Οι νόµοι διατήρησης στη Φυσική Ωκεανογραφία

Σχετικά έγγραφα
Hydrostatics Balance equation Mass balance Momentum balance Bernoulli s equation Energy balance Classification of PDE Examples

Αλληλεπίδραση θάλασσας-ατμόσφαιρας

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΔΙΑΛΕΞΗ 4 Βασικές εξισώσεις διατήρησης στη Φυσική Ωκεανογραφία

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Κύµατα παρουσία βαρύτητας

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Approximation of distance between locations on earth given by latitude and longitude

Homework 8 Model Solution Section

6.4 Superposition of Linear Plane Progressive Waves

Chap 8 Mapping by Elementary Functions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

the total number of electrons passing through the lamp.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Ρεύµατα παρουσία τριβής ανεµογενής κυκλοφορία

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Αλληλεπίδραση θάλασσας ατμόσφαιρας

4.4 Superposition of Linear Plane Progressive Waves

Section 8.3 Trigonometric Equations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

[1] P Q. Fig. 3.1

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Forced Pendulum Numerical approach

ST5224: Advanced Statistical Theory II

Higher Derivative Gravity Theories

Lifting Entry (continued)

The challenges of non-stable predicates

derivation of the Laplacian from rectangular to spherical coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

( y) Partial Differential Equations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

1 String with massive end-points

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Strain gauge and rosettes

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Differential equations

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Dr. D. Dinev, Department of Structural Mechanics, UACEG

The Simply Typed Lambda Calculus

Chapter 5 Stress Strain Relation

Oscillatory Gap Damping

EE512: Error Control Coding

Example Sheet 3 Solutions

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

2 Composition. Invertible Mappings

TMA4115 Matematikk 3

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Lecture 34 Bootstrap confidence intervals

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

( ) Sine wave travelling to the right side

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Every set of first-order formulas is equivalent to an independent set

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Second Order Partial Differential Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Statistical Inference I Locally most powerful tests

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Srednicki Chapter 55

Introduction to Geophysical Fluid Dynamics

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

PARTIAL NOTES for 6.1 Trigonometric Identities

Finite Field Problems: Solutions

CONSULTING Engineering Calculation Sheet

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ΔΙΑΛΕΞΗ 6 Ρεύματα παρουσία τριβής Ανεμογεννής Κυκλοφορία

6.3 Forecasting ARMA processes

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

ΠΡΟΣΤΑΣΙΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΔΙΑΒΡΩΣΗΣ ΑΛΟΥΜΙΝΙΟΥ/ΑΝΟΔΙΩΣΗ Al

C.S. 430 Assignment 6, Sample Solutions

Αλληλεπίδραση θάλασσας ατμόσφαιρας

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Notes on the Open Economy

Capacitors - Capacitance, Charge and Potential Difference

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

EE101: Resonance in RLC circuits

Other Test Constructions: Likelihood Ratio & Bayes Tests

Matrices and Determinants

Solutions to Exercise Sheet 5

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Transcript:

Οι όµοι διατήρησης στη Φσική Ωκεαογραφία 4. The conservation las in the ocean dnamics Sarantis Sofianos Dept. of Phsics, niversit of Athens Fndamental dnamics and the eqations for geophsical flids Oceanic approimations Rotation Dominant scales in ocean dnamics Redced eqations Scaling the ocean dnamics

Fndamental dnamics and the eqations for geophsical flids i. Momentm Eqation: D Material derivative D t local rate of change Non-linearit advection t 1 p Φ F ρ Φ g Force potential Pressre gradient 1 p gˆ ρ L Re L Non-conservative forces e.g. F see net transparenc L In the ocean, sall Re >>1

Miing and diffsion Moleclar random motions transport arond a propert FlForce/Resistance De Groot, 1963 Fl of q F q κ q q medim Resistance Force gradient If the concentration of q changes linearl along a path, there shold be a constant fl of q along this path and the concentration of q is constant in time along the path Or the opposite: Constant concentration in an point in a path, means constant fl along the path. q a at a Fl Concentration q q b at b b If there is a change of fl of q along the path F it ill prodce a change of q in time. q t q t F κ q q a Concentration q For velocit: resistance is µ moleclar viscosit and µ/ρ kinematic viscosit

Wh is viscosit a non-conservative force? Ignoring an other force and densit variations and orking onl in one dimension for simplicit: ρ t ρ t ρ Mltipling b In three-dimensions t ρ / ρ t t ρ / ρv ρ / t ρv ρv / ρ / ρv $ ρ ' & % $ & ρ / % * $ ' ρ,&,% $ ' ρ & % $ & ρ / % ' $ ρ ' & % $ ' & % $ ' & % - /. / ' $ ρ ' & % The heat added to the ater increases its entrop at the rate of heat generation divided b absolte temperatre entrop sorce term. Local rate of change of energ concentration Energ Fl Divergence of viscosit times the gradient of energ Loss of Mechanical Energ Transformation to heat alas negative

ii. Conservation of mass continit eqation: Mass fl to the volme direction ρδδ ρ Mass fl from the volme direction ρ δ δ δδ ρ ρ ρ Accmlation ρ δ δδδ O δ δδδ small terms ρ In 3-D: ρ ρ δδ δ This accmlation mst be accompanied b increase of mass in the volme densit volme ρ t t δδ δ ρ ρ ρ δδ δ ρ t ρ ρ ρ ρ t ρ ρ t ρ ρ Dρ ρ

iii. Conservation of dissolved material concentration: ρq t and sing the continit eqation Dq κ q ρq S q S iv. Internal energ conservation: De ρ p ρq Change of internal energ de to pressre variations v. Entrop conservation: Temperatre ΤΚ q cooling/heating De Dη T Q µ ks non conservative sorces and sinks of q e.g. p D κ q For the ocean and the atmosphere κ is of the order of, i.e. the Prandtl nmber / κ O 1 ths advection dominates diffsion as Re is ver large. and sing the continit eqation k cooling/heating 1 Q ρ 1 st La of Thermodnamics q k µ k chemical potential nd La of Thermodnamics

vi. Eqation of state: ρ ρ T, p, q ocean Sps " dρ ρ % $ ' # T & S,p α 1 " ρ % $ ' ρ # T & β 1 " ρ % $ ' ρ # S & γ 1 " ρ % $ ' ρ # p & S,p T,p S,T " dt ρ % $ ' # S & T,p " ds ρ % $ ' # p & S,T thermal epansion coefficient K -1 dp ρ αdt βds γdp haline contraction coefficient ps -1 compressibilit coefficient Pa -1 For small variations and assming α,β,γ independent of T,S, p ρρ 1α T T β S S γ p p *, In realit the thermal epansion coefficient depends on temperatre cabelling and the non-linearit indced has the reslt that to ater masses characteried b a different temperatre and salinit bt same densit hen mi together, the reslting mied ater can become denser and eventall sinks. Thermal epansion coefficient is also dependent on pressre thermobaricit. For this reason to ater masses ith different salinit and temperatre bt same densit at the srface, don't have the same densit belo the srface.

Oceanic approimations 1 Dρ ρ 1 Dρ ρ ~ 1 δρ T ρ δρ L ρ << L ~ Bossinesq Continit Eqation δρ ρ O 13 Incompressibilit Compressibilit and Dρ 1 β V DV DP 1 V DV DP 1 V DV If the volme does not change nder changes in pressre 1 DV β ; V sing 1 D ρ V D m 1 ρ m V V DV 1 Dρ ρ So, for incompressible flid DP Tpical vales ρ 18 kg/m 3, T 1 o C83 o K, S 35 α Linearied eqation of state nder incompressibilit 1 ρ 4 K 1 ρ T 1 Thermal epansion coefficient [ α T T S ] ρ ρ β 1 S β 1 ρ 1 ρ S 8 1 4 ppt Haline contraction coefficient Bossinesq Eqation of State Neglecting possible thermobaric instabilit and cabelling instabilit

Oceanic approimations t 1 ρ p g ρ ρ ẑ 1 S t S κ S S S S 3 T t T κ T T Q c p ρ 4 ρ ρ " # 1α T T β S S $ % 5 Bossinesq Eqations Entrop and densit conservation eqations become redndant de to the thermodnamic approimations Bossinesq approimations cancel acostic and shock aves, it is a good approimation since Mach nmber : C s 15 m 1 s M 1, C s << 1 1m 1 s 1 c 4 1 p 3 J kg 1 K 1 When the right hand side of eqations 3 and 4 is ero, the processes are called adiabatic.

Bondar conditions η,, t h Sides/bottom: n ˆ at H, & H, Top: Dη at η,, t Dη & p at Rigid - lid p p atm,, t Interior: h δp / gρ atm Inverse Barometer Effect no oceanic acceleration p p p at lo h

The effect of rotation β f The β term Ωsinϕ R earth ϕ Ω f R earth ϕ Ωcosϕ R earth : : : Or epanding Ω arond ϕ or ith ϕ ϕ <<1, << R earth... Ω Ω # e $ sinϕ cosϕ ϕ ϕ D I I Dr I Dr Ω r I D R I I 1& D R R D R I Ω r R 1 Ω I DΩ Dr r Ω R Ω D R DΩ Ω R Ω R Coriolis acceleration small term Ωsinϕ v Ωcosϕ correction in g Ωsinϕ g effective g Ω Ω r Ωcosϕ fωsinφ... % & 1 # $ f β % & Ω r r Ω r R No Coriolis force on stationar bodies. Dominant horiontal deflection right/left. Coriolis force does no ork on a bod becase it is perpendiclar to the velocit.

t 1 ρ Ω p g ˆ ρ ρ S T S S S κ S S T κ T t t ρ ρ [ 1α T T β S S ] T Q c ρ p WORKING EQATIONS t 1 P ρ Ωsinϕ t 1 P ρ Ωsinϕ t 1 P ρ g S t T t S S S κs T T T κ S [ α T T S ] ρ ρ β 1 S T S κs κ S T S T S T κ κ T T S Q c ρ p

The mean state 1 f P t ρ 1 f P t ρ 1 f P P t ρ 1 v f P t ρ P P P ; ; ;

The continit eqation: Removing the mean state: 1 1 g P t f P t ρ ρ Similarl:

First order closre scheme: A H A H A V Moleclar diffsion and viscocit κ T.14 cm /sec temperatre κ S.13 cm /sec salinit.18 cm /sec at C.1 at C Trblence has the same coefficients for temepratre, salinit and momentm bt is anisotropic vertical/horiontal Edd diffsivit and viscosit A H horiontal 1 to 1 4 m /sec A V vertical 1-5 to 1-4 m /sec

SCALING The basic eqations inclde a ver large nmber of distinct tpes of phsical processes, ranging from moleclar to global scales. Depending on the processes nder investigation e can define appropriate scales that describe these processes., W, L t T L H W H Goal: Estimation of the relative importance of each term in the process nder investigation and the possibilit to simplif the basic eqation b defining a dominant balance of the dnamics/ thermodnamics involved. t 1 P ρ fv SCALING L L L W H ΔP ρl f L L H

Scaling nmbers: Aspect ratio: H L Non -linear Term 1 R o Coriolis Term L f fl E k Viscosit Terms 1 Coriolis Term L f fl fh Non - linear Term R E AH Viscosit Term L L F R N H B NH fl L A H These nmber characterie the ocean dnamics Non-linear Geometricall similar Viscos Diffsive Bonded

Geostrophic hdrostatic approimation the large scale limit: R o << 1 fl E k fl << 1 H L <<1 t 1 P ρ f t 1 P ρ f t 1 P ρ g f 1 P ρ 1; 1 P 1 P f ; g 3 ρ ρ The geostrophic hdrostatic limit

The Talor Colmns 1 1 ρ f P P Non-divergent horiontal flo D Bossinesq continit or

f 1 P ρ 1 P f ρ 1 P g ρ Δ Δ g ρ f Δρ Δ 1 g ρ f 1 3 Δρ Δ Δ ρ f 1 ρ f sing 3 f ρ since ρ Δ Δ v g ρ f P P g ρ ; f ρ >> Δρ Δ P gρ g ρ ρ ; g ρ f P gρ e can rite ρ Thermal ind eqations Geostroph comptes the velocit shear and not the absolte velocit ρ 1 Level of no knon motion ρ