANIFOLDS arxiv:gr-qc/ v2 8 Feb 2007

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Calculating the propagation delay of coaxial cable

Commutative Monoids in Intuitionistic Fuzzy Sets

8.323 Relativistic Quantum Field Theory I

EE512: Error Control Coding

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Section 7.6 Double and Half Angle Formulas

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Reminders: linear functions

( y) Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Advanced Subsidiary Unit 1: Understanding and Written Response

6.3 Forecasting ARMA processes

Uniform Convergence of Fourier Series Michael Taylor

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Lecture 13 - Root Space Decomposition II

[1] P Q. Fig. 3.1

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Lecture 15 - Root System Axiomatics

Areas and Lengths in Polar Coordinates

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Areas and Lengths in Polar Coordinates

Μηχανική Μάθηση Hypothesis Testing

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

TMA4115 Matematikk 3

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

PARTIAL NOTES for 6.1 Trigonometric Identities

Transcript:

1 Gemetry f Parallelzable Manflds n the Cntext f Generalzed Lagrange Spaces arxv:0704.2001v1 [gr-qc] 16 Apr 2007 M. I. Wanas, N. L. Yussef and A. M. Sd-Ahmed Department f Astrnmy, Faculty f Scence, Car Unversty wanas@frcu.eun.eg Department f Mathematcs, Faculty f Scence, Car Unversty nyussef@frcu.eun.eg, amrs@maler.eun.eg Abstract. In ths paper, we deal wth a generalzatn f the gemetry f parallelzable manflds, r the abslute parallelsm (AP-) gemetry, n the cntext f generalzed Lagrange spaces. All gemetrc bjects defned n ths gemetry are nt nly functns f the pstnal argument x, but als depend n the drectnal argument y. In ther wrds, nstead f dealng wth gemetrc bjects defned n the manfld M, as n the case f classcal AP-gemetry, we are dealng wth gemetrc bjects n the pullback bundle π 1 (TM) (the pullback f the tangent bundle TM by π : TM M). Many new gemetrc bjects, whch have n cunterpart n the classcal AP-gemetry, emerge n ths mre general cntext. We refer t such a gemetry as generalzed AP-gemetry (GAP-gemetry). In analgy t AP-gemetry, we defne a d-cnnectn n π 1 (TM) havng remarkable prpertes, whch we call the canncal d-cnnectn, n terms f the unque trsn-free Remannan d-cnnectn. In addtn t these tw d-cnnectns, tw mre d-cnnectns are defned, the dual and the symmetrc d-cnnectns. Our space, therefre, admts twelve curvature tensrs (crrespndng t the fur defned d-cnnectns), three f whch vansh dentcally. Smple frmulae fr the nne nn-vanshng curvatures tensrs are btaned, n terms f the trsn tensrs f the canncal d-cnnectn. The dfferent W-tensrs admtted by the space are als calculated. All cntractns f the h- and v-curvature tensrs and the W-tensrs are derved. Secnd rank symmetrc and skew-symmetrc tensrs, whch prve useful n physcal applcatns, are sngled ut. Ths paper, hwever, s nt an end n tself, but rather the begnnng f a research drectn. The physcal nterpretatn f the gemetrc bjects n the GAP-space that have n cunterpart n the classcal AP-space wll be further nvestgated n frthcmng papers. 1 Keywrds: Parallelzable manfld, Generalzed Lagrange space, AP-gemetry, GAPgemetry, Canncal d-cnnectn, W-tensr. 2000 AMS Subject Classfcatn. 53B40, 53A40, 53B50. 1 Ths paper was presented n The Internatnal Cnference n Fnsler Extensns f Relatvty Thery held at Car, Egypt, Nvember 4-10, 2006.

2 1. Intrductn The gemetry f parallelzable manflds r the abslute parallelsm gemetry (AP-gemetry) ([5], [10], [14], [15]) has many advantages n cmparsn t Remannan gemetry. Unlke Remannan gemetry, whch has ten degrees f freedm (crrespndng t the metrc cmpnents fr n = 4), AP-gemetry has sxteen degrees f freedm (crrespndng t the number f cmpnents f the fur vectr felds defnng the parallelzatn). Ths makes AP-gemetry a ptental canddate fr descrbng physcal phenmena ther than gravty. Mrever, as ppsed t Remannan gemetry, whch admts nly ne symmetrc lnear cnnectn, AP-gemetry admts at least fur natural (bult-n) lnear cnnectns, tw f whch are nn-symmetrc and three f whch have nn-vanshng curvature tensrs. Last, but nt least, asscated wth an AP-space, there s a Remannan structure defned n a natural way. Thus, APgemetry cntans wthn ts gemetrcal structure all the mathematcal machnary f Remannan gemetry. Accrdngly, a cmparsn between the results btaned n the cntext f AP-gemetry and general relatvty, whch s based n Remannan gemetry, can be carred ut. In ths paper, we study AP-gemetry n the wder cntext f a generalzed Lagrange space ([7], [9], [11], [12]). All gemetrc bjects defned n ths space are nt nly functns f the pstnal argument x, but als depend n the drectnal argument y. In ther wrds, nstead f dealng wth gemetrc bjects defned n the manfld M, as n the case f classcal AP-space, we are dealng wth gemetrc bjects n the pullback bundle π 1 (TM) (the pullback f the tangent bundle TM by the prjectn π : TM M) [1]. Many new gemetrc bjects, whch have n cunterpart n the classcal AP-space, emerge n ths mre general cntext. We refer t such a space as a d-parallelzable manfld r a generalzed abslute parallelsm space (GAP-space). The paper s rganzed n the fllwng manner. In sectn 2, fllwng the ntrductn, we gve a bref accunt f the basc cncepts and defntns that wll be needed n the sequel, ntrducng the ntn f a nn-lnear cnnectn Nµ α. In sectn 3, we cnsder an n-dmensnal d-parallelzable manfld M ([2], [11]) n whch we defne a metrc n terms f the n ndependent π-vectr felds λ defnng the parallelzatn n π 1 (TM). Thus, ur parallelzable manfld becmes a generalzed Lagrange space, whch s a generalzatn f the classcal AP-space. We then defne the canncal d-cnnectn D, relatve t whch the h- and v-cvarant dervatves f the vectr felds λ vansh. We end ths sectn wth a cmparsn between the classcal AP-space and the GAP-space. In sectn 4, cmmutatn frmulae are recalled and sme denttes btaned. We then ntrduce, n analgy t the AP-space, tw ther d-cnnectns: the dual d-cnnectn and the symmetrc d-cnnectn. The nne nnvanshng curvature tensrs, crrespndng t the dual, symmetrc and Remannan d-cnnectns are then calculated, expressed n terms f the trsn tensrs f the canncal d-cnnectn. In sectn 5, a summary f the fundamental symmetrc and skew symmetrc secnd rank tensrs s gven, tgether wth the symmetrc secnd rank tensrs f zer trace. In sectn 6, all pssble cntractns f the h- and v- curvature tensrs are btaned and the cntracted curvature tensrs are expressed n terms f the fundamental tensrs gven n sectn 5. In sectn 7, we study the dfferent W-tensrs crrespndng t the dfferent d-cnnectns defned n the space, agan

3 expressed n terms f the trsn tensrs f the canncal d-cnnectn. Cntractns f the dfferent W-tensrs and the relatns between them are then derved. Fnally, we end ths paper by sme cncludng remarks. 2. Fundamental Prelmnares Let M be a dfferental manfld f dmensn n f class C. Let π : TM M be ts tangent bundle. If (U, x µ ) s a lcal chart n M, then (π 1 (U), (x µ, y µ )) s the crrespndng lcal chart n TM. The crdnate transfrmatn law n TM s gven by: x µ = x µ (x ν ), y µ = p µ ν yν, where p µ ν = xµ and det(p µ x ν ν ) 0. Defntn 2.1. A nn-lnear cnnectn N n TM s a system f n 2 functns Nβ α(x, y) defned n every lcal chart π 1 (U) f TM whch have the transfrmatn law where p ǫ β σ = pǫ β x σ = 2 x ǫ x β x σ. N α β = pα α p β β N α β + p α ǫ p ǫ β σ yσ, (2.1) The nn-lnear cnnectn N leads t the drect sum decmpstn T u (TM) = H u (TM) V u (TM), u T M = TM \ {0}, where H u (TM) s the hrzntal space at u asscated wth N supplementary t the vertcal space V u (TM). If δ µ := µ Nµ α α, where µ :=, x µ µ :=, then ( y µ µ ) s the natural bass f V u (TM) and (δ µ ) s the natural bass f H u (TM) adapted t N. Defntn 2.2. A dstngushed cnnectn (d-cnnectn) n M s a trplet D = (Nµ α, Γ α µν, Cµν), α where Nµ α (x, y) s a nn-lnear cnnectn n TM and Γ α µν(x, y) and Cµν α (x, y) transfrm accrdng t the fllwng laws: Γ α µ ν = pα α pµ µ p ν ν Γα µν + pα ǫ pǫ µ ν, (2.2) C α µ ν = pα α pµ µ p ν ν Cα µν. (2.3) In ther wrds, Γ α µν transfrm as the ceffcents f a lnear cnnectn, whereas Cα µν transfrm as the cmpnents f a tensr. Defntn 2.3. The hrzntal (h-) and vertcal (v-) cvarant dervatves wth respect t the d-cnnectn D (f a tensr feld A α µ) are defned respectvely by: A α µ ν := δ νa α µ + Aǫ µ Γα ǫν Aα ǫ Γǫ µν ; (2.4) A α µ ν := ν A α µ + Aǫ µ Cα ǫν Aα ǫ Cǫ µν. (2.5) Defntn 2.4. A symmetrc and nn-degenerate tensr feld g µν (x, y) f type (0, 2) s called a generalzed Lagrange metrc n the manfld M. The par (M, g) s called a generalzed Lagrange space.

4 Defntn 2.5. Let (M, g) be a generalzed Lagrange space equpped wth a nn-lnear cnnectn N α µ. Then a d -cnnectn D = (N α µ, Γ α µ,ν, C α µν) s sad t be metrcal wth respect t g f g µν α = 0, g µν α = 0. (2.6) The fllwng remarkable result was prved by R. Mrn [8]. It guarantees the exstence f a unque trsn-free metrcal d-cnnectn n any generalzed Lagrange space equpped wth a nn-lnear cnnectn. Mre precsely: Therem 2.6. Let (M, g) be a generalzed Lagrange space. Let N α µ be a gven nnlnear cnnectn n TM. Then there exsts a unque metrcal d-cnnectn D = (Nµ α, Γ α µν, C α µν ) such that Λ α µν := Γ α µν Γ α νµ = 0 and T α µν := C α µν C α νµ = 0. Ths d-cnnectn s gven by Nµ α and the generalzed Chrstffel symbls: Γ α µν = 1 2 gαǫ (δ µ g νǫ + δ ν g µǫ δ ǫ g µν ), (2.7) C α µν = 1 2 gαǫ ( µ g νǫ + ν g µǫ ǫ g µν ). (2.8) Ths cnnectn wll be referred t as the Remannan d-cnnectn. 3. d-parallelzable manflds (GAP-spaces) The Remannan d-cnnectn mentned n Therem 2.6 plays the key rle n ur generalzatn f the AP-space, whch, as wll be revealed, appears natural. Hwever, t s t be nted that the clse resemblance f the tw spaces s deceptve; as they are smlar n frm. Hwever, the extra degrees f freedm n the generalzed AP-space makes t rcher n cntent and dfferent n ts gemetrc structure (see Remark 3.6). We start wth the cncept f d-parallelzable manflds. Defntn 3.1. An n-dmensnal manfld M s called d-parallelzable, r generalzed abslute parallelsm space (GAP-space), f the pull-back bundle π 1 (TM) admts n glbal lnearly ndependent sectns (π-vectr felds) λ(x, y), = 1,..., n. If λ = ( λ α ), α = 1,..., n, then λ α λ β = δβ α, where ( λ α ) dentes the nverse f the matrx ( λ α ). λ α λ α = δ j, (3.1) j Ensten summatn cnventn s appled n bth Latn (mesh) ndces and Greek (wrld) ndces, where all Latn ndces are wrtten n a lwer pstn. In the sequel, we wll smply use the symbl λ (wthut a mesh ndex) t dente any ne f the vectr felds λ ( = 1,..., n) and n mst cases, when mesh ndces appear they wll be n pars, meanng summatn. We shall ften use the expressn GAP-space (resp. GAP-gemetry) nstead f d-parallelzable manfld (resp. gemetry f d-parallelzable manflds) fr ts typgraphcal smplcty.

5 Therem 3.2. A GAP-space s a generalzed Lagrange space. In fact, the cvarant tensr feld g µν (x, y) f rder 2 gven by g µν (x, y) := λ µ λ ν, (3.2) defnes a metrc n the pull-back bundle π 1 (TM) wth nverse gven by g µν (x, y) = λ µ λ ν (3.3) Assume that M s a GAP-space equpped wth a nn-lnear cnnectn Nµ α. By Therem 2.6, there exsts n (M, g) a unque trsn-free metrcal d-cnnectn D = (Nµ α, Γ α µν, C α µν ) (the Remannan d-cnnectn). We defne anther d-cnnectn D = (N α µ, Γ α µν, C α µν) n terms f D by: Γ α µν := Γ α µν + λ α λ µ ν, (3.4) Cµν α := C α µν + λ α λ µ ν. (3.5) Here, and dente the h- and v-cvarant dervatves wth respect t the Remannan d-cnnectn D. If and dente the h- and v-cvarant dervatves wth respect t the d-cnnectn D, then λ α µ = 0, λ α µ = 0. (3.6) Ths can be shwn as fllws: λ α µ = δ µ λ α + λ ǫ Γ α ǫµ = δ µλ α + λ ǫ ( Γ α ǫµ + λ α λ j j ǫ µ ) = (δ µ λ α + λ ǫ Γ α ǫµ) λ α j µ ( λ ǫ λ ǫ ) = 0. In exactly the same way, t can be shwn that j λ α µ = 0. Hence, we btan the fllwng Therem 3.3. Let (M, λ(x, y)) be a GAP-space equpped wth a nn-lnear cnnectn Nµ α. There exsts a unque d-cnnectn D = (Nµ α, Γ α µν, Cµν), α such that λ α µ = λ α µ = 0. Ths cnnectn s gven by Nβ α, (3.4) and (3.5). Cnsequently, D s metrcal: g µν σ = g µν σ = 0. Ths cnnectn wll be referred t as the canncal d-cnnectn. It s t be nted that relatns (3.6) are n accrdance wth the classcal APgemetry n whch the cvarant dervatve f the vectr felds λ wth respect t the canncal cnnectn Γ α µν = λ α ( ν λ µ ) vanshes [15]. Therem 3.4. Let (M, λ(x, y)) be a d-parallelzable manfld equpped wth a nnlnear cnnectn Nµ α. The canncal d-cnnectn D = (Nα µ, Γα µν, Cα µν ) s explctly expressed n terms f λ n the frm Γ α µν = λ α (δ ν λ µ ), Cµν α = λ α ( ν λ µ ). (3.7) Prf. Snce λ α ν = 0, we have δ ν λ α = λ ǫ Γ α ǫν. Multplyng bth sdes by λ µ, takng nt accunt the fact that λ α λ µ = δµ α, we get Γα µν = λ µ (δ ν λ α ) = λ α (δ ν λ µ ). The prf f the secnd relatn s exactly smlar and we mt t. It s t be nted that the cmpnents f the canncal d-cnnectn are smlar n frm t the cmpnents f the canncal cnnectn n the classcal AP-cntext [15], ntng that ν s replaced by δ ν (fr the h-cunterpart) and by ν (fr the v-cunterpart) respectvely (See Table 1). The abve expressns fr the canncal cnnectn seem therefre lke a natural generalzatn f the classcal AP case. By (3.4) and (3.5), n vew f the abve therem, we have the fllwng

6 Crllary 3.5. The Remannan d-cnnectn D = (Nµ α, Γ α µν, C α µν ) s explctely expressed n terms f λ n the frm Γ α µν = λ α (δ ν λ µ λ µ ν ), C α µν = λ α ( ν λ µ λ µ ν ). (3.8) Remark 3.6. As a result f the dependence f λ n the velcty vectr y, the n 3 functns λ α ( ν λ µ ), as ppsed t the classcal AP-space, d nt transfrm as the ceffcents f a lnear cnnectn, but transfrm accrdng t the rule λ α ( ν λ µ ) = p α α pµ µ p ν ν λ α ( ν λ µ ) + p α ǫ pǫ µ ν + pα α pµ µ p ν ν ǫ C α yǫ µν. (3.9) Smlarly, t can be shwn that, n general, tensrs n the cntext f the classcal AP-space d nt transfrm lke tensrs n the wder cntext f the GAP-space; ther dependence n the velcty vectr y spls ther tensr character. In ther wrds, tensrs n the classcal AP-cntext d nt necessarly behave lke tensrs when they are regarded as functns f pstn x and velcty vectr y. Ths means that thugh the classcal AP-space and the GAP-space appear smlar n frm, they dffer radcally n ther gemetrc structures. We nw ntrduce sme tensrs that wll prve useful later n. Let γµν α := λ α λ µ ν = Γ α µν Γ α µν, Gα µν := λ α λ µ ν = Cµν α C α µν. (3.10) In analgy t the AP-space, we refer t γ α µν and G α µν as the h- and v-cntrtn tensrs respectvely. Let Λ α µν := Γα µν Γα νµ = γα µν γα νµ. (3.11) be the trsn tensr f the canncal cnnectn Γ α µν and Ω α µν := γµν α + γνµ. α (3.12) Smlarly, let Tµν α := Cµν α Cνµ α = G α µν G α νµ (3.13) be what we may call the trsn tensr f Cµν α and D α µν := Gα µν + Gα νµ. (3.14) Nw, f γ σµν := g ǫσ γ ǫ µν and G σµν := g ǫσ G ǫ µν, then γ σµν and G σµν are skew symmetrc n the frst par f ndces. Ths, n turn, mples that Hence, f then γǫν ǫ = Gǫ ǫν = 0. (3.15) β µ := γ ǫ µǫ, B µ := G ǫ µǫ, Λ ǫ µǫ = γ ǫ µǫ = β µ, T ǫ µǫ = G ǫ µǫ = B µ. (3.16) Fnally, t can be shwn, n analgy t the classcal AP-space [3], that the cntrtn tensrs γ µνσ and G µνσ can be expressed n terms f the trsn tensrs n the frm γ µνσ = 1 2 (Λ µνσ + Λ σνµ + Λ νσµ ) (3.17) G µνσ = 1 2 (T µνσ + T σνµ + T νσµ ), (3.18)

7 where Λ µνσ := g ǫµ Λ ǫ νσ and T µνσ := g ǫµ Tνσ ǫ. It s clear by (3.11), (3.13), (3.17) and (3.18) that the trsn tensrs vansh f and nly f the cntrtn tensrs vansh. The next table gves a cmparsn between the fundamental gemetrc bjects n the classcal AP-gemetry and the GAP-gemetry. Smlar bjects f the tw spaces wll be dented by the same symbl. As prevusly mentned, h stands fr hrzntal whereas v stands fr vertcal. Table 1: Cmparsn between the classcal AP-gemetry and the GAP-gemetry Classcal AP-gemetry GAP-gemetry Buldng blcks λ α (x) λ α (x, y) Metrc g µν (x) = λ µ (x) λ ν (x) g µν (x, y) = λ µ (x, y) λ ν (x, y) Remannan cnnectn Γ α µν = 1 2 gαǫ { µ g νǫ + ν g µǫ + ǫ g µν } Γ α µν = 1 2 gαǫ {δ µ g νǫ + δ ν g µǫ + δ ǫ g µν } (h) C α µν = 1 2 gαǫ { µ g νǫ + ν g µǫ + ǫ g µν } (v) Canncal cnnectn Γ α µν = λ α ( ν λ µ ) Γ α µν = λ α (δ ν λ µ ) (h-cunterpart) Cµν α = λ α ( ν λ µ ) (v-cunterpart) AP-cndtn λ α µ = 0 λ α µ = 0 (h-cvarant dervatve) λ α µ = 0 (v-cvarant dervatve) Trsn Λ α µν = Γα µν Γα νµ Λ α µν = Γα µν Γα νµ (h-cunterpart) T α µν = C α µν C α νµ (v-cunterpart) Cntrsn γ α µν = Γα µν Γ α µν γ α µν = Γα µν Γ α νµ (h-cunterpart) G α µν = Cα µν C α µν (v-cunterpart) Basc vectr β µ = Λ α µα = γ α µα β µ = Λ α µα = γ α µα (h-cunterpart) B µ = T α µα = Gα µα (v-cunterpart)

8 4. Curvature tensrs n Generalzed AP-space Owng t the exstence f tw types f cvarant dervatves wth respect t the canncal cnnectn D, we have essentally three cmmutatn frmulae and cnsequently three curvature tensrs. Lemma 4.1. Let [δ σ, δ µ ] := δ σ δ µ δ µ δ σ and let [δ σ, µ ] be smlarly defned. Then [δ σ, δ µ ] = R ǫ σµ ǫ, [δ σ, µ ] = ( µ N ǫ σ ) ǫ, (4.1) where R α σµ := δ µn α σ δ σn α µ s the curvature tensr f the nn-lnear cnnectn Nα µ. Therem 4.2. The three cmmutatn frmulae f cnnectn D = (Nµ α, Γ α µν, Cµν) α are gven by (a) λ α µσ λ α σµ = λ ǫ R α ǫµσ + λα ǫ Λ ǫ σµ + λα ǫ R ǫ σµ (b) λ α µσ λ α σµ = λ ǫ S α ǫµσ + λα ǫ T ǫ σµ (c) λ α µ σ λ α σ µ = λ ǫ P α ǫµσ + λ α ǫ C ǫ σµ + λ α ǫ P ǫ σµ, λ α crrespndng t the canncal where Rνµσ α : = (δ σγ α νµ δ µγ α νσ ) + (Γǫ νµ Γα ǫσ Γǫ νσ Γα ǫµ ) + Lα νµσ, (h-curvature) Sνµσ α : = σ Cνµ α µ Cνσ α + Cǫ νµ Cα ǫσ Cǫ νσ Cα ǫµ, (v-curvature) Pνµσ α : = Cνµ σ α µ Γ α νσ PσµC ǫ νǫ, α (hv-curvature) gven that L α νµσ := C α νǫ R ǫ µσ and P ν σµ := µ N ν σ Γ ν µσ. A drect cnsequence f the abve cmmutatn frmulae, tgether wth the fact that λ α µ = λ α µ = 0, s the fllwng Crllary 4.3. The three curvature tensrs Rνµσ α, Sα νµσ and P νµσ α cnnectn D = (Nµ α, Γα µν, Cα µν ) vansh dentcally. f the canncal It s t be nted that the abve result s a natural generalzatn f the crrespndng result f the classcal AP-gemetry [15]. The Banch denttes [4] fr the canncal d-cnnectn (N α µ, Γα µν, Cα µν ) gves Prpstn 4.4. The fllwng denttes hld (a) S ν,µ,σ Λ α νµ σ = S ν,µ,σ(λ α µǫ Λǫ νσ + Lα µνσ ) (b) S ν,µ,σ T α νµ σ = S ν,µ,σ(t α µǫ T ǫ νσ ), where S ν,µ,σ dentes a cyclc permutatn n ν, µ, σ. Crllary 4.5. The fllwng denttes hld: (a) Λ ǫ µν ǫ = β µ ν β ν µ + β ǫ Λ ǫ µν + S ǫ,ν,µl ǫ ǫνµ. (b) T ǫ µν ǫ = B µ ν B ν µ + B ǫ T ǫ µν,

9 Prf. Bth denttes fllw by cntractng the ndces α and σ n the denttes (a) and (b) f Prpstn 4.4, takng nt accunt that β µ = Λ ǫ µǫ, B µ = T ǫ µǫ and L α µνσ = Lα µσν. In addtn t the Remannan and the cannncal d-cnnectns, ur space admts at least tw ther natural d-cnnectns. In analgy t the classcal AP-space, we defne the dual d-cnnectn D = (N α µ, Γ α µν, C α µν) by and the symmetrc d cnnectn D = (N α µ, Γ α µν, Ĉα µν ) by Γ α µν := Γα νµ, Cα µν := C α νµ (4.2) Γ α µν := 1 2 (Γα µν + Γα νµ ), Ĉα µν := 1 2 (Cα µν + Cα νµ ). (4.3) Cvarant dfferentatn wth respect t Γ α µν and Γ α µν wll be dented by and respectvely. Nw, crresndng t each f the fur d-cnnectns there are three curvature tensrs. Therefre, we have a ttal f twelve curvature tensrs three f whch, as already mentned, vansh dentcally. The vanshng f the curvature tensrs f the canncal d-cnnectn allws us t express, n a relatvely cmpact frm, sx f the ther curvature tensrs (the h- and v-curvature tensrs) crrespndng t the Remannan, symmetrc and the dual d-cnnectns. These curvature tensrs are expressed n terms f the trsn tensrs Λ α µν, Tµν α and ther cvarant dervatves wth respect t the canncal d-cnnectn, tgether wth the curvature Rµν α f the nnlnear cnnectn Nµ α. The ther three hv-curvature tensrs are calculated, thugh ther expressns are mre cmplcated. Ths s t be expected snce the expressn btaned fr the hv-curvature tensr f the canncal d-cnnectn lacks the symmetry prpertes enjyed by the h- and v-curvature tensrs. Therem 4.6. The h-, v- and hv-curvature tensrs f the dual d-cnnectn D = (Nµ α, Γ α µν, C µν α ) can be expressed n the frm: (a) R α µσν = Λα σν µ + Cα ǫµ Rǫ σν + Lα σνµ + Lα νµσ. (b) S α µσν = T α σν µ. (c) P α νµσ = T α µν σ Λα σν µ + T ǫ µνλ α σǫ T α µǫλ ǫ σν Λ α ǫνc ǫ σµ P ǫ σµt α ǫν. The crrespndng curvature tensrs f the symmetrc d-cnnectn D = (N α µ, Γ α µν, Ĉα µν ) can be expressed n the frm: (d) R α µσν = 1 2 (Λα µν σ Λα µσ ν ) + 1 4 (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) + 1 2 (Λǫ σν Λα ǫµ ) + 1 2 (T α ǫµ Rǫ σν ). (e) Ŝα µσν = 1 2 (T α µν σ T α µσ ν ) + 1 4 (T ǫ µνt α σǫ T ǫ µσt α νǫ) + 1 2 (T ǫ σνt α ǫµ). (f) P α νµσ = 1 2 (Λα µν σ Λα σν µ ) + 1 4 Λǫ σµt α ǫν 1 2 Λα ǫνc ǫ σµ + 1 4 S µ,ν,σλ ǫ µνλ α σǫ 1 2 P ǫ σµt α ǫν.

10 The crrespndng curvature tensrs f the Remannan d-cnnectn D = (N α µ, Γ α µν, C α µν ) can be expressed n the frm (g) R α µσν = γα µν σ γα µσ ν + γǫ µσ γα ǫν γǫ µν γα ǫσ + γα µǫ Λǫ νσ + Gα µǫ Rǫ νσ. (h) S α µσν = Gα µν σ Gα µσ ν + Gǫ µσ Gα ǫν Gǫ µν Gα ǫσ + Gα µǫ T ǫ νσ. () P α νµσ = u γ α νσ G α νµ σ + (Gǫ νµ C ǫ νµ)γ α ǫσ (G α ǫµ C α ǫµ)γ ǫ νσ + P ǫ σµg α νǫ. Prf. We prve (a) and (c) nly. The prf f the ther parts s smlar. (a) We have (c) We have R α µσν = δ ν Γ α µσ δ σ Γ α µν + Γ ǫ µσ Γ α ǫν Γ ǫ µν Γ α ǫσ + C α µǫ Rǫ σν = δ ν Γ α σµ δ σ Γ α νµ + Γ ǫ σµγ α νǫ Γ ǫ νµγ α σǫ + C α ǫµr ǫ σν = {δ ν Γ α σµ + Γǫ σµ (Λα νǫ + Γα ǫν )} {δ σγ α νµ + Γǫ νµ (Λα σǫ + Γα ǫσ )} + C α ǫµ Rǫ σν = (δ ν Γ α σµ + Γ ǫ σµγ α ǫν) (δ σ Γ α νµ + Γ ǫ νµγ α ǫσ) (Γ ǫ σµλ α ǫν + Γ ǫ νµλ α σǫ) + C α ǫµr ǫ σν = (R α σµν Cα σǫ Rǫ µν + δ µγ α σν + Γǫ σν Γα ǫµ ) (Rα νµσ Cα νǫ Rǫ µσ + δ µ Γ α νσ + Γǫ νσ Γα ǫµ ) (Γǫ σµ Λα ǫν + Γǫ νµ Λα σǫ ) + Cα ǫµ Rǫ σν. = δ µ Λ α σν + Γ α ǫµλ ǫ σν Γ ǫ σµλ α ǫν Γ ǫ νµλ α σǫ + C α ǫµr ǫ σν + C α σǫr ǫ νµ + C α νǫr ǫ µσ = Λ α σν µ + Cα ǫµ Rǫ σν + Lα σνµ + Lα νµσ. P α νµσ = C α µν e σ µ Γ α σν ( µ N ǫ σ Γ ǫ σµ)c α ǫν = C α νµ σ + (C α µν e σ Cα νµ σ) µ Λ α σν µ Γ α νσ µ N ǫ σ(t α ǫν + C α νǫ) + (Λ ǫ σµ + Γǫ µσ )(T α ǫν + Cα νǫ ) = P α νµσ ( µ N ǫ σ Γǫ µσ )T α ǫν µ Λ α σν + Λǫ σµ Cα ǫν + (Cα µν e σ Cα νµ σ ) = (C α µν e σ Cα νµ σ) + Λ ǫ σµc α ǫν µ Λ α σν P ǫ σµt α ǫν = T α µν σ + Cǫ µν Λα σǫ Cα µǫ Λǫ σν µ Λ α σν P ǫ σµ T α ǫν = T α µν σ µ Λ α σν + (T ǫ µν + C ǫ νµ)λ α σǫ (T α µǫ + C α ǫµ)λ ǫ σν P ǫ σµt α ǫν = T α µν σ Λα σν µ + T ǫ µν Λα σǫ T α µǫ Λǫ σν Λα ǫν Cǫ σµ P ǫ σµ T α ǫν. 5. Fundamental secnd rank tensrs Due t the mprtance f secnd rder symmetrc and skew-symmetrc tensrs n physcal applcatns, we here lst such tensrs n Table 2 belw. We regard these tensrs as fundamental snce ther cunterparts n the classcal AP-cntext play a key rle n physcal applcatns. Mrever, n the AP-gemetry, mst secnd rank tensrs whch have physcal sgnfcance can be expressed as a lnear cmbnatn f these fundamental tensrs. The Table s cnstructed as smlar as pssble t

11 that gven by Mkhal (cf. [5], Table 2), t facltate cmparsn wth the case f the classcal AP-gemetry whch has many physcal applcatns [14]. Crrespndng hrzntal and vertcal tensrs are dented by the same symbl wth the vertcal tensrs barred. It s t be nted that all vertcal tensrs have n cunterpart n the classcal AP-cntext. Table 2: Summary f the fundamental symmetrc and skew-symmetrc secnd rank tensrs Hrzntal Vertcal Skew-Symmetrc Symmetrc Skew-Symmetrc Symmetrc ξ µν := γ µν α α øξ µν := G µν α α γ µν := β α γ µν α øγ µν := B α G µν α η µν := β ǫ Λ ǫ µν φ µν := β ǫ Ω ǫ µν øη µν := B ǫ T ǫ µν øφ µν := B ǫ D ǫ µν χ µν := Λ α µν α ψ µν := Ω ǫ µν ǫ øχ µν := T α µν α øψ µν := D α µν α ǫ µν := 1 2 (β µ ν β ν µ ) θ µν := 1 2 (β µ ν + β ν µ ) øǫ µν := 1 2 (B µ ν B ν µ ) øθ µν := 1 2 (B µ ν + B ν µ ) k µν := γ ǫ αµ γα νǫ γǫ µα γα ǫν h µν := γ ǫ αµ γα νǫ + γǫ µα γα ǫν øk µν := G ǫ αµ Gα νǫ Gǫ µα Gα ǫν øh µν := G ǫ αµ Gα νǫ + Gǫ µα Gα ǫν σ µν := γ ǫ αµ γα ǫν øσ µν := G ǫ αµ Gα ǫν ω µν := γ ǫ µαγ α νǫ øω µν := G ǫ µαg α νǫ α µν := β µ β ν øα µν := B µ B ν Due t the metrcty cndtn n Therem 3.3, ne can use the metrc tensr g µν and ts nverse g µν t perfrm the peratns f lwerng and rasng tensr ndces under the h- and v- cvarant dervatves relatve t the canncal d-cnnectn. Thus, cntractn wth the metrc tensr f the abve fundamental tensrs gves the fllwng table f scalars:

12 Table 3: Summary f the fundamental scalars Hrzntal α := β µ β µ θ := β µ µ φ := β ǫ Ω ǫµ µ ψ := Ω αµ µ α ω := γ ǫµ α γ α µǫ σ := γ ǫ α µ γ α ǫµ h := 2γ αµ ǫ γ ǫ αµ Vertcal øα := B µ B µ øθ := B µ µ øφ := B ǫ D ǫµ µ øψ := D αµ µ α øω := G ǫµ α G α µǫ øσ := G ǫ α µ G α ǫµ øh := 2G αµ ǫ G ǫ αµ In physcal applcatns, secnd rder symmetrc tensrs f zer trace have specal mprtance. Fr example, n the case f electrmagnetsm, the tensr characterzng the electr-magnetc energy s a secnd rder symmetrc tensr havng zer trace. S t s f nterest t search fr such tensrs. The Table belw gves sme f the secnd rank tensrs f zer trace. Table 4: Summary f the fundamental tensrs f zer trace Hrzntal Vertcal φ µν + 2α µν øφ µν + 2ᾱ µν ψ µν + 2θ µν øψ µν + 2øθ µν h µν + 2ω µν øh µν + 2øω µν 1 2 (φ µν ψ µν ) + θ µν α µν 1 2 g µνβ α 1 e α 2 (øφ µν øψ µν ) + øθ µν øα µν 1 2 g µνb α α e We nw cnsder sme useful secnd rank tensrs whch are nt expressble n terms f the fundamental tensrs appearng n Table 2. Unlke the tensrs f Table 2, sme f the tensrs t be defned belw have n hrzntal and vertcal cunterparts. T ths end, let L µν := L α αµν = C α αǫr ǫ µν, M µν := L α µαν = C α µǫ R ǫ αν, N µν := C α ǫµ R ǫ αν, F µν := C α ǫµ R ǫ αν. Then, clearly T µν := M µν N µν = T α µǫ R ǫ αν, G µν := M µν F µν = G α µǫ R ǫ αν, G µν T µν = G α ǫµ R ǫ αν. Fnally, let T := g µν T µν and G := g µν G µν. By the abve, we have the fllwng: Symmetrc secnd rank tensrs: M (µν), N (µν), F (µν). Skew-symmetrc secnd rank tensrs: M [µν], N [µν], F [µν], L µν.

13 6. Cntracted curvatures and curvature scalars It may be cnvenent, fr physcal reasns, t cnsder secnd rank tensrs derved frm the curvature tensrs by cntractns. It s als f nterest t reduce the number f these tensrs t a mnmum whch s fundamental (cf. Prpstns 6.1 and 6.2). Cntractng the ndces α and µ n the expressns btaned fr the h- and v- curvature tensrs n Therem 4.6, takng nt accunt Crllary 4.5, we btan Prpstn 6.1. Let R σν := R ασν α, Rσν := R ασν α and R σν := R α ασν expressns fr S σν, Ŝσν and S σν. Then, we have wth smlar (a) R σν = β σ ν β ν σ + β ǫ Λ ǫ σν + B ǫrσν ǫ, (b) S σν = B σ ν B ν σ + B ǫ Tσν ǫ, (c) R σν = 1 R 2 σν, (d) Ŝσν = 1 S 2 σν, (e) R σν = S σν = 0. Prpstn 6.2. Let R µσ := R µσα α, Rµσ := R µσα α and R µσ := R α µσα expressns fr S µσ, Ŝµσ and S µσ. Then, we have wth smlar (a) R µσ = β σ µ + CǫµR α σα ǫ + L α σαµ + L α αµσ, (b) S µσ = B σ µ, (c) R µσ = 1 R 2 µσ + 1{β 4 ǫλ ǫ σµ + Λǫ ασ Λα µǫ }, (d) Ŝµσ = 1 S 2 µσ + 1{B 4 ǫtσµ ǫ + T ασ ǫ T µǫ α }, (e) R µσ = β µ σ γµσ α α + β ǫγµσ ǫ γµǫγ α σα ǫ + G α µǫrασ, ǫ (f) S µσ := S α µσα = B µ σ G α µσ α + B ǫg ǫ µσ Gα µǫ Gǫ σα. Prpstn 6.3. The fllwng hlds. (a) R [µσ] = 1 {β 2 σ µ β µ σ } + CǫαR ǫ µσ α + C(ασ) ǫ Rα ǫµ C(αµ) ǫ Rα ǫσ, (b) R (µσ) = 1{β 2 σ µ + β µ σ + Tαµ ǫ Rα σǫ + T ασ ǫ Rα µǫ }, (c) S [µσ] = 1{B 2 σ µ B µ σ }, (d) S (µσ) = 1{B 2 σ µ + B µ σ }, (e) R [µσ] = 1 R 2 [µσ] + 1 β 4 ǫ Λ ǫ σµ, (f) R (µσ) = 1 R 2 (µσ) + 1 4 Λǫ ασ Λ α µǫ, (g) Ŝ[µσ] = 1 S 2 [µσ] + 1 B 4 ǫ Tσµ, ǫ

14 (h) Ŝ(µσ) = 1 2 S (µσ) + 1 4 T ǫ ασ T α µǫ, () R [µσ] = 1 2 {Lα αµσ + C α σǫ R ǫ αµ C α µǫ R ǫ ασ}, (j) R (µσ) = 1 2 {(β µ σ + β σ µ ) Ω α µσ α + β ǫ Ω ǫ µσ } γα µǫ γǫ σα + 1 2 {Gα µǫ Rǫ ασ + Gα σǫ Rǫ αµ }, (k) S [µσ] = 0, (l) S (µσ) = 1 2 {(B µ σ + B σ µ ) D α µσ α + B ǫ D ǫ µσ } Gα µǫ Gǫ σα. Crllary 6.4. The fllwng hlds: (a) R σ σ := g µσ Rµσ = β σ σ + T ǫσ α R α ǫσ, (b) S σ σ := gµσ Sµσ = B σ σ, (c) R σ σ := g µσ Rµσ = 1 2 {βσ σ + T ǫσ α R α ǫσ} + 1 4 Λǫσ α Λ α ǫσ, (d) Ŝσ σ := g µσ Ŝ µσ = 1 2 Bσ σ + 1 4 T ǫσ α T α ǫσ, (e) R σ σ := g µσ R µσ = β σ σ 1 2 Ωασ σ α + 1 2 β α Ω ασ σ γ ασ ǫ γ ǫ σα + Gασ ǫ R ǫ ασ, (f) S σ σ := g µσ S µσ = B σ σ 1 2 Dασ σ α + 1 2 B α D ασ σ G ασ ǫ G ǫ σα. We nw apply a dfferent methd fr calculatng bth R µσ and S µσ, nw expressed n terms f the cvarant dervatve f the cntrsn tensrs wth respect t the Remannan d-cnnectn. Then we btan Prpstn 6.5. The Rcc tensrs R µσ and S µσ can be expressed n the frm (a) R µσ = β µ σ γ α µσ α β ǫγ ǫ µσ + γǫ µα γα ǫσ + Gα µǫ Rǫ ασ. (b) S µσ = B µ σ G α µσ α B ǫg ǫ µσ + Gǫ µα Gα ǫσ. Prf. We prve (a) nly; the prf f (b) s smlar. We have 0 = R α µσα = (δ αγ α µσ δ σγ α µα ) + (Γǫ µσ Γα ǫα Γǫ µα Γα ǫσ ) + Rǫ σα Cα µǫ = δ α ( Γ α µσ + γα µσ ) δ σ( Γ α µα + γα µα ) + ( Γ ǫ µσ + γǫ µσ )( Γ α ǫα + γα ǫα ) Cnsequently, ( Γ ǫ µα + γǫ µα )( Γ α ǫσ + γα ǫσ ) + Rǫ σα Cα µǫ = R µσ (δ σ γµα α γǫα α Γ ǫ µσ) + (δ α γµσ α + γµσ ǫ Γ α ǫα γǫσ α γµǫ α Γ ǫ σα ) + Rǫ σα (Cα µǫ C α µǫ ) + γǫ µσ γα ǫα γǫ µα γα ǫσ. Γ ǫ µα R µσ = β µ σ γ α µσ α β ǫγ ǫ µσ + γǫ µα γα ǫσ + Gα µǫ Rǫ ασ. In vew f Prpstn 6.2 (e) and (f) and Prpstn 6.5, we btan

15 Crllary 6.6. The fllwng denttes hlds: (a) (β µ σ β µ σ ) (γ α µσ α γα µσ α) = (γǫ µαω α σǫ 2β ǫ γ ǫ µσ) (b) (B µ σ B µ σ ) (G α µσ α Gα µσ α) = (Gǫ µαd α σǫ 2B ǫ G ǫ µσ). The next tw tables summarze the results btaned n ths sectn, where the cntracted curvatures are expressed n terms f the fundamental tensrs. Table 5 (a): Secnd rank curvature tensrs Skew-symmetrc Symmetrc Dual R[µσ] = ǫ σµ L σµ + M [σµ] + N [σµ] R(µσ) = θ µσ + M (µσ) N (µσ) S [µσ] = øǫ σµ S(µσ) = øθ µσ Symmetrc R[µσ] = 1 2 R [µσ] + 1 4 η σµ R(µσ) = 1 2 R (µσ) + 1 4 {h µσ ω µσ σ µσ } Ŝ [µσ] = 1 2 S [µσ] + 1 4 øη σµ Ŝ (µσ) = 1 2 S (µσ) + 1 4 {øh µσ øω µσ øσ µσ } Remannan R [µσ] = 1 2 L µσ F [µσ] R(µσ) = θ µσ 1 2 (ψ µσ φ µσ ) ω µσ + M (µσ) F (µσ) S [µσ] = 0 S (µσ) = øθ µσ 1 2 (øψ µσ øφ µσ ) øω µσ Table 5 (b): h- and v-scalar curvature tensrs h-scalar curvature v-scalar curvature Dual Rσ σ = θ + T Sσ σ = øθ Symmetrc Rσ σ = 1(θ + T) 1(3ω + σ) 2 4 Ŝσ σ = 1øθ 1 (3øω + øσ) 2 4 Remannan R σ σ = θ 1 (ψ φ) ω + G 2 S σ σ = øθ 1 (øψ øφ) øω 2

16 7. The W-tensrs The W-tensr was frst defned by M. Wanas n 1975 [13] and has been used by F. Mkhal and M. Wanas [6] t cnstruct a gemetrc thery unfyng gravty and electrmagnetsm. Recently, tw f the authrs f ths paper studed sme f the prpertes f ths tensr n the cntext f the classcal AP-space [15]. Defntn 7.1. Let (M, λ) be a generalzed AP-space. Fr a gven d-cnnectn D = (Nβ α, Γα µν, Cα µν ), the hrzntal W-tensr (hw-tensr) Hα µνσ s defned by the frmula λ µ νσ λ µ σν = λ ǫ Hµνσ, ǫ whereas the vertcal W-tensr (vw-tensr) V α µνσ λ µ νσ λ µ σν = λ ǫ V ǫ µνσ, s defned by the frmula where and are the hrzntal and the vertcal cvarant dervatves wth respect t the cnnectn D. We nw carry ut the task f calculatng the dfferent W-tensrs. As ppsed t the classcal AP-space, whch admts essentally ne W-tensr crrespndng t the dual cnnectn, we here have 4 dstnct W-tensrs: the hrzntal and vertcal W-tensrs crrespndng t the dual d-cnnectn, the hrzntal W-tensr crrespndng t the symmetrc d-cnnectn and, fnally, the hrzntal W-tensr crrespndng t the Remannan d-cnnectn. The remanng W-tensrs cncde wth the crrespndng curvature tensrs. It s t be nted that sme f the expressns btaned fr the W-tensrs are relatvely mre cmpact than thse btaned fr the crrespndng curvature tensrs. Therem 7.2. The hw-tensr H µνσ α, the vw-tensr Ṽ µνσ α, the hw-tensr Ĥα µνσ and the hw-tensr H α µνσ crrespndng t the dual, symmetrc and the Remannan d-cnnectns respectvely can be expressed n the frm: (a) H α µνσ = Λ α σν µ + Λǫ νσλ α µǫ + S µ,ν,σ L α µσν. (b) Ṽ α µνσ = T α σν µ + T ǫ νσ T α µǫ. (c) Ĥα µνσ = 1 2 (Λα µν σ Λα µσ ν ) + 1 4 (Λǫ µν Λα σǫ Λǫ µσ Λα νǫ ) + 1 2 (Λǫ σν Λα ǫµ ). (d) H α µνσ = γα µν σ γα µσ ν + γǫ µσ γα ǫν γǫ µν γα ǫσ + Λǫ νσ γα µǫ. Prf. We prve (a) nly. The prf f the ther parts s smlar. We have λ ǫ Hǫ µνσ = λ ǫ Rǫ µσν + λ µ e ǫ Λǫ σν + λ µ e ǫ R ǫ σν. Hence, takng nt accunt Therem 4.6 (a), we btan H µνσ α = R µσν α + λ α (δ ǫ λ µ λ β Γ β ǫµ ) Λ ǫ σν + λ α ( ǫ λ µ λ β C ǫµ β )Rǫ σν = R µσν α + Λǫ νσ (Γα µǫ Γα ǫµ ) + Rǫ σν (Cα µǫ Cα ǫµ ) = Λ α σν µ + C α ǫµr ǫ σν + L α σνµ + L α νµσ + Λ ǫ νσλ α µǫ + T α µǫr ǫ σν = Λ α σν µ + T α ǫµ Rǫ σν + Cα µǫ Rǫ σν + Lα σνµ + Lα νµσ + Λǫ νσ Λα µǫ + T α µǫ Rǫ σν = Λ α σν µ + Λǫ νσ Λα µǫ + S µ,ν,σl α µσν.

17 Prpstn 7.3. Let Hνσ := H ανσ α, Ĥ νσ := Ĥα ανσ and H νσ := H α ανσ wth smlar expressn fr Ṽνσ. Then, we have (a) H νσ = β σ ν β ν σ + 2β ǫ Λ ǫ σν, (b) Ṽνσ = B σ ν B ν σ + 2B ǫ Tσν, ǫ (c) Ĥνσ = 1 { H 2 νσ + β ǫ Λ ǫ νσ}, (d) H νσ = 0. Prpstn 7.4. Let H µσ := H µασ α, Ĥ µσ := Ĥα µασ and H µσ := H α µασ expressns fr Ṽµσ. Then, we have wth smlar (a) H µσ = β σ µ + Λ ǫ ασλ α µǫ + S α,µ,σ L α αµσ, (b) Ṽµσ = B σ µ + T ǫ ασ T α µǫ, (c) Ĥµσ = 1 2 H µσ + 1 4 (β ǫλ ǫ σµ + Λǫ σα Λα µǫ ), (d) H µσ = β µ σ γ α µσ α + β ǫγ ǫ µσ γǫ σα γα µǫ. Prpstn 7.5. The fllwng hlds: (a) H [µσ] = 1 2 {β σ µ β µ σ } + S α,µ,σ L α αµσ, (b) H (µσ) = 1 2 {β σ µ + β µ σ } + Λ ǫ ασ Λα µǫ, (c) Ṽ[µσ] = 1 2 {B σ µ B µ σ }, (d) Ṽ(µσ) = 1 2 {B σ µ + B µ σ } + T ǫ ασt α µǫ, (e) Ĥ[µσ] = 1 2 H [µσ] + 1 4 β ǫλ ǫ σµ, (f) Ĥ(µσ) = 1 2 H (µσ) + 1 4 Λǫ σα Λα µǫ, (g) H [µσ] = 1 2 S αµσl α αµσ, (h) H (µσ) = 1 2 {(β µ σ + β σ µ ) Ω α µσ α + β ǫω ǫ µσ } γα µǫ γǫ σα. Crllary 7.6. the fllwng hlds: (a) H α α = βα α + Λ ǫµ αλ α ǫµ, (b) Ṽ α α = Bα α + T ǫµ αt α ǫµ, (c) Ĥα α = 1 2 βα α + 1 4 Λǫµ αλ α ǫµ, (d) H σ σ = β σ σ 1 2 Ωασ σ α + 1 2 β αω ασ σ γ ασ ǫγ ǫ σα. Takng nt accunt Prpstn 4.4, Therem 7.2 and the Banch dentty [4] fr the Remannan d-cnnectn, we get the fllwng

18 Prpstn 7.7. The hw-tensrs H α µνσ, Ĥα µνσ, H α µνσ and the vw-tensrs Ṽ α µνσ satsfy the fllwng denttes: (a) S µ,ν,σ Hα µνσ = 2S µ,ν,σ (Λ α µǫ Λǫ νσ + Lα µσν ). (b) S µ,ν,σ Ṽ α µνσ = 2S µ,ν,σ(t α µǫ T ǫ νσ ). (c) S µ,ν,σ Ĥ α µνσ = S µ,ν,σ L α µσν. (d) S µ,ν,σ H α µνσ = S µ,ν,σ L α µσν. We cllect the results btaned n ths sectn n the fllwng tables, where the cntracted W-tensrs are expressed n terms f the fundamental tensrs. Table 6 (a): Secnd rank W-tensrs Skew-symmetrc Symmetrc Dual H[µσ] = ǫ σµ L σµ + 2M [σµ] H(µσ) = θ µσ (ω µσ + σ µσ h µσ ) Ṽ [µσ] = ǫ σµ Ṽ (µσ) = θ µσ ( ω µσ + σ µσ h µσ ) Symmetrc Ĥ [µσ] = 1 2 H [µσ] + 1 4 η σµ Ĥ (µσ) = 1 2 H (µσ) + 1 4 {ω µσ + σ µσ h µσ } Remannan H [µσ] = 1 2 L µσ M [µσ] H(µσ) = θ µσ 1 2 (ψ µσ φ µσ ) ω µσ Table 6 (b): Scalar W-tensrs h-scalar W-tensrs v-scalar W-tensrs Dual Hσ σ = θ (3ω + σ) Ṽ σ σ = θ (3 ω + σ) Symmetrc Ĥσ σ = 1θ 1 (3ω + σ) 2 4 Remannan H σ σ = θ 1 (ψ φ) ω 2

19 Cncludng remarks In the present artcle, we have develped a parallelzable structure n the cntext f a generalzed Lagrange space. Fur dstngushed cnnectns, dependng n ne nn-lnear cnnectn, are used t explre the prpertes f ths space. Dfferent curvature tensrs characterzng ths structure are calculated. The cntracted curvature tensrs necessary fr physcal applcatns are gven and cmpared (Tables 5(a)). The traces f these tensrs are derved and cmpared (Table 5(b)). Fnally, the dfferent W-tensrs wth ther cntractns and traces are als derved (Tables 6(a) and 6(b)). On the present wrk, we have the fllwng cmments and remarks: 1. Exstng theres f gravty suffer frm sme prblems cnnected t recent bserved astrphyscal phenmena, especally thse admttng anstrpc behavr f the system cncerned (e.g. the flatness f the rtatn curves f spral galaxes). S, theres n whch the gravtatnal ptental depends n bth pstn and drectn are needed. Such theres are t be cnstructed n spaces admttng ths dependence. Ths s ne f the ams mtvatng the present wrk. 2. Amng the advantages f the AP-gemetry are the ease n calculatns and the dverse and ts thrugh applcatns. In ths wrk, we have kept as clse as pssble t the classcal AP-case. Hwever, the extra degrees f freedm n ur GAP-gemetry have created an abundance f gemetrc bjects whch have n cunterpart n the classcal AP-gemetry. Snce the physcal meanng f mst f the gemetrc bjects f the classcal AP-structure s clear, we hpe t attrbute physcal meanng t the new gemetrc bjects appearng n the present wrk, especally the vertcal quanttes. 3. Due t the wealth f the GAP-gemetry, ne s faced wth the prblem f chsng gemetrc bjects that represent true physcal quanttes. As a frst step t slve ths prblem, we have wrtten all secnd rder tensrs n terms f the fundamental tensrs defned n sectn 5. Ths s dne t facltate cmparsn between these tensrs and t be able t chse the mst apprprate fr physcal applcatn. The same prcedure has been used fr scalars. 4. We are aware that the present paper s f cmputatnal nature. The paper s certanly nt ntended t be an end n tself. In t, we try t cnstruct a gemetrc framewrk capable f dealng wth and descrbng physcal phenmena. The success f the classcal AP-gemetry n physcal applcatns made us chse ths gemetry as a gude lne. The physcal nterpretatn f the gemetrc bjects exstng n the GAPgemetry and nt n the AP-gemetry wll be further nvestgated n a frthcmng paper.

20 References [1] D. Ba, S. Chern and Z. Shen, An ntrductn t Remann-Fnsler Gemetry, Graduate Texts n Mathematcs, Sprnger, 2000. [2] F. Brckell and R. S Clark, Dfferentable manflds, Van Nstrand Renhld C., 1970. [3] K. Hayash and T. Shrafuj, New general relatvty, Phys. Rev. D 19 (1979), 3524-3554. [4] M. Matsumt, Fundatns f Fnsler Gemetry and specal Fnsler spaces, Kasesha Press, Otsu, Japan, 1986. [5] F. I. Mkhal, Tedrad vectr felds and generalzng the thery f relatvty, An Shams Sc. Bull., N. 6 (1962), 87-111. [6] F. I. Mkhal and M.I Wanas, A generalzed feld thery. I. Feld equatns, Prc. R. Sc. Lndn, A. 356 (1977), 471-481. [7] R. Mrn, A Lagrangan thery f relatvty, Sem de Gem. s Tp., 84, Tmsara, Rmana, 1985. [8] R. Mrn, Metrcal Fnsler structures and specal Fnsler spaces, J. Math. Kyt Unv., 23 (1983), 219-224. [9] R. Mrn, Cmpendum n the Gemetry f Lagrange Spaces, Handbk f Dfferental Gemetry, Vl. II (2006), 437-512. [10] H. P. Rbertsn, Grups f mtn n spaces admttng abslute parallelsm, Ann. Math, Prncetn (2), 33 (1932), 496-520. [11] T. Sakaguch, Parallelzable generalzed Lagrange spaces, Anal. St. Unv. AI. I. Cuza, Ias, Mat., 33, 2 (1987), 127-136. [12] T. Sakaguch, Invarant thery f parallelzable Lagrange spaces, Tensr, N. S., 46 (1987), 137-144. [13] M. I. Wanas, A generalzed feld thery and ts applcatns n csmlgy, Ph. D. Thess, Car Unversty, 1975. [14] M. I. Wanas, Abslute parallelsm gemetry: Develpments, applcatns and prblems, Stud. Cercet, Stn. Ser. Mat. Unv. Bacau, N. 10 (2001), 297-309. [15] N. L. Yussef and A. M. Sd-Ahmed, Lnear cnnectns and curvature tensrs n the gemetry f parallelzabl manflds, Submtted.