Merging Particle Filter

Σχετικά έγγραφα
Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

:,,, PACS: a. , (3D-Var) (4D-Var) [7 9].,. 4D-Var 3D-Var,.,4D-Var,., ,.,, ;,,,,. ( ), . (PF). PF EnKF,,,

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Buried Markov Model Pairwise

Applying Markov Decision Processes to Role-playing Game

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Stabilization of stock price prediction by cross entropy optimization

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

High order interpolation function for surface contact problem

Research on Economics and Management

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ER-Tree (Extended R*-Tree)

Accounting for model errors in iterative ensemble smoothers

Numerical Analysis FMN011

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

6.3 Forecasting ARMA processes

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Supplementary Appendix

A summation formula ramified with hypergeometric function and involving recurrence relation

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Bayesian modeling of inseparable space-time variation in disease risk

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Quick algorithm f or computing core attribute

Statistical Inference I Locally most powerful tests

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

,,, (, ) , ;,,, ; -

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Probabilistic Approach to Robust Optimization

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 3: Δειγματοληπτικές μέθοδοι

X g 1990 g PSRB

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Supporting Information

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ECE 468: Digital Image Processing. Lecture 8

EE512: Error Control Coding

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Homomorphism in Intuitionistic Fuzzy Automata

Module 5. February 14, h 0min

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Probability and Random Processes (Part II)

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Simplex Crossover for Real-coded Genetic Algolithms

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

Approximation of distance between locations on earth given by latitude and longitude

2.1

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Architecture for Visualization Using Teacher Information based on SOM

Solution Series 9. i=1 x i and i=1 x i.

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator


HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Presentation Structure

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Hydrologic Process in Wetland

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

CE 530 Molecular Simulation

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Transcript:

2008 56 2 225 234 c 2008 Merging Particle Filter 1,2 1,2 1,2 1,2 2008 1 4 2008 3 31 particle filter merging particle filter MPF MPF MPF 2 1 0 particle filter merging particle filter 1. data assimilation e.g., Kalnay, 2003;, 2005; Evensen, 2006 Gauss Kalman filter Kalman filter extended Kalman filter 1 106 8569 4 6 7 2

226 56 2 2008 e.g., Evensen, 1992 singular evolutive extended Kalman SEEK filter Pham et al., 1998b Ensemble Kalman filter EnKF Evensen, 1994; Burgers et al., 1998 EnKF Kalman filter extended Kalman filter SEEK filter singular evolutive interpolated Kalman SEIK filter Pham et al., 1998a EnKF Nerger et al., 2005 EnKF particle filter PF Gordon et al., 1993; Kitagawa, 1993, 1996; Kitagawa and Gersch, 1996; Higuchi and Kitagawa, 2000; van Leeuwen, 2003 PF Gauss PF EnKF PF Gauss Gauss Kotecha and Djurić, 2003 Gauss kernel filter Hürzeler and Künsch, 1998; Anderson and Anderson, 1999; Musso et al., 2001 PF Gauss PF merging particle filter MPF Nakano et al., 2007 MPF

Merging Particle Filter 227 2 MPF 3 4 2. Merging particle filter (2.1a) (2.1b) x k = F k (x k 1, v k ) y k = H k (x k, w k ) x k y k T = t k (k =1,...) v k w k F k H k PF T = t k 1 p(x k 1 y 1:k 1 ) {x (i) k 1 k 1 }N i=1 (2.2) p(x k 1 y 1:k 1 ) 1 N N i=1 ( ) δ x k 1 x (i) k 1 k 1 δ Dirac N T = t k (2.3) p(x k y 1:k 1 ) 1 N N i=1 ( ) δ x k x (i) 1 x (i) 1 {x (i) k 1 k 1 }N i=1 F k (x (i) k 1 k 1,v(i) k ) MPF {x (i) }N i=1 x (i) {x (i) 1 }N i=1 x (i) n N {x (i) }N i=1 n N {ˆx (1,1),...,ˆx(n,1),...,ˆx(1,N),...,ˆx (n,n) } {x (i) 1 }N i=1 x (i) n N {ˆx (i,j) }i,j n {ˆx(1,i) n (2.4) x (i) = α j ˆx (j,i) α j (2.5a) (2.5b) α j =1 α 2 j =1,...,ˆx(n,i) }

228 56 2 2008 {x (i) }N i=1 p(x k y 1:k ) Nakano et al., 2007 MPF 2 MPF {x (i) }N i=1 2 3 MPF 2 3 {α j} n x k 1 m (2.6) (x k µ ) m p(x k y 1:k ) dx k (x k µ ) m 1 N = 1 N 1 N N i=1 N N i=1 (x (i) µ ) m = 1 N i=1 α m j α m j ( ˆx (j,i) ( ) δ x k x (i) dx k µ N m i=1 l=1 ) m = n (x k µ ) m p(x k y 1:k ) dx k j l =1 α m j α jl ˆx (j l,i) m (2.7) α m j =1 µ (x k µ ) m 1 N 2.6 1 N m ( ) ˆx (j l,i) N µ 0 (unless j 1 = j 2 = = j m) i=1 l=1 N ( ) δ x k ˆx (j,i) dx k 0 {α j} 2.5b 0 < α j < 1 j 2 m (2.8) α j 2 > α j m α j α 2 j > 0 α j > 0 α j < 0 (2.9) α 2 j >α m j. j (2.10) α 2 j > α m j. 0 {α j} 2.5b m>2 2.10 (2.11) α m j < 1 i=1

Merging Particle Filter 229 2.7 m 2 3 x k 1 x k m n 3 n =1 PF n =2 2.5a 2.5b 1 0 PF n 3 2.5a 2.5b {α 1,...,α n} MPF 2 3. 3.1 Lorenz 63 Lorenz 1963 3 Lorenz 63 Lorenz 63 (3.1a) dx = s(x y) dt (3.1b) dy = rx y xz dt (3.1c) dz = xy bz. dt s =10 r =28 b =8/3 1 0.01 Lorenz 63 20 1 x y z 3 2 Gaussian MPF PF y k x 1 =(x 1,y 1,z 1 ) p(y k x 1 ) w k 0 diag(σ 2,σ 2,σ 2 ) Gauss (3.2) p(y k x 1 )= 1 ( 2πσ) 3 exp [ y k x 1 2 ] σ =3 0 diag(0.01,0.01,0.01) Gaussian T = t 1 x 1 1 diag(16,16,16) Gauss MPF n 3 (3.3) 2σ 2 α 1 = 3 13 + 1 4, α2 =, α 3 = 8 13 1 8

230 56 2 2008 1. Root-mean-square deviations from the true state over 50,000 time steps for an experiment using the Lorenz 63 model. (3.4) α 1 = 19 20, α2 = 77 + 1 40 77 1, α 3 = 40 2 3.4 3.3 α 1 1 PF 2 MPF PF 3 N 1 50,000 root-mean-square MPF 1 3.3 MPF 2 3.4 N PF N PF MPF MPF PF 3.4 3.3 3.2 Lorenz 96 Lorenz and Emanuel 1998 Lorenz 96 Lorenz 96 x j(j =1,...,J) (3.5) dx j dt =(xj+1 xj 2)xj 1 xj + f. x 1 = x J 1 x 0 = x J x J+1 = x 1 f =8 J 40 1 0.005 Lorenz 96 (3.6a) (3.6b) x j =8.0 (for j 20) x j =8.008 (for j = 20) 2,000 10 x j j x j 0 1.5 Gauss

Merging Particle Filter 231 2. Root-mean-square deviations from the true state from time step 3,000 to time step 20,000 for an experiment using the Lorenz 96 model. 0 diag(0.25,..., 0.25) Gauss 1 (3.7) p(y k x 1 )= ( exp [ y k H(x 1 ) 2 ] 2πσ) 20 2σ 2 H H(x 1 )=( x 2, 1 x 4, 1... x 40, 1 ) T σ =3 Lorenz 63 MPF 3.3 3.4 2 PF 3 2 5,000 20,000 root-mean-square 1 MPF 1 3.3 MPF 2 3.4 PF N 32768 MPF MPF 2 N PF 3.4 3.3 N = 1024 N = 2048 3.3 3.4 4. Nakano et al. 2007 MPF PF MPF MPF 1 α 1 1 0 PF α 1 1 0 PF {ˆx (1,i) }N i=1 ( n j=2 αj ˆx (j,i) )N i=1 kernel filter Hürzeler and Künsch, 1998; Anderson and Anderson, 1999; Musso et al., 2001 MPF MPF 2 α 1 1 kernel filter Lorenz 63 MPF α 1 1

232 56 2 2008 Lorenz 63 Gauss Gauss α 1 1 Lorenz 96 N α 1 1 N N α 1 1 α 1 1 PF N α 1 JST/CREST 19740306 Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Monthly Weather Review, 127, 2741 2758. Burgers, G., van Leeuwen, P. J. and Evensen, G. 1998. Analysis scheme in the ensemble Kalman filter, Monthly Weather Review, 126, 1719 1724. Evensen, G. 1992. Using the extended Kalman filter with a multilayer quasi-geostrophic model, Journal of Geophysical Research, 97 C11, 17905 17924. Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99 C5, 10143 10162. Evensen, G. 2006. Data Assimilation: The Ensemble Kalman Filter, Springer-Verlag, Berlin and Heidelberg. Gordon,N.J.,Salmond,D.J.andSmith,A.F.M. 1993. Novel approach to nonlinear/non-gaussian Bayesian state estimation, IEE Proceedings F, 140, 107 113. Higuchi, T. and Kitagawa, G. 2000. Knowledge discovery and self-organizing state space model, IEICE Transactions on Information and Systems, E83-D, 36 43. Hürzeler, M. and Künsch,H.R. 1998. Monte Carlo approximations for general state space models, Journal of Computational Graphical Statistics, 7, 175 193. Kalnay, E. 2003. Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge. Kitagawa, G. 1993. A Monte Carlo filtering and smoothing method for non-gaussian nonlinear state space models, Research Memorandum, No. 462, The Institute of Statistical Mathematics,

Merging Particle Filter 233 Tokyo. Kitagawa, G. 1996. Monte Carlo filter and smoother for non-gaussian nonlinear state space models, Journal of Computational Graphical Statistics, 5, 1 25. Kitagawa, G. and Gersch, W. 1996. Smoothness Priors Analysis of Time Series, Chapter 6, Springer-Verlag, New York. Kotecha, J. H. and Djurić, P. M. 2003. Gaussian particle filtering, IEEE Transactions on Signal Processing, 51, 2592 2601. Lorenz, E. N. 1963. Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130 141. Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites for supplementary weather observations: Simulations with a small model, Journal of the Atmospheric Sciences, 55, 399 414. Musso, C., Oudjane, N. and Le Gland, F. 2001. Improving regularized particle filters, Sequential Monte Carlo Methods in Practice eds. A. Doucet, N. de Freitas and N. Gordon, Chapter 12, 247 271, Springer-Verlag, New York. 2005. 53, 211 229. Nakano, S., Ueno, G. and Higuchi, T. 2007. Merging particle filter for sequential data assimilation, Nonlinear Processes in Geophysics, 14, 395 408. Nerger, L., Hiller, W. and Schröter, J. 2005. A comparison of error subspace Kalman filters, Tellus, 57A, 715 735. Pham, D. T., Verron, J. and Gourdeau, L. 1998a Filtres de Kalman singuliers évolutifs pour l assimilation de données en océanographie, Comptes rendus de l Académie des sciences, Série 2 : Sciences de la Terre et des Planètes, 326, 255 260. Pham, D. T., Verron, J. and Roubaud, M. C. 1998b. A singular evolutive extended Kalman filter for data assimilation in oceanography, Journal of Marine Systems, 16, 323 340. van Leeuwen, P. J. 2003. A variance-minimizing filter for large-scale applications, Monthly Weather Review, 131, 2071 2084.

234 Proceedings of the Institute of Statistical Mathematics Vol. 56, No. 2, 225 234 (2008) Merging Particle Filter and Its Characteristics Shin ya Nakano, Genta Ueno, Kazuyuki Nakamura and Tomoyuki Higuchi The Institute of Statistical Mathematics; Japan Science and Technology Agency A significant problem with the basic particle filter algorithm is degeneration. The merging particle filter algorithm has recently been proposed to overcome this problem at a reasonable computational cost. In an MPF, each member of a filtered ensemble is generated from a weighted sum of multiple samples from the forecast ensemble such that the mean and covariance of the filtered distribution are approximately preserved. In this study, we performed data assimilation experiments using an MPF with two different sets of merging weights. When one merging weight is set to near 1 and the other weights are set small, better estimates are obtained for data assimilation into a low dimensional model. For data assimilation into a relatively large dimensional model, such a weight set requires a large ensemble size. Key words: Data assimilation, particle filter, merging particle filter.