2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΛΑΜΙΑΣ ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ (PROJECT) H ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΜΑ ΤΗΣ ΕΠΟΧΗΣ ΜΑΣ.



Σχετικά έγγραφα
ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Η Γεωθερμία στην Ελλάδα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ

Χρήσεις γεωθερμικής ενέργειας

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, Ιουνίου Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας

Γεωθερµία. ηµήτρης Αλ. Κατσα ρακάκης. Πρόγραµµα ιά Βίου Μάθηση. Καινοτόµες Τεχνολογίες Εφαρµογών Α.Π.Ε. και Εξοικονόµησης Ενέργειας

ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ

Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερμική Ενέργεια

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗΣ ΣΧΟΛΗΣ ΠΑΝ/ΜΙΟΥ ΠΑΤΡΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια. Ιωάννης Στεφανάκος

Εισαγωγή στην Ενεργειακή Τεχνολογία. Γεωθερμική ενέργεια

4 η Εβδομάδα Ενέργειας ΙΕΝΕ, Νοεμβρίου 2010, Αθήνα Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ

Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ήπιες Μορφές Ενέργειας

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT

ΟΡΘΟΛΟΓΙΚΗ ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός

Το Γεωθερμικό Δυναμικό της Ελλάδας

ΓΕΩΘΕΡΜΙΑ ΕΝΑΣ ΦΥΣΙΚΟΣ ΕΝΕΡΓΕΙΑΚΟΣ ΠΛΟΥΤΟΣ

ΕΝΣΩΜΑΤΩΣΗ Α.Π.Ε. ΣΤΑ ΚΤΙΡΙΑ. Ν. ΚΥΡΙΑΚΗΣ, καθηγητής ΑΠΘ Πρόεδρος ΙΗΤ

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης

Γεωθερμία Εξοικονόμηση Ενέργειας

ΓΕΩΘΕΡΜΙΑ & ΣΥΣΤΗΜΑΤΑ ΕΦΑΡΜΟΓΩΝ: Yr host 4 today: Νικόλαος Ψαρράς

Γεωθερµία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσα ρακάκης

Λύσεις Εξοικονόμησης Ενέργειας

Ήπιες και νέες μορφές ενέργειας

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ

Το smart cascade και η λειτουργία του

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό;

Β ΨΥΚΤΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΓΤΖΙΔΟΥ ΠΑΝΑΓΙΩΤΑ ΚΟΥΡΟΥΣ ΣΠΥΡΙΔΩΝ

GEO POWER, Ημερίδα 16 Ο ΕΘΝΙΚΟ Γεωθερμίας ΣΥΝΕΔΡΙΟ ΕΝΕΡΓΕΙΑΣ, «ΕΝΕΡΓΕΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ 2011»

Προϊόν Παραπροϊόν Υποπροϊόν

Εναλλακτικές λύσεις θέρμανσης & δροσισμού στα δημοτικά κτίρια με συστήματα γεωθερμίας

Ήπιες και νέες μορφές ενέργειας

ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ: Η ΣΥΜΒΟΛΗ ΤΟΥ ΙΓΜΕ στην ΕΡΕΥΝΑ και ΑΞΙΟΠΟΙΗΣΗ της ΔΕΘ 2016

Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων

ΧΡΗΣΕΙΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ: ΣΗΜΕΡΙΝΗ ΚΑΤΑΣΤΑΣΗ ΚΑΙ ΠΡΟΟΠΤΙΚΕΣ

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης

Ανανεώσιμες Πηγές Ενέργειας

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος

Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας

Σημερινή Κατάσταση και Προοπτικές της Ηλιακής Ενέργειας στην Ελλάδα. Ν. Α. ΚΥΡΙΑΚΗΣ Αναπληρωτής Καθηγητής ΑΠΘ Πρόεδρος ΙΗΤ

Ήπιες και νέες μορφές ενέργειας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE

Επεμβάσεις Εξοικονόμησης Ενέργειας EUROFROST ΝΙΚΟΛΑΟΣ ΚΟΥΚΑΣ

ΤΕΙ ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΜΗΧΑΝΙΚΩΝ Τ.Ε. Ηλεκτρική Θέρμανση

Συστήματα γεωθερμικών αντλιών θερμότητας Οικονομικά & περιβαλλοντικά οφέλη από τη χρήση τους

Κατανάλωση νερού σε παγκόσμια κλίμακα

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης

Εφαρµογές Γεωθερµικών Αντλιών Θερµότητας

New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks )

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3

Ηλιακή Θέρμανση Ζεστό Νερό Χρήσης Ζ.Ν.Χ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ - ΝΟΜΟΙ

Ανανεώσιμες Πηγές Ενέργειας

Γεωθερμικές Αντλίες Θερμότητας Inverter ACTEA SI

Παρουσίαση του συστήµατος γεωθερµικών αντλιών του ηµαρχείου Πυλαίας

ΣΥΜΠΑΡΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΕΡΓΟΥ

Αντλίες Θερμότητος. Η σύγχρονη οικονομική λύση για συνεχή θέρμανση και ψύξη!

Προϊόν Παραπροϊόν Υποπροϊόν

Παθητικό Κτίριο. Passive House

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ

Παρούσα κατάσταση και Προοπτικές

*Τρόποι αντιμετώπισης ακραίων καιρικών συνθηκών.

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας

Γεωθερμικό πεδίο ποσότητα θερμοκρασία βάθος των γεωθερμικών ρευστών γεωθερμικό πεδίο Γεωθερμικό πεδίο 3175/2003 άρθρο 2 (ορισμοί)

ΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ ΜΕ ΧΡΗΣΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΚΤΙΡΙΟ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΕΓΚΑΤΑΣΤΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΩΘΕΡΜΙΑΣ

Αυτόνομο σύστημα τηλε- κλιματισμού από Γεωθερμία Χαμηλής Ενθαλπίας (ΓΧΕ)

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ


ΤΟΜΕΙΣ ΕΦΑΡΜΟΓΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΧΑΜΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ

ΒΙΟΚΛΙΜΑΤΟΛΟΓΙΑ ΘΕΡΜΟΚΗΠΙΩΝ ΘΕΡΜΟΤΗΤΑΡΥΘΜΙΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ. Δρ. Λυκοσκούφης Ιωάννης

Όνομα και Επώνυμο:.. Όνομα Πατέρα:. Όνομα Μητέρας:... Δημοτικό Σχολείο:.. Τάξη/Τμήμα:. Εξεταστικό Κέντρο:...

Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ

Σίσκος Ιωάννης, Μηχανολόγος Μηχανικός

ΟΙΚΟΝΟΜΙΚΟΙ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΘΕΡΜΑΝΣΗΣ Βασίλης Γκαβαλιάς, διπλ. μηχανολόγος μηχανικός Α.Π.Θ. Ενεργειακός επιθεωρητής`

Εισαγωγή στην Ενεργειακή Τεχνολογία

Βιοκλιματικός Σχεδιασμός

Θέρμανση. Ζεστό Νερό Χρήσης. Δροσισμός

Αξιοποίηση του Γεωθερμικού πεδίου Αρίστηνου από το Δήμο Αλεξανδρούπολης

ΗΜΕΡΙ Α 4η ΕΒ ΟΜΑ Α ΕΝΕΡΓΕΙΑΣ ΙΕΝΕ

Transcript:

2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΛΑΜΙΑΣ ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ (PROJECT) H ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΜΑ ΤΗΣ ΕΠΟΧΗΣ ΜΑΣ. ΟΜΑΔΑ: 4 (ΤΕΤΑΡΤΗ) ΣΧ.ΕΤΟΣ: 2013-2014 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΠΛΑΚΑΣ ΗΛΙΑΣ

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ(PROJECT) H ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΜΑ ΤΗΣ ΕΠΟΧΗΣ ΜΑΣ. ΟΜΑΔΑ: 4 ΜΕΛΗ ΟΜΑΔΑΣ 1.ΑΝΑΣΤΑΣΙΟΣ ΦΟΥΝΤΑΣ 2.ΙΩΑΝΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ 3.ΕΥΗ ΣΚΟΥΡΑ 4.ΑΝΝΑ ΣΤΕΡΓΙΑΝΟΥ 5.ΝΙΚΟΛΑΟΣ ΧΑΤΖΙΚΟΣ 2

3

ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ Γεωθερμία ή Γεωθερμική ενέργεια ονομάζουμε τη φυσική θερμική ενέργεια της Γης που διαρρέει από το θερμό εσωτερικό του πλανήτη προς την επιφάνεια. Η μετάδοση θερμότητας πραγματοποιείται με δύο τρόπους: α) Με αγωγή από το εσωτερικό προς την επιφάνεια με ρυθμό 0,04-0,06 W/m2 (Watt /τετραγωνικό μέτρο ) β) Με ρεύματα μεταφοράς, που περιορίζονται όμως στις ζώνες κοντά στα όρια των λιθοσφαιρικών πλακών, λόγω ηφαιστειακών και υδροθερμικών φαινομένων 4

5

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Μεγάλη σημασία για τον άνθρωπο έχει η αξιοποίηση της γεωθερμικής ενέργειας για την κάλυψη αναγκών του, καθώς είναι μια πρακτικά ανεξάντλητη πηγή ενέργειας. Ανάλογα με το θερμοκρασιακό της επίπεδο μπορεί να έχει διάφορες χρήσεις. H Υψηλής Ενθαλπίας (> 150 C) χρησιμοποιείται συνήθως για παραγωγή ηλεκτρικής ενέργειας. Η ισχύς τέτοιων εγκαταστάσεων το 1979 ήταν 1.916 ΜW με παραγόμενη ενέργεια 12 106 kwh/yr. Η Μέσης Ενθαλπίας (80 έως 150 C) που χρησιμοποιείται για θέρμανση ή και ξήρανση ξυλείας και αγροτικών προϊόντων καθώς και μερικές φορές και για την παραγωγή ηλεκτρισμού (π.χ. με κλειστό κύκλωμα φρέον που έχει χαμηλό σημείο ζέσεως).η Χαμηλής Ενθαλπίας* (25 έως 80 C) που χρησιμοποιείται για θέρμανση χώρων, για θέρμανση θερμοκηπίων, για ιχθυοκαλλιέργειες, για παραγωγή γλυκού νερού. 6

ΠΕΡΙΕΧΟΜΕΝΑ 1. Η ΓΕΩΘΕΡΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ 2. Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΠΑΓΚΟΣΜΙΩΣ 3. ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΑΞΙΟΠΟΙΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ 4. ΧΡΗΣΕΙΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΡΕΥΣΤΩΝ ΥΨΗΛΗΣ ΕΝΘΑΛΠΙΑΣ 5. ΧΡΗΣΕΙΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΡΕΥΣΤΩΝ ΧΑΜΗΛΗΣ ΕΝΘΑΛΠΙΑΣ 6. ΕΙΚΟΝΕΣ ΓΙΑ ΤΗ ΓΕΩΘΕΡΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ ΚΑΙ ΣΕ ΑΛΛΕΣ ΧΩΡΕΣ 7. ΠΗΓΕΣ ΠΛΗΡΟΦΟΡΗΣΗΣ - ΒΙΒΛΙΟΓΡΑΦΙΑ 7

Η ΓΕΩΘΕΡΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ Λόγω κατάλληλων γεωλογικών συνθηκών, ο Ελλαδικός χώρος διαθέτει σημαντικές γεωθερμικές πηγές και των τριών κατηγοριών (υψηλής, μέσης και χαμηλής ενθαλπίας) σε οικονομικά βάθη (100-1500 μ). Σε μερικές περιπτώσεις τα βάθη των γεωθερμικών ταμιευτήρων είναι πολύ μικρά, κάνοντας ιδιαίτερα ελκυστική, από οικονομική άποψη, τη γεωθερμική εκμετάλλευση. Η έρευνα για την αναζήτηση γεωθερμικής ενέργειας άρχισε ουσιαστικά το 1971 και αφορούσε μόνο τις περιοχές υψηλής ενθαλπίας. Κατά την εξέλιξη των εργασιών η ΔΕΗ, σαν άμεσα ενδιαφερόμενη για την ηλεκτροπαραγωγή, ανέλαβε τις παραγωγικές γεωτρήσεις υψηλής ενθαλπίας και την ανάπτυξη των πεδίων, χρηματοδοτώντας επιπλέον τις έρευνες στις πιθανές για τέτοια ρευστά γεωθερμικές περιοχές. Συντάχθηκε ο προκαταρκτικός χάρτης γεωθερμικής ροής του ελληνικού χώρου, όπου φάνηκε ότι η γεωθερμική ροή στην Ελλάδα είναι σε πολλές περιοχές εντονότερη από τη μέση γήινη. Από το 1971 8

ερευνήθηκαν οι περιοχές: Μήλος, Νίσυρος, Λέσβος, Μέθανα, Σουσ άκι Κορινθίας, Καμένα Βούρλα,Θερμοπύλες, Υπάτη, Αιδηψός, Κίμωλος, Πο λύαιγος, Σαντορίνη, Κως, Νότια Θεσσαλία, Αλμωπία, περιοχή Στρυμόνα, περιοχή Ξάνθης, Σαμοθράκη και άλλες. Στην Μήλο και Νίσυρο έχουν ανακαλυφθεί σπουδαία γεωθερμικά πεδία και έχουν γίνει γεωτρήσεις παραγωγής. Στην Μήλο μετρήθηκαν θερμοκρασίες μέχρι 325 C σε βάθος 1000 m. και στην Νίσυρο 350 C σε βάθος 1500 m. Στην Βόρεια Ελλάδα η γεωθερμία προσφέρεται για θέρμανση, θερμοκήπια, ιχθυοκαλλιέργειες. Στην λεκάνη του Στρυμόνα έχουν εντοπισθεί τα πολύ σημαντικά πεδία Θερμών-Νιγρίτας, Λιθότροπου- Ηράκλειας, Θερμοπηγής-Σιδηρόκαστρου και Αγγίστρου. Πολλές γεωτρήσεις παράγουν νερά μέχρι 75 C. Μεγάλα και μικρότερα γεωθερμικά θερμοκήπια λειτουργούν στην Νιγρίτα και το Σιδηρόκαστρο. Στην πεδινή περιοχή του Δέλτα Νέστου έχουν εντοπισθεί δύο πολύ σημαντικά γεωθερμικά πεδία, 9

στο Ερατεινό Χρυσούπολης και στο Ν. Εράσμιο Μαγγάνων Ξάνθης. Νερά άριστης ποιότητας μέχρι 70 C παράγονται από γεωτρήσεις στις εύφορες αυτές πεδινές περιοχές. Στην Ν. Κεσσάνη και στο Πόρτο Λάγος Ξάνθης, παράγονται νερά θερμοκρασίας μέχρι 82 C. Στην λεκάνη των λιμνών Βόλβης και Λαγκαδά έχουν εντοπισθεί τρία πολύ ρηχά πεδία με θερμοκρασίες μέχρι 56 C. Στην Σαμοθράκη υπάρχουν ενθαρρυντικά στοιχεία καθώς γεωτρήσεις βάθους μέχρι 100 μ. συνάντησαν νερά της τάξης των 100 C. Η συστηματική εκμετάλλευση των γεωθερμικών μπορεί να αποφέρει στη χώρα μας σημαντικά οφέλη: Εξοικονόμηση συναλλάγματος, με τη μείωση των εισαγωγών πετρελαίου, Εξοικονόμηση φυσικών πόρων, κυρίως με την ελάττωση της κατανάλωσης των εγχώριων αποθεμάτων λιγνίτη, Καθαρότερο περιβάλλον, καθώς παράγονται πολύ μικρότερες εκπομπές CO2 και ελάχιστες 10

έως μηδενικές οξειδίων του αζώτου και του θείου, Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΠΑΓΚΟΣΜΙΩΣ Η πρώτη βιομηχανική εκμετάλλευση της γεωθερμικής ενέργειας έγινε στο Λαρνταρέλλο (Lardarello) της Ιταλίας, όπου από τα μέσα του 18ου αιώνα χρησιμοποιήθηκε ο φυσικός ατμός για να εξατμίσει τα νερά που περιείχαν βορικό οξύ αλλά και να θερμάνει διάφορα κτήρια. Το 1904 έγινε στο ίδιο μέρος η πρώτη παραγωγή ηλεκτρικού ρεύματος από τη γεωθερμία. Σπουδαία είναι η αξιοποίηση της γεωθερμικής ενέργειας από την Ισλανδία, όπου καλύπτεται πολύ μεγάλο μέρος των αναγκών της χώρας σε ηλεκτρική ενέργεια και θέρμανση. Κατά το 2005, 72 χώρες έχουν αναπτύξει γεωθερμικές εφαρμογές χαμηλής-μέσης θερμοκρασίας, κάτι που δηλώνει σημαντική πρόοδο σε σχέση με το 1995, όταν είχαν αναφερθεί εφαρμογές μόνο σε 28 χώρες. Η εγκατεστημένη θερμική ισχύς γεωθερμικών 11

μονάδων μέσης και χαμηλής θερμοκρασίας ανήλθε το 2007 στα 28268 MWt, παρουσιάζοντας αύξηση 75% σε σχέση με το 2000, με μέση ετήσια αύξηση 12%. Αντίστοιχα, η χρήση ενέργειας αυξήθηκε κατά 43% σε σχέση με το 2000 και ανήλθε στα 273.372 TJ. Παραγωγή ηλεκτρικής ισχύος με γεωθερμική ενέργεια το 2008 γινόταν σε 24 χώρες. Το 2007 η εγκατεστημένη ισχύς των μονάδων παραγωγής ενέργειας στον κόσμο ανήλθε στα 9735 MWe, σημειώνοντας αύξηση περισσότερων από 800 MWe σε σχέση με το 2005 12

ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΑΞΙΟΠΟΙΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ 1. Ενέργεια σε ελάχιστο κόστος : Λόγω της χαμηλής κατανάλωσης και της σχεδόν ανύπαρκτης συντήρησης του εξοπλισμού, τα γεωθερμικά συστήματα κλιματισμού μπορούν να εξοικονομήσουν από 55% μέχρι και 70% από την ετήσια δαπάνη σε σύγκριση με ένα συμβατικό σύστημα θέρμανσης και δροσισμού. Το μόνο λειτουργικό κόστος της εγκατάστασης είναι η κατανάλωση ηλεκτρικού ρεύματος από τον συμπιεστή και τις αντλίες το οποίο είναι οικονομικότερο σε σχέση με τη χρήση λέβητα πετρελαίου κατά 20-25%. 2. Απόδοση : Ένα γεωθερμικό σύστημα είναι τρεις έως πέντε φορές αποδοτικότερο από ένα συμβατικό σύστημα επειδή καίει ορυκτά καύσιμα για να παράγει θερμότητα παρέχει τρεις έως πέντε μονάδες ενέργειας για κάθε μονάδα ηλεκτρικής ενέργειας που τροφοδοτεί το σύστημα. 3. Ανεξαρτησία από το πετρέλαιο 13

4. Ευελιξία - άνεση και αυτονομία : Τα γεωθερμικά συστήματα παράγουν θέρμανση και δροσισμό σε μια εγκατάσταση με αποτέλεσμα να καταργούν το συμβατό τρόπο θέρμανσης τους πύργους δροσισμού και τα κλιματιστικά διαιρούμενου τύπου. Παρουσιάζουν ευελιξία στην αυτονομία σε μελλοντικές επεκτάσεις και σε διαθεσιμότητα χώρου. Έχουν υψηλό βαθμό απόδοσης και είναι αξιόπιστα σε ακραίες καιρικές συνθήκες θέρμανσης και δροσισμού. 5. Ασφάλεια : Με ένα σύστημα γεωθερμίας δεν υπάρχει καύση και φλόγα δεν υπάρχουν καπνοί, καπναγωγοί και οσμές. Δεν υπάρχει κίνδυνος ανάφλεξης - φωτιάς και ασφυξίας από το μονοξείδιο. 6. Φιλικό προς το περιβάλλον : Επειδή δεν χρησιμοποιούνται καύσιμα δεν συμβάλλει στο φαινόμενο του θερμοκηπίου που είναι υπεύθυνο για την αύξηση της θερμοκρασίας στον πλανήτη, δεν απαιτείται 14

χρήση λεβητοστασίου, δεξαμενής καυσίμου, καμινάδων. 7. Αθόρυβη λειτουργία : Οι μονάδες που χρησιμοποιούνται σχεδιάστηκαν και κατασκευάστηκαν για να είναι σχεδόν αθόρυβες θα λειτουργούν πιο αθόρυβα και από τα ψυγεία. 8. Γρήγορη απόσβεση 9. Ζεστό νερό χειμώνα και καλοκαίρι 10. Δροσιά χωρίς κόστος το καλοκαίρι 11. Δυνατότητα επιδότησης 12. Αξιοπιστία κατασκευών και απόλυτη αξιοπιστία :Τα συστήματα γεωθερμίας, χρησιμοποιούνται παραπάνω από 20 χρόνια σε κράτη όπως Η.Π.Α. - Ιαπωνία - Γερμανία - Ελβετία - Αυστρία - Σουηδία. 15

ΧΡΗΣΕΙΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΡΕΥΣΤΩΝ ΥΨΗΛΗΣ ΕΝΘΑΛΠΙΑΣ Ο πλέον συνήθης (και τεχνικοοικονομικά συμφέρον) τρόπος αξιοποίησης των γεωθερμικών ρευστών υψηλής ενθαλπίας είναι η χρήση τους για την παραγωγή ηλεκτρικής ενέργειας Ο τύπος μετατροπής που χρησιμοποιείται εξαρτάται από την κατάσταση του ρευστού (είτε είναι ατμός είτε νερό), τη θερμοκρασία του, την πίεση και την παροχή. Οι τεχνολογίες που χρησιμοποιούνται είναι τρεις. Α. Ξηρού ατμού (Θερμοκρασία ρευστών >180 C) Ο ατμός οδηγείται σε στρόβιλο, ο οποίος θέτει σε λειτουργία γεννήτρια που παράγει ηλεκτρική ενέργεια. Αυτός είναι ο παλαιότερος τύπος γεωθερμικών εγκαταστάσεων παραγωγής ηλεκτρικής ενέργειας. Χρησιμοποιήθηκε αρχικά στο Larderello στην Ιταλία το 1904 και εξακολουθεί να είναι πολύ αποτελεσματικός. Η τεχνολογία ατμού χρησιμοποιείται σήμερα σε γκεϋζερ στη βόρεια 16

Καλιφόρνια, που εξακολουθεί να παραμένει το μεγαλύτερο γεωθερμικό πεδίο παραγωγής ηλεκτρικής ενέργειας στον κόσμο. Β. Στρόβιλοι υγρού ατμού (Θερμοκρασία ρευστών >150 C) Το γεωθερμικό ρευστό είτε έρχεται ως διφασική ροή από τη γεώτρηση είτε εκτονώνεται σε πίεση χαμηλότερη από την πίεση που επικρατεί στην κεφαλή της γεώτρησης και μετατρέπεται σε διφασικό μίγμα. Το μίγμα αυτό διαχωρίζεται σε κατακόρυφο διαχωριστή και ο ατμός οδηγείται στο στρόβιλο για την παραγωγή ηλεκτρικής ισχύος. Εάν η θερμοκρασία και η πίεση του γεωθερμικού υγρού το επιτρέπουν, τότε το υγρό μπορεί να εκτονωθεί για δεύτερη φορά ή και περισσότερες φορές, ώστε να 17

παραχθεί επιπλέον ατμός, που θα αυξήσει σημαντικά την απόδοση της μονάδας. Τέτοια εγκατάσταση λειτουργεί στο Imperial Valley, στην Καλιφόρνια Γ. Δυαδικός κύκλος με πτητικό ρευστό ή κύκλος Rankine με οργανικό ρευστό (Θερμοκρασία ρευστών >90 C) Το γεωθερμικό ρευστό χρησιμοποιείται για τη θέρμανση (και εξάτμιση) σε έναν εναλλάκτη του δευτερεύοντος ρευστού (νερό & αμμωνία, ισοβουτάνιο, ισοπεντάνιο, CO2 κ.λπ.) το οποίο έχει 18

μικρότερο σημείο ζέσεως σε σχέση με το νερό. Οι ατμοί του δευτερεύοντος ρευστού οδηγούνται αρχικά στο στρόβιλο και εν συνεχεία στο συμπυκνωτή. Τέλος το ρευστό από το συμπυκνωτή συμπιέζεται και επανεισάγεται πάλι στον εναλλάκτη μέσω της αντλίας ανακυκλοφορίας του ψυκτικού μέσου. Μία τέτοια εγκατάσταση λειτουργεί στο Soda Lake, στη Νεβάδα 19

ΧΡΗΣΕΙΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΡΕΥΣΤΩΝ ΧΑΜΗΛΗΣ ΕΝΘΑΛΠΙΑΣ Οι άμεσες χρήσεις της γεωθερμικής ενέργειας χαμηλής ενθαλπίας είναι: Αντλίες θερμότητας συνδεδεμένες στο έδαφος Άμεση θέρμανση χώρων Θέρμανση θερμοκηπίων και εδαφών Υδατοκαλλιέργειες Βιομηχανικές εφαρμογές Θέρμανση πισινών και ιατρικές εφαρμογές Άλλες χρήσεις Παγκοσμίως, η συνολική εγκατεστημένη θερμική ισχύς το 2005 ανήλθε σε 28.273 MWth, σημειώνοντας αύξηση κατά 85% σε σχέση με το 2000. Από την ισχύ αυτή τα 13.629 MWth προέρχονται από την Ευρώπη. Στο Σχήμα 2.6 δίνεται η εγκατεστημένη θερμική ισχύς ανά χρήση. Οι 10 ηγετικές χώρες στον κόσμο σε σχέση με την εγκατεστημένη θερμική ισχύ είναι οι ΗΠΑ με ισχύ 7.818 MWth, η Σουηδία με 3.840 MWth (προέρχεται αποκλειστικά από αντλίες θερμότητας), η Κίνα με 3.687 MWth, η Ισλανδία με 1.844 MWth, η Τουρκία με 1.496 MWth, η Ιαπωνία με 822,42 MWth, η Ουγγαρία με 694,2 MWth, η Ιταλία με 606,6 MWth, η Νορβηγία με 20

600 MWth και η Ελβετία με 581,6 MWth (με τα 532,4 MWth να προέρχονται από αντλίες θερμότητας). Η εγκατεστημένη θερμική ισχύς στην Ελλάδα κατά το 2005 ανήλθε μόλις σε 74,8 MWth. Άμεση θέρμανση χώρων Η άμεση θέρμανση χώρων είναι η παλαιότερη μορφή χρήσης της γεωθερμικής ενέργειας και η πλέον διαδεδομένη στην Ευρώπη. Περιλαμβάνει επίσης την παραγωγή ζεστού νερού για οικιακές χρήσεις. Η τεχνολογία που υιοθετείται είναι απλή. Το γεωθερμικό ρευστό από μία ή δύο γεωτρήσεις αποδίδει θερμότητα στο σύστημα θέρμανσης του ενεργειακού χρήστη, είτε άμεσα, είτε μέσω ενός εναλλάκτη θερμότητας. Γι αυτή την εφαρμογή απαιτούνται γεωθερμικά ρευστά με θερμοκρασία μεγαλύτερη των 45 C.Η θέρμανση χώρων από τη γεωθερμία είναι πολύ ανταγωνιστική σε σχέση με τα ορυκτά καύσιμα, με κόστος κεφαλαίου 200-1.400 ανά εγκατεστημένο kwth, ετήσιο κόστος συντήρησης και λειτουργίας 2-3% του κόστους κεφαλαίου, και κόστος παραγόμενης ενέργειας 0,005-0,035 / kwhth συμπεριλαμβανομένων 21

των αποσβέσεων των κεφαλαίων και του κόστους χρήματος. Στην Ευρώπη, η άμεση θέρμανση χώρων από τη γεωθερμία αντιστοιχεί στο 75% του συνόλου παγκοσμίως, με εγκατεστημένη ισχύ που ανέρχεται σε 3.339,45 MWth (στοιχεία του 2005). Πρώτη σε εγκατεστημένη ισχύ έρχεται η Ισλανδία με 1.375 MWth (το 95% των κτιρίων της πόλης του Ρέικιαβικ θερμαίνονται με γεωθερμικό ρευστό) και δεύτερη η Τουρκία με 901 MWth. Με μεγάλη διαφορά από τις δύο προηγούμενες ακολουθούν η Γαλλία με 243 MWth, η Ιταλία με 131,8 MWth, η Ρωσία με 110 MWth, η Γερμανία με 92,6 MWth, η Πολωνία με 59,2 MWth, και η Ρουμανία με 57,2 MWth. Ενώ υπάρχουν και άλλα κράτη, όπου η ισχύς για αυτή τη χρήση είναι πολύ μικρότερη. Στην Ελλάδα η εγκατεστημένη ισχύς για άμεση θέρμανση χώρων ανέρχεται μόλις σε 1,2 MWth, με τη μεγαλύτερη εγκατάσταση να βρίσκεται στα Λουτρά Τραϊανούπολης του νομού Έβρου. Θέρμανση θερμοκηπίων και εδαφών Τα θερμαινόμενα θερμοκήπια και εδάφη χρησιμοποιούνται για την αύξηση της παραγωγής 22

και την πρωίμιση καλλιεργειών. Οι απαιτούμενες ποσότητες ενέργειας όμως, είναι μεγάλες, με αποτέλεσμα η γεωθερμία να αποτελεί την ιδανική μορφή ενέργειας για αγροτικές εφαρμογές, λόγω του μικρού κόστους της. Τα θερμοκήπια και η θέρμανση εδαφών απαιτούν την παρουσία γεωθερμικών ρευστών σε θερμοκρασία που υπερβαίνει τους 30 C. Ο χώρος ενός θερμοκηπίου μπορεί να θερμανθεί με πέντε τρόπους: α) με εναέριους, επιδαπέδιους σωλήνες ή με σωλήνες τοποθετημένους μέσα στο χώμα (σε βάθος 5-20 cm), β) με εναλλάκτη αέρα γεωθερμικού νερού ή νερού λειτουργίας (αερόθερμο), γ) με τοποθέτηση θερμαντικών σωμάτων στα πλευρικά τοιχώματα του θερμοκηπίου, δ) με ψεκασμό της οροφής του θερμοκηπίου με γεωθερμικό υγρό ή διέλευση υγρού στα διπλά τοιχώματα της οροφής (κυρίως για αντιπαγετική προστασία) και ε) με συνδυασμό των προηγούμενων τρόπων. Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή και επηρεάζεται από διάφορους παράγοντες ανάλογα με το βάθος. Το έδαφος χωρίζεται κυρίως σε τρία στρώματα, το επιφανειακό, η θερμοκρασία του 23

οποίου επηρεάζεται από την καθημερινή αλλαγή θερμοκρασίας στην ατμόσφαιρα και από παράγοντες όπως την ηλιακή ακτινοβολία, τον αέρα, τη βροχόπτωση, κτλ, το αβαθές, που επηρεάζεται κυρίως από εποχιακές καιρικές αλλαγές και το βαθύτερο, η θερμοκρασία του οποίου παραμένει σχετικά σταθερή και ανεπηρέαστη από τις καιρικές συνθήκες. Το πεδίο βάθους κάθε στρώματος σχετίζεται κυρίως με την μορφολογία του εδάφους και τις καιρικές συνθήκες που επικρατούν στην περιοχή. Η μεταβολή της θερμοκρασίας μειώνεται με το βάθος και γίνεται αμελητέα κάτω από 15 μ. Οι τοπικές θερμοκρασίες εδάφους εξαρτώνται από το κλίμα κάλυψη εδάφους, κλίση, ιδιότητες χώματος κλπ. Η θερμότητα που περιέχεται στο εσωτερικό της γης αποτελεί την γεωθερμική ενέργεια και είναι τόσο μεγάλη, ώστε μπορεί να θεωρηθεί πρακτικά ανεξάντλητη μορφή ενέργειας για τα ανθρώπινα μέτρα. Η τεχνολογία για την άντληση γεωθερμικής ενέργειας διαφοροποιείται σε αβαθή γεωθερμική σε σχετικά χαμηλές θερμοκρασίες, και σε βαθιά γεωθερμική στις υψηλότερες θερμοκρασίες. Αβαθής γεωθερμική ενέργεια είναι η αποθηκευμένη σε μορφή θερμότητας ενέργεια του 24

φλοιού της γης, σε βάθη έως 150 m. και με θερμοκρασίες υπεδάφους έως 18 οc. Αυτή η ενέργεια προέρχεται από την απορρόφηση της ηλιακής ακτινοβολίας (σχεδόν το 50% από τη συνολική ποσότητα που φθάνει στη Γη) από τη γήινη επιφάνεια και που στα γεωγραφικά πλάτη της εύκρατης ζώνης κάτω από κάποιο βάθος παραμένει περίπου σταθερή (10 18 οc) καθ όλη τη διάρκεια του έτους. Στην Κύπρο η ενέργεια που βρίσκεται αποθηκευμένη κάτω από την επιφάνεια της γης σε βάθος 5 100m η θερμοκρασία κυμαίνεται περίπου 17 23oC. Στις περιοχές στις οποίες η θερμική ενέργεια της γης είναι επαρκώς συγκεντρωμένη ώστε να δημιουργεί εκμεταλλεύσιμη ενεργειακή πηγή, αναπτύσσονται γεωθερμικά συστήματα που ανάλογα με τα θερμικά χαρακτηριστικά τους ταξινομούνται σε υψηλής, μέσης και χαμηλής ενθαλπίας. Τα υψηλής ενθαλπίας χρησιμοποιούνται συνήθως για την παραγωγή ηλεκτρισμού, τα μεσαίας ενθαλπίας για παροχή άμεσης θερμότητας σε κατοικίες και βιομηχανία ενώ τα χαμηλής ενθαλπίας για θέρμανση και ψύξη κτιρίων μέσω γεωθερμικών αντλιών θερμότητας. 25

Η θέρμανση θερμοκηπίων με χαμηλή ενθαλπίας της γεωθερμικής ενέργειας, (θερμοκρασίες κάτω των 100 oc) θεωρείται εύκολος τρόπος θέρμανσης. Το γεωθερμικό ρευστό μπορεί να μεταφερθεί από το εσωτερικό της γης, μέσω μονωμένων σωλήνων και μπορεί να διανεμηθεί είτε απευθείας στο εσωτερικό του θερμοκηπίου σε πλαστικούς σωλήνες, είτε έμμεσα, μέσω ενός εναλλάκτη θερμότητας. 26

Τα συστήματα εκμετάλλευσης της γεωθερμικής ενέργειας ονομάζονται Γεωθερμικές Αντλίες Θερμότητας (ΓΑΘ). Οι γεωθερμικές αντλίες θερμότητας εφαρμόζονται σε οικίες άλλα και στη γεωργία για την κάλυψη των αναγκών θέρμανσης και ψύξης και ζεστού νερού χρήσης. Οι γεωθερμικές αντλίες θερμότητας αντικαθιστούν τους καυστήρες πετρελαίου ή γκαζιού και τα κλιματιστικά για την κάλυψη των αναγκών σε θέρμανση και ψύξη. Εξοικονομεί το 40 με 60% της ενέργειας που θα κατανάλωνε ένα υποστατικό εάν χρησιμοποιούντο μόνο συμβατικά μέσα θέρμανσης. Το όφελος από τη χρήση γεωθερμίας, είναι τόσο οικονομικό όσο και περιβαλλοντικό. Η χρήση γεωθερμικού συστήματος δεν έχει καμία εκπομπή καυσαερίων, ενώ συνεπάγεται μείωση από 40% έως 60% των εκπομπών αερίων του θερμοκηπίου, σε σύγκριση με τα συμβατικά συστήματα θέρμανσης ψύξης. 27

Τα πλεονεκτήματα τους είναι: Ψηλή απόδοση (χαμηλότερη χρήση ενέργειας) Χαμηλό κόστος συντήρησης Δεν υπάρχουν εξωτερικά μηχανήματα Τα μειονεκτήματα τους είναι: Μεγαλύτερο αρχικό κόστος Δεν μπορούν όλα τα είδη συστημάτων να τοποθετηθούν παντού Περιορισμός στους μελετητές για επιλογή Υπάρχουν δύο είδη συστημάτων: ανοικτού και κλειστού βρόγχου και αυτά χωρίζονται σε κατακόρυφα και οριζόντια. 28

Υδατοκαλλιέργειες Η γεωθερμία μπορεί να προσφέρει με οικονομικό τρόπο στη θέρμανση του νερού σε υδατοκαλλιέργειες ψαριών (χέλια, λαβράκια, τσιπούρες, πέστροφες, σολομούς, γατόψαρα κ.α.), θαλάσσιων μαλακόστρακων (π.χ. γαρίδας) και ερπετών με εμπορική αξία (π.χ. αλιγάτορες). Η θέρμανση πραγματοποιείται είτε άμεσα, με την απευθείας εισαγωγή του γεωθερμικού νερού στις δεξαμενές ή λιμνούλες ανάπτυξης, είτε έμμεσα, ύστερα από τη θέρμανση γλυκού ή θαλασσινού νερού. Για την άμεση χρήση του γεωθερμικού νερού απαιτείται να μην υπάρχουν τοξικά συστατικά στο νερό (π.χ. βαρέα μέταλλα, υδρόθειο, αρσενικό κλπ.). Οι υδατοκαλλιέργειες απαιτούν την παρουσία γεωθερμικού ρευστού σε θερμοκρασίες που υπερβαίνουν τους 20 C. Η εγκατεστημένη ισχύς για υδατοκαλλιέργειες στην Ευρώπη κατά το 2005 ανήλθε σε 230 MWth Πρώτη σε εγκατεστημένη ισχύ έρχεται η Ιταλία με 91,6 MWth και ακολουθεί η Ισλανδία με 65 MWth. Με διαφορά από τις δύο προηγούμενες έπονται η Γεωργία με ισχύ 25,1 MWth, η Γαλλία με 20,8 MWth, η Ελλάδα με 8,9 29

MWth (5η στην κατάταξη), η Σερβία με 6,4 MWth, η Σλοβακία με 4,6 MWth, η Ρωσία με 4 MWth και η Ρουμανία με εγκατεστημένη ισχύ 3,1 MWth. Στην Ελλάδα μονάδες ιχθυοκαλλιέργειας βρίσκονται στο Πόρτο Λάγος και στο Ν. Εράσμιο Μάγγανα Ξάνθης. Βιομηχανικές εφαρμογές Η γεωθερμική ενέργεια μπορεί να είναι οικονομικώς αποδοτική και αξιόπιστη στις βιομηχανικές εφαρμογές. Ανάλογα με τη θερμοκρασία των ρευστών, είναι δυνατό να χρησιμοποιηθεί σε διεργασίες όπως η προπαρασκευή κονσερβοποιημένων τροφών, η εμφιάλωση ποτών, η λεύκανση λαχανικών, η ξήρανση αγροτικών προϊόντων, τροφίμων, δερμάτων, εξαγωγή CO2 κλπ. Στις περιπτώσεις όπου η θερμοκρασία των γεωθερμικών ρευστών είναι μικρότερη από την απαιτούμενη, είναι δυνατή η χρησιμοποίηση ρευστών σε διαδικασίες προθέρμανσης ή η ανύψωση της θερμοκρασίας τους με τη χρήση αντλιών θερμότητας ή με συμπληρωματική θέρμανση (με συμβατικά καύσιμα). 30

Απαραίτητη προϋπόθεση για τη χρησιμοποίηση των γεωθερμικών ρευστών από υφιστάμενη βιομηχανική μονάδα είναι η γειτνίαση της τελευταίας με το γεωθερμικό πεδίο. Οι βιομηχανικές εφαρμογές από τη γεωθερμία στην Ευρώπη αντιστοιχούν σε 120,3 MWth, περίπου το 25% του συνόλου παγκοσμίως. Η πλειοψηφία των εφαρμογών βρίσκεται στην Ισλανδία (60 MWth), τη Ρωσία (25 MWth), τη Ρουμανία (14,1 MWth), την Ιταλία (10,2 MWth) και τη Γεωργία (7,1 MWth). Η Ελλάδα βρίσκεται στη 10η θέση των κρατών της Ευρώπης με εγκατεστημένη ισχύ μόλις 0,2 MWth. Πρόκειται για μία μονάδα αφυδάτωσης ντομάτας στο Νέο Εράσμιο Ξάνθης, η οποία μάλιστα ήταν η πρώτη τέτοια μονάδα στον κόσμο. Θέρμανση πισίνων και ιατρικές εφαρμογές Μία από τις πλέον δημοφιλείς χρήσεις της γεωθερμικής ενέργειας σε όλο τον κόσμο είναι η θέρμανση πισίνων και οι ιατρικές εφαρμογές. Σήμερα, υπάρχει μία πληθώρα από λουτροπόλεις που χρησιμοποιούν το γεωθερμικό νερό είτε για θεραπεία είτε για αναζωογόνηση. Σε ότι αφορά τις θεραπευτικές εφαρμογές, οι δράσεις των 31

γεωθερμικών νερών στον ανθρώπινο οργανισμό διαφέρουν ανάλογα με τη σύσταση τους (θερμοκρασία, μεταλλικά στοιχεία) αλλά και με τον τρόπο χρήσης τους. Οι κυριότερες εφαρμογές είναι: λουτροθεραπεία, ποσιθεραπεία, εισπνοθεραπεία και λασποθεραπεία. Σε ότι αφορά τις εφαρμογές αναζοωγόνωησης, πρόκειται για λουτροπόλεις με κέντρα υγείας και ομορφιάς, κύριος στόχος των οποίων είναι η ξεκούραση και η ανανέωση του ανθρώπινου οργανισμού. Η εγκατεστημένη ισχύς για θέρμανση πισίνων και ιατρικές εφαρμογές στην Ευρώπη το 2005 ανήλθε σε 1.476,43 MWth. Πρώτη έρχεται η Τουρκία με 402 MWth και ακολουθεί η Ουγγαρία με 350 MWth. Με διαφορά ακολουθούν η Ιταλία (158,8 MWth), η Σλοβακία (118,3 MWth), η Κροατία (77 MWth), η Ισλανδία (75 MWth), η Ρουμανία (42,4 MWth), η Ελβετία (40,8 MWth), ενώ 9η στην κατάταξη έρχονται η Ελλάδα και η Σερβία με εγκατεστημένη ισχύ 36 MWth. Στην Ελλάδα η εφαρμογή αυτή είναι αρκετά διαδεδομένη, με λουτροθεραπευτικά κέντρα να υπάρχουν σχεδόν σε όλη τη χώρα, με πιο γνωστά αυτά των Θερμοπυλών και της Αιδηψού. 32

Άλλες χρήσεις Στις άλλες χρήσεις περιλαμβάνονται η αφαλάτωση θαλασσινού νερού, η ψύξη κτιρίων, η άρδευση αγροτικών καλλιεργειών, το λιώσιμο του χιονιού σε πεζοδρόμια και άλλες εφαρμογές. Οι άλλες χρήσεις από τη γεωθερμία στην Ευρώπη αντιστοιχούν σε 290,3 MWth, περίπου το 45% του συνόλου αντίστοιχων εφαρμογών στον κόσμο. Η πλειοψηφία των εφαρμογών βρίσκεται στην Ισλανδία (215 MWth), την Ουγγαρία (42,9 MWth) και τη Βουλγαρία (17,1 MWth). Η Ελλάδα βρίσκεται στην 6η θέση των κρατών της Ευρώπης, με εγκατεστημένη ισχύ 2,3 MWth. Πρόκειται για μία μονάδα αφαλάτωσης στην Κίμωλο και μία μονάδα καλλιέργειας σπιρουλίνας στη Νιγρίτα Προοπτικές ανάπτυξης της γεωθερμίας Η ανάπτυξη του γεωθερμικού δυναμικού της Μήλου και της Νισύρου μπορεί να ξεκινήσει άμεσα τους πρώτους σταθμούς γεωθερμικής ηλεκτροπαραγωγής/τηλεθέρμανσης να λειτουργούν μέσα στα επόμενα τρία χρόνια, καλύπτοντας τις τοπικές ανάγκες. 33

Για την πλήρη ανάπτυξη του γεωθερμικού δυναμικού απαιτείται σύνδεση με το ηπειρώτικο δίκτυο ηλεκτρισμού. Στις άλλες περιοχές απαιτείται γεωθερμική ερευνά με βαθιές γεωτρήσεις (1-2,5 χλμ.), με στόχο οι πρώτοι σταθμοί γεωθερμικής ηλεκτροπαραγωγής /τηλεθέρμανσης να εγκατασταθούν εντός 7 ετών από την έναρξη της γεωθερμικής έρευνας 34

ΕΙΚΟΝΕΣ ΓΙΑ ΤΗ ΓΕΩΘΕΡΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ ΚΑΙ ΣΕ ΑΛΛΕΣ ΧΩΡΕΣ 35

Η γεωθερμία στην Ισλανδία 36

37

Γεωθερμικό πάρκο του Ερατεινού στο Δήμο Νέστου Καβάλας 38

39

ΠΗΓΕΣ ΠΛΗΡΟΦΟΡΗΣΗΣ - ΒΙΒΛΙΟΓΡΑΦΙΑ Διαδίκτυο (Internet): 1. http://www.google.gr 2. http://images.google.gr 3. http://www.wikipedia.com 40