n b n Mn3C = n Mn /3 = 0,043 mol free Fe n Fe = n Fe 3n Fe3C = 16,13 mol, no free C b Mn3C = -Δ f G for Mn 3 C +3 b Mn + b C = 1907,9 kj/mol
|
|
- Τελαμών Ἁνανίας Κοτζιάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 PET Exercses 3+4 f 4 10 Feb + 13 Feb deal gas: Δs = s - s 1 = c p ln(t /T 1 ) - R ln(p /p 1 ) (T << T crt; p << p crt ) ΔĖx = ṅ T Δs T T 1 (0 1 bar, h h 1 ) ṅ = 1 kg/s / 0,03 kg/ml = 31,5 ml/s Δs = - R ln(1/0) = 4,9 /(mlk) ΔĖx = ṅ T Δs = 31,5 93 4,9 = 8,1 kw. 1 kg l = 1000 g / 7 g/ml = 37,0 ml 37 ml l + 1½ 37 ml O ½ 37 ml l O 3. Tables curse materal sectn 1.8: b chem, l = 795,7 k/ml b chem, lo3 = Δ f G lo3 + 1½ b chem, + b chem b chem, lo3 = 15,1 k/ml Δex = b chem, l - ½ b chem, lo3 = 795,7 ½ 15,1 = 788, k/ml l = 9, M/kg l (= 8,1 kwh/kg l) Ths s als the mnmum exergy nput need fr l prductn frm pure l O 3. PET Exercses 3+4 f 4 10 Feb + 13 Feb Per kg steel: n Fe = 17,55 ml, b Fe = 374,3 k/ml n C = 0,50 ml, b C = 410,3 k/ml n Mn = 0,13 ml, b Mn = 487,7 k/ml n S = 0,09 ml, b S = 609,6 k/ml n P = 0,03 ml, b P = 861,4 k/ml n S = 0,11 ml, b S = 854,9 k/ml n Mn3C = n Mn /3 = 0,043 ml n Fe3C = n C n Mn3C = 0,457 ml free Fe n Fe = n Fe 3n Fe3C = 16,13 ml, n free C b Mn3C = -Δ f G fr Mn 3 C +3 b Mn + b C = 1907,9 k/ml b Fe3C = -Δ f G fr Fe 3 C +3 b Fe + b C = 1539,3 k/ml b n b chem, n 700k / ml (RZ calculates 6997,7 k/kml wth Σn = 16,86 ml) Exergy decrease as a result f mxng: n R T Σx lnx = -0,56 k/ml ths purty!) (can be neglected fr
2 PET Exercses 3+4 f 4 10 Feb + 13 Feb Fr the feed, wth enthalpy = 0 fr lqud at T = 0 C: cndenser F = (x c p + x B c pb )(T - 0 C) = heater = (0, ,55 75,5) 178 C = 40,4 k/ml Flash e-balance (lever rule): L G L1 53,0 40,4 40,4 4,8 1 G1 F 1 F 1, & L 1 + G 1 = 1 ml/s L 1 = 0,45 ml/s, G 1 = 0,55 ml/s Cndenser: 50/50 splt G = L = 0,55/ = 0,75 ml/s G + L = 34,3 k/ml Q c = (50,3 34,3) k/ml 0,55 ml/s = 10,3 kw PET Exercses 3+4 f 4 10 Feb + 13 Feb (Earler curse Transprt prcesser (TRP), G. Öhman, exam questn) p x, y T 101,3kPa, p 90,18K fr N. Rault' s Law : p x x p p tt tt x p p p 8 T 101,3kPa, 77,35K (1 x) p and y y, x p p tt 8 L, ( T 73K) 65 k / mlk L, L (77K 73K) 65 k / mlk 01k / kg 8 kg / kml ( T 77K) 30,5 k / mlk (90K 73K) 65 k / mlk 3 k / kg 3 kg / kml ( T 90K) 30,5 k / mlk G y (1 y) Prcedure: pck a Tbl,N < T < Tb,l x, y, and crrespndng L and G. Nte: n mxng heat s cnsdered here.
3 PET Exercses 3+4 f 4 10 Feb + 13 Feb Curse materal: sectn 3.6; nt equlbrum z = D/F ½, B/F = 1/z; x F = z Per mle feed, f q = 1 (blng lqud) : L/F = r D/F = z r abve the feed L/F = r D/F = z r +1 at/belw the feed V/F = = z (r + 1) n the whle clumn Mnmum heat nput needed: Q mn = V Δ vap = z (r mn + 1) Δ vap Fr ths mxture then W sep = W mn = -R T (zlnz + (1-z)ln(1-z)) = Q Rmn T (1/T tp 1/T bttm ) = (Q n, mn T R/ Δ vap ) (- ln α) (zlnz + (1-z)ln(1-z)) = (Q n, mn / Δ vap ) (- ln α) = z (r mn + 1) (- ln α) r mn = -1 + [ (zlnz + (1-z)ln(1-z))/( (- ln α) ) ] If x F becmes lwer, then mre lqud flw dwnwards needed fr strppng the lght cmpnent frm (mre) heavy cmpnent. r mn Nt necessarly symmetrc wth peak at z = ½ W mn Check ths als fr q=0 (saturated gas feed), t see the effect f preheat! z= x F D/F PET Exercses 3+4 f 4 10 Feb + 13 Feb a L11 X L1 X m D11 D1 and L X L X D D m. m L X L X m D D L X L X D D m m 1 μ d d (Bnary dffusn, -dc / + dc B / = 0, T T where X, X m, L L1 (Onsager) c B + c = cnstant, m = - mb, c wth chemcal ptental μ μ RTlny μ RTln gves n extra nfrmatn) c (μ chemcal ptental fr pure ).Ths gves : dt/ = 0 m = -D dc /, Fck s L11 μ dt L1 R dc Law, D = D, L11 X L1 X m and T c m = 0 -D dt/ = D dc / L μ dt L R dc m L X L X m dc / = -D /D dt/ T c Q Q = -(D 11 - D 1 D /D ) dt/ λ = -(D 11 - D 1 D /D ) b. m = 0 dc / = -D /D dt/ dc /dt = -D /D r dc / = -D /D dt/ dt/ 0 means that dc / 0, whch can be used t measure D r D 1. bulk
4 PET Exercses 3+4 f 4 10 Feb + 13 Feb Exam 9 March 009: Questn 301. a. h D = 4, k/ml Q c /D = 57,8 M/mn / 0,5 kml/mn = 115,6 k/ml ple pnt N at x = x D = 0,95; h N = 4, + 115,6 = 119,8 k/ml Q B /B = 45,4 M/mn / 0,77 kml/mn = 6,5 k/ml ple pnt M at x = x B = 0,05; at h = 6,5 k/ml belw saturated lqud lne fr x = x B, h M = 31 6,5 = -31,5 k/ml PET Exercses 3+4 f 4 10 Feb + 13 Feb 015 (8. Exam 9 March 009: Questn 301.) b. F = B + D, mass balance, F = 17 ml/mn methd 1: energy balance: F h F + Q B = Q C + B h B + D h D h F = (Q C + B h B + D h D - Q B ) / F = (57,8-45,4 + 0, ,031 77)/17 M/mn/ml/mn = 30, k/ml dagram: x F ~ 0,415 methd : lever rule fr fndng pnt F n lne MN length rat FM/MN = 500/17 x F ~ 0,415
5 PET Exercses 3+4 f 4 10 Feb + 13 Feb 015 (8. Exam 9 March 009: Questn 301.) (b. cntnues) pnt F s almst n te-lne fr T = 100 C: T ~ 99 C. lever rule fr te-lne at 99 C: lqud /ttal = length frm F t saturated gas /ttal = 71% gas/ttal = 9%,.e. q = 0,71 c. Draw lnes as n Fgure: V = gas frm tp tray L = lqud frm tp tray etc. 5 stages (4 + rebler) T C x - L k/ml y - G k/ml Exam 9 March 009: Questn 30. PET Exercses 3+4 f 4 10 Feb + 13 Feb 015 a. α = 1.5 = p C5 / p C8 at 70 C, 1 bar (see als nmgram curse materal #3 sldes 14,15 Clausus Clapeyrn: ln α -Δ vap /R (1/T bttm 1/T tp ) Δ vap - R ln(1,5) / (1/T 398 1/T 309 ) = 9,0 k/ml 30 k/ml b. deal, per mle feed: Q n, mn = ½ (r mn + 1) Δ vap = 15,96 k/ml real, per mle feed: Q n, real = ½ (r real + 1) Δ vap = 16,68 k/ml deal, per mle feed: W n, mn = Q n, mn T (1/T tp 1/T bttm ) = 15,96 93 (1/309-1/398) = 3,38 k/ml
6 PET Exercses 3+4 f 4 10 Feb + 13 Feb 015 (9. Exam 9 March 009: Questn 30.) c. real, per mle feed: W n,real = Q n, real T (1/T tp 1/T bttm ) = 16,68 93 (1/303-1/408) = 4,15 k/ml lsses clumn: (Q n, real - Q n, mn ) T (1/T tp 1/T bttm ) = 0,153 k/ml lsses rebler: Q n, real T (1/T bttm 1/T rebler ) = 0,301 k/ml lsses cndenser: Q n, real T (1/T cndenser,ut 1/T tp ) = 0,313 k/ml 15,96 16, n,mn clumn Effcency = 0, 816. Q n, real T Q ( (1/ Nt bad, reflux rat s lw. T rebler (1/ (1/ clumn (1/ cndenser d. pparently r = unchanged (may nt be s!); but nw Q n, mn = 1/3 (r mn + 1) Δ vap, etc. Ths gves new values Q n, mn = 10,6 k/ml feed Q n, real = 11,1 k/ml feed W n, mn =,7 k/ml feed W n,real =,77 k/ml feed Ex lss, cl = 0,10 k/ml feed Ex lss, cnd = 0,01 k/ml feed Ex lss, reb = 0,08 k/ml feed Effcency 0,815 unchanged ) PET Exercses 3+4 f 4 10 Feb + 13 Feb Exam 9 March 009: Questn 401. a. dt/ = 0 m = 10-6 kg/(m /s) = - D dc / D = Ð = 10-5 m /s and dc / = 0,1 (kg/m 3 )/m. dt/ = -100 K/m gves m = 0, L11 X L1 Xm D 11 D1 and m L 1 μ d d T T where X, Xm,L L1 (Onsager) c wth chem cal ptent al μ μ RTlny μ RTln cbulk (μ chemcal ptental fr pure ). Ths gves : L11 μ dt L1 R dc L11 X L1 Xm and T c L μ dt L R dc m L X L Xm T c -D dt/ = D dc / D = -D (dc /)/(dt/) = 10-5 m /s 0,1 / 100 = 10-8 kg/(m s K) Q = (-D 11 +D 1 D /D ) dt/ = -λ dt/ λ = D 11 - D 1 D /D, where D 1 D BT L 1 = L D 1 = -L 1 R/c avg, and - D L /T avg = L 1 /T avg L 1 = - D T avg D 1 = D T avg R/c avg, = 10-8 (330) 5/0,01 = 7, W m /kg λ = 0,03 W/(m K) = D 11 - D 1 D /D D 11 = λ - D 1 D /D = 0,03 0,07 = 0,003 W/(m K) b. Q = -(D 11 - D 1 D /D ) dt/ = -(0,003-7, 10-8 /10-5 ) 100 = 0, =,4 W/m Furer law Q = -λ dt/ gves Q = 0, = 3 W/m X L X m dt D D dc
7 PET Exercses 3+4 f 4 10 Feb + 13 Feb / Exam 18 May 011 questn 109 a. Δh = c p (100-5)K =,68 k/ml Δs = c p ln(383/98) - R ln(100/1) = 8,0-38,3 k/(mlk) 100 bar, 5ºC: ex phys = RT 0 ln(p/p 0 ) = 11,4 k/ml 100 bar, 100ºC: ex phys = Δh - T 0 Δs =,68 + T 0 (38,3 8,0) = 11,7 k/ml ex chem (5 bar, 100ºC) = 843,0 k/ml ex chem (100 bar, 100ºC) = 843,4 k/ml b. exº chem MeO = -166, ,6 (fr C) + ½ 3,97 (fr O) + 36,09 (fr ) = 718, k/ml exº chem C 4 = 831,6 k/ml (data gven under a.) a reductn f 13,6 % MeO: C 4 : 718, k/ml / 3 kg/kml =,44 M/kg 831,6 k/ml / 16 kg/kml = 51,98 M/kg
2 nd Law: m.s in + Q in /T in + S gen = ds/dt + m.s out + Q out /T out. S gen /ṁ = -(Q in /m)/t + Δs,
P 444 5 xercises + f 4 6 Jan + Jan 5. kg ice at 6 K kg ater at 9 K. Heat Q at = is supplie y the surrunings. Specific heat ice : c i = 4 kj/kgk; ater c = 48 kj/kgk melting heat Δ m H = 4 kj/kg n La: m.s
Class 03 Systems modelling
Class 03 Systems mdelling Systems mdelling input utput spring / mass / damper Systems mdelling spring / mass / damper Systems mdelling spring / mass / damper applied frce displacement input utput Systems
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
STEAM TABLES. Mollier Diagram
STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
2. Chemical Thermodynamics and Energetics - I
. Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]
Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat
Calculaton of ODH classfcaton for Nevs LHe e-bubble Chamber Cryostat. Physcal parameters Thermal propertes of Helum and Ntrogen Yongln Ju Nevs Laboratores, Columba Unversty, NY 533 T 3 [K] Pa 76 [mmhg]
ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ
ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΡΑΣΗ Μ.Β ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ ( ΙΑΦΟΡΙΚΗ) Probablty Densty Functon
ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ
ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙΔΡΑΣΗ Μ.Β ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ (ΔΙΑΦΟΡΙΚΗ) Probablty Densty Functon
PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES
PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES M. CONDE ENGINEERING, 2002 M. CONDE ENGINEERING, Zurich 2002 Properties of ordinary water substance
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Dielectric Wave Guide
Electrmagnetc Fels Delectrc Wave Gue A electrc wavegue s a structure whch eplts ttal reflectn at electrc nterfaces t gue electrmagnetc raatn. The smplest case s the symmetrc electrc slab wave gue clang
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V
February 5, 006 CHAPTER 0 P.P.0. 0 in(t 0 0, ω H jωl j4 0. F -j.5 jωc Hence, e circuit in e frequency dmain i a hwn belw. -j.5 Ω 4 Ω 0 0 A Ω x j4 Ω x At nde, At nde, 0 - j.5 00 (5 j4 j ( 4 x where x j4
STAMP FERRITE CORES STAMP
ST ST STAMP FERRITE CORES STAMP General Defntns. BH curves If an alternatng magnetc feld s appled t a sft magnetc materal, the magnetc nductn(b) changes wth the magnetc feld(h)as shwn n Fg. The hysteress
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
FERRITE CORES. Inductive components Designer and Manufacturer EUROPE OFFICIAL AGENT. Providing SOLUTION is our APTITUDE
Inductve cmpnents Desgner and Manufacturer FERRITE CORES FERRITE CORES ST EUROPE OFFICIAL AGENT http://www.tdasu.cm/eng/cntact.htm STAMP ST STAMP STAMP Prvdng SOLUTION s ur APTITUDE General Defntns. BH
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin
P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï
P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
By R.L. Snyder (Revised March 24, 2005)
Humidity Conversion By R.L. Snyder (Revised March 24, 2005) This Web page provides the equations used to make humidity conversions and tables o saturation vapor pressure. For a pd ile o this document,
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ
ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ Εισαγωγή Η µελέτη και ο σχεδιασµός όλων των διεργασιών των τροφίµων απαιτούν τη γνώση των θερµοφυσικών ιδιοτήτων τους. Τα τρόφιµα είναι γενικά ανοµοιογενή
TURBO CODES IN UMTS/ WIMAX/ LTE SYSTEMS: SOLUTIONS FOR AN EFFICIENT FPGA IMPLEMENTATION. Ph. D. Cristian ANGHEL
TURBO CODES IN UMTS/ WIMAX/ LTE SYSTEMS: SOLUTIONS FOR AN EFFICIENT FPGA IMPLEMENTATION Ph. D. Crstan ANGHEL INTRODUCTION Telecm Prtcl Stac Nn-Access Stratum - NAS Rad Resurce Cntrl - RRC Meda Access Cntrl
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης
Ασκήσεις Προβλήματα Μετρήσεις Μονάδες Γνωρίσματα της Ύλης 19. Ποιες μονάδες χρησιμοποιούν συνήθως οι χημικοί για την πυκνότητα των: α) στερεού, β) υγρού και γ) αερίου σώματος; Να εξηγήσετε τη διαφορά.
Είδη ΙΦΥΥ δυαδικών μιγμάτων
Είδη ΙΦΥΥ δυαδικών μιγμάτων T A X 1 X 1 ΙΦΥΥ τριαδικών μιγμάτων Τριγωνικά διαγράμματα C 0.1 0.2 0.3 0.4 0.5 P 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.6 0.7 0.8 0.9 κλάσμα βάρους του B κλάσμα βάρους του C
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
SMD Transient Voltage Suppressors
SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time
APPENDIX I PITTSBURGH NO. 8 WASHABILITY DATA AND RECOVERY- CURVES
APPENDIX I PITTSBURGH NO. 8 WASHABILITY DATA AND RECOVERY- CURVES Seam: Pittsburgh No. 8 Sample: Run-of-Mine Feed Class: 5 x 1 mm Mass (%): 56.26 Individual Sink Float Mass Ash Sulfur Pyritic Heat SG SG
ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμηνο 006-007 3 Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση Ένας κύλινδρος με όγκο 0,4 3 περιέχει μίγμα CH 4 και αέρα (Ο, % - Ν, 79%
Monochromatic Radiation is Always 100% Polarized
Mnchrmatic Radiatin is lwas % Plarized Plarizatin llipse z Prpagatin Right-Hand Plarizatin v b z θ a ϕ (t) v 3 Parameters Specif llipse e.g. a, b, ϕ a, ϕ, θ v, v, θ ls, (need + r t right r left elliptical)
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Ισορροπία Υγρού-Υγρού ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ
Ισορροπία Υγρού-Υγρού ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Προχωρημένη Θερμοδυναμική Εαρινό εξάμηνο 08-09 Εισαγωγή Σε αντίθεση με τα αέρια τα οποία είναι αναμίξιμα σε όλες τις αναλογίες σε χαμηλές πιέσεις τα υγρά
Part III - Pricing A Down-And-Out Call Option
Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3
Table S1. Rotational constants and vibrational frequencies of Reactants, Complexes, Transition States and Products Computed at the MP2/6-311G(d,p) level. Species I a, I b, I c (GHZ) Frequencies (cm -1
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τομέας Υδατικών Πόρων και Περιβάλλοντος Εύα- Στυλιανή Στείρου Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16
Ύγρανση και Αφύγρανση Ψυχρομετρία η μελέτη των ιδιοτήτων του υγρού αέρα δηλαδή του μίγματος αέρα-ατμού-νερού. Ένα βασικό πρόβλημα: Δεδομένων των P (bar) Πίεση T ( o C) Θερμοκρασία Υ (kg/kg ξβ) Υγρασία
Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.
Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn
The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling
he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö
P11-2015-60. É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œ Œ ˆ Š Œ ˆ ˆ Œˆ ˆŸ ƒ Š ˆŒ Š ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Œμ μ²ó ± μ Ê É Ò
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Derivation of Tranformation Parameter Computation for a 2D/3D Coordinates System from Laser Scanner Coordinates to Camera Coordinates
Dervatn Tranratn Paraeter Cputatn r a D/3D Crdnate te r Laer anner Crdnate t Caera Crdnate Cnventn: In a 3D rdnate te wll be ued r bjet rdnate n the anner rdnate te. Th the rdnate te r whh the tranratn
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
RECIPROCATING COMPRESSOR CALCULATION SHEET
Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics
apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014
ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 Άγιος Γερμανός, Φεβρουάριος 2015 Ομάδα συγγραφής Βαλεντίνη Μάλιακα
ϕ α βi(k) ξ β αi(k ) ω β0 + ε β iα E β V αn (k α ), ϕ σ ββ(k σ ) = m β dk Kαβ (k, k )U β (k ) r β (ω βk ω β0 )
Collecton of cal formulae Lublana, 12 September 2016, p.: 7 In a compact notaton (see precse form of ε n the prevous table): K (k, k ) ϕ (k) ξ (k ) Below V N and V Δ stand for the pon nter., for sgma.
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,
Αξιοποίηση Έξι Σεισμών στην Πελοπόννησο για την Συσχέτιση Φασματικών Επιταχύνσεων με την Απόκριση του Δομημένου Περιβάλλοντος Correlation of Spectral Accelerations with the Response of the Built Environment
Derivation for Input of Factor Graph Representation
Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
APPENDIX A. Summary of the English Engineering (EE) System of Units
Appendixes A. Summary of the English Engineering (EE) System of Units B. Summary of the International System (SI) of Units C. Friction-Factor Chart D. Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) E.
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
; +302 ; +313; +320,.
1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,
α - διάσπαση Δήμος Σαμψωνίδης (19-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
α - διάσπαση Δήμος Σαμψωνίδης (19-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο α - διάσπαση α- διάσπαση: M(A,Z) M(A- 4, Z- 2) + α + Q ( Μητρικός Θυγατρκός + α + Q )
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of