3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
|
|
- Λήδα Ζαχαρίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Sound Source Identification based on Deep Learning with Partially-Shared Architecture ,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of Technology 1, Kyoto University 2, Honda Research Institute Japan Co., Ltd. 3 morito@cyb.mei.titech.ac.jp, sugiyama@kuhp.kyoto-u.ac.jp, kojima@cyb.mei.titech.ac.jp, nakadai@jp.honda-ri.com Abstract Partially Shared Deep Neural Network (PS-DNN) Partially Shared Convolutional Neural Network (PS-CNN) 1 Unmanned Aerial Vehicle (UAV) Signal-to-Noise (SN) SN MUltiple SIgnal Classification based on incremental Generalized Singular Value Decomposition (igsvd-music) [Ohata 14] Geometric Highorder Decorrelation-based Source Separation (GHDSS) [Nakajima 10] SN Convolutional Neural Network (CNN) [Lawrence 97] [Uemura 15] DNN [Hannun 14] DNN DNN CNN 2 Multi-Task Learning (MTL) [Caruana 97] Partially Shared Deep Neural Network (PS- DNN) CNN Partially Shared Convolutional Neural Network (PS-CNN) 12
2 3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer of PS-DNN 2.1 Partially Shared Deep Neural Network PS-DNN 1 PS-DNN y i 1, y i 2, y i 3 2 i i+1 y i+1 1, y i+1 2, y i+1 3 (1) y i+1 1 W i 11 W i 12 0 y i 1 y i+1 2 = σ 0 W i 22 0 y i 2 y i W i 32 W i 33 y i 3 + b i 1 b i 2 b i 3 (1) W i jk yi k yi+1 j b i j σ( ) PS-CNN CNN PS-DNN CNN CNN 2 RGB 3 CNN 2 1 PS-CNN Fig. 3 PS-DNN PS-CNN CNN PS-CNN PS-DNN CNN CNN PS-DNN i K i,1 K i,2 K i,3 i [X (i,1) 1,, X (i,ki,3) 3 ] X (i,1) 1 = [x (i,1) 1,1,1,, x(i,1) 1,V,H ] i + 1 j V H 1 CNN
3 C (i+1,j) = [ 1,1,,,, V,H ] j = σ ( K i,1 K i,2 + 1,v+s,h+t 2,v+s,h+t +b (i,j) ) (2) 4: source The layout of the microphones and the sound = σ ( K i,2 2,v+s,h+t +b (i,j) ) (3) = σ ( K i,2 K i,3 + 2,v+s,h+t 3,v+s,h+t +b (i,j) ) (4) m, n w k,s,t b (i,j) σ( ) 3 Python TensorFlow version [Abadi 15] 4 DNN, PS- DNN, CNN, PS-CNN DNN, CNN PS-DNN PS-CNN 2 DNN, CNN PS-DNN, PS-CNN DCASE2016 [Mesaros 16] Acoustic scene classification Wave : UAV (Parrot Bebop Drone) SN SN SN 5 SN 0 db SNR = 20 log(s p /N p ) (5) S p, N p SN SN 14
4 1: Dimensions for the DNN Hidden layer Units : Dimensions for the PS-DNN Hidden Units layer Identify Shared Separate khz 512 sample (32 ms) 120 sample (7.5 ms) 63 Hz, 8 khz, 20 Honda Research Institute Japan Audition for Robots with Kyoro University (HARK) [Nakadai 10] PS-DNN, PS-CNN PS-DNN, PS-CNN pre-training Adam Dropout drop rate : Dimensions for the PS-CNN Hidden Type Channels Size layer Identify Shared Separate 1 Conv Pool Conv Pool Full : Accuracy of Sound Source Identification DNN PS-DNN CNN PS-CNN 100% Avg S.E % Avg S.E % Avg S.E % Avg S.E zero padding epoch (Avg.) (S.E.) %, 75%, 50%, 25% 5 DNN < PS-DNN CNN < PS-CNN t p p > : Dimensions for the CNN Hidden layer Type Channels Size 1 Conv Pool Conv Pool Full : Trained with 100% annotated data 15
5 7: Trained with 75% annotated data 9: Trained with 25% annotated data DNN, CNN JSPS , 16H02884, 16K00294 JST ImPACT 8: Trained with 50% annotated data SN DCASE2016 Acoustic scene classification 4 SN [Abadi 15] Abadi, M., et al.: TensorFlow: Large- Scale Machine Learning on Heterogeneous Systems, (2015) [Caruana 97] Caruana, R., et al.: Multitask learning, Machine Learning, vol.28, no. 1, pp (1997) [Mesaros 16] Mesaros, A., et al.: TUT database for acoustic scene classification and sound event detection, 24th Acoustic Scene Classification Workshop 2016 European Signal Processing Conference (EU- SIPCO) (2016) [Hannun 14] Hannun, A., et al.: Deepspeech: Scaling up end-to-end speech recognition, arxiv preprint arxiv: (2014) [Lawrence 97] Lawrence, S., et al.: Face recognition: A convolutional neural-network approach, IEEE Transactions on Neural Networks, vol. 8, no. 1, pp (1997) 16
6 [Nakadai 10] Nakadai, K., et al.: Design and Implementation of Robot Audition System HARK, Advanced Robotics, vol. 24, pp (2010) [Nakajima 10] Nakajima, H., et al.: Correlation matrix estimation by an optimally controlled recursive average method and its application to blind source separation, Acoustical Science and Technology, vol. 31, no. 3, pp (2010) [Ohata 14] Ohata, T., et al.: Inprovement in outdoor sound source detection using a quadrotor-embedded microphone array, IEEE/RSJ International Conference on Intelligent Robots and Systems (2014). [Uemura 15] Uemura, S., et al.: Outdoor acoustic event identification using sound source separation and deep learning with a quadrotor-embedded microphone array, The 6th International Conference on Advanced Mechatronics (2015) 17
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Διαβάστε περισσότερα[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Διαβάστε περισσότεραAn Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Διαβάστε περισσότερα2.1 C (l, θ, ϕ) C i (i = 1, 2,, M) L i i V s τ i (l, θ, ϕ) = l L i(l, θ, ϕ) V s (1) t i x i (t) C DSBF (2) s c (t) = 1 M M x i (t + τ i ) (2) i=1 ( )
64ch Design and Implementation of Omni-Directional Ball Microphone Array,, Simon THOMPSON,, Yoko SASAKI, Mitsutaka KABASAWA, Simon THOMPSON, Satoshi KAGAMI, Kyoichi ORO National Institute of Advanced Industrial
Διαβάστε περισσότεραFourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Διαβάστε περισσότεραMIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Διαβάστε περισσότεραDEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Διαβάστε περισσότεραDevelopment of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries
No. 2 3+/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.3+/,,**,. * * Development of a Seismic Data Analysis System for a Short-term Training for Researchers
Διαβάστε περισσότεραNo. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Διαβάστε περισσότεραResearch on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Διαβάστε περισσότεραΣτοιχεία εισηγητή Ημερομηνία: 10/10/2017
Θέμα μεταπτυχιακής διατριβής: Λογισμικά μελέτης και σχεδίασης ρομποτικών συστημάτων - συγκρτική μελέτη και εφαρμογές. 1) Μελέτη των δημοφιλών λογισμικών σχεδίασης ρομποτικών συστημάτων VREP και ROS. 2)
Διαβάστε περισσότεραRe-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Διαβάστε περισσότεραScrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal
Scrub Nurse Robot: SNR SNR SNR SNR Uppaal Uppaal timed automatonta SNR C++ Uppaal TA SNR SNR 1 1SNR3 SNR SNR C++ SNR Uppaal TA Vain Uppaal TA TA state Uppaal TA location TRON (Testing Realtime Systems
Διαβάστε περισσότεραArea Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
Διαβάστε περισσότεραAnomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Διαβάστε περισσότεραHOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Διαβάστε περισσότεραJOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)
30 01 3 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 30 No. Mar. 01 DOI: 10.3969/j.issn.055-897.01.0.007 DOA 1, 1 1. 150001. 15007 DOA DOA. Cyclic MUSIC.. DOA TN911.7 055-89701)0-0146-05
Διαβάστε περισσότερα1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Διαβάστε περισσότεραAutomatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
Διαβάστε περισσότεραDetection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Διαβάστε περισσότεραVol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
Διαβάστε περισσότεραRetrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Διαβάστε περισσότεραFX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Διαβάστε περισσότερα2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Διαβάστε περισσότεραZigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee
Zigbee 150m 1000m Zigbee Zigbee Zigbee ZigBee ZigBee ZigBee 1 Zigbee Zigbee PC PC PC Zigbee 65536 256 20 30 2011.06 Signal Process & System 1 DS18B20 ACS712 TI CC2430 CC2430 Zigbee PC LED 1 1 DS18B20 9~12-55
Διαβάστε περισσότεραIPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Διαβάστε περισσότεραA Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Διαβάστε περισσότεραStabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Διαβάστε περισσότερα[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
Διαβάστε περισσότεραMaxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Διαβάστε περισσότεραTechnical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1
No. +- 0 +3,**1 Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. * Construction of the General Observation System for Strong Motion in Earthquake
Διαβάστε περισσότεραGPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
Διαβάστε περισσότεραCSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Διαβάστε περισσότεραOptimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
Διαβάστε περισσότεραEM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Διαβάστε περισσότεραΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
Διαβάστε περισσότεραΠτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
Διαβάστε περισσότεραEstimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters
Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation
Διαβάστε περισσότεραΔιπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ:ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ Διπλωματική Εργασία της φοιτήτριας
Διαβάστε περισσότεραVol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP 2015-2016 http://oswinds.csd.auth.gr/pms-theses201516 Ιδιωτικότητα και ανωνυμία σε ανοικτές πλατφόμες Privacy and anonymity
Διαβάστε περισσότεραNov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Διαβάστε περισσότερα[2] REVERB 8 [3], [4] [5] [20] [6], [7], [8], [9], [10] [11] REVERB 8 *1 [9] LDA *2 MLLT (SAT) [8] (basis fmllr) [12] (DNN) [10] DNN [11] [13] [14] Ka
: REVERB 1,a) 1 2 REVERB 8 REVERB REVERB 6.76% 18.60% 68.8% 61.5% REVERB Effectiveness of dereverberation techniques and system combination approach for various reverberant environments: REVERB challenge
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP 2015-2016 http://oswinds.csd.auth.gr/pms-theses201516 Ανάλυση επιπέδου προστασίας και ανωνυμοποίησηπροσωπικών δεδομένων κίνησης
Διαβάστε περισσότεραResurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Διαβάστε περισσότεραSupplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Διαβάστε περισσότεραCorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
Διαβάστε περισσότεραΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ ΤΕΙ ΚΑΒΑΛΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΙΑΝΟΥΑΡΙΟΣ 2008 ΒΙΟΓΡΑΦΙΚΟ
Διαβάστε περισσότεραNon-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT
1,a) 1,2,b) 1. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1 7-3-1 113-0033 2 NTT 3-1 243-0198 a) Tomohio Naamura@ipc.i.u-toyo.ac.jp b) ameoa@hil.t.u-toyo.ac.jp/ameoa.hiroazu@lab.ntt.co.jp
Διαβάστε περισσότερα{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Διαβάστε περισσότεραVSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
Διαβάστε περισσότερα(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
Διαβάστε περισσότερα3.8.1 J (7) (1883~1906) (1907~1931) A ~ (10) i J C-1 ~1973 C-2
2.8 JI y 5 5 5 EU() y y y AI IoT 5 y5 o 5y yo 5 y 5 5λo 55 T OJT V 5σ 4 T 5 5 5 5 V X 5 o 5 4 y o y i o i y 4 λ AI i o yy5 λo i λ S S y Ⅰ y y 3.8 2.8.1 J ) 3.8 JI 3.8.1 I 100 5λo 5 5 5 ooo o y i y 5 5
Διαβάστε περισσότεραΔημήτριος Θ. Τόμτσης, Ph.D. Αναλυτικό Βιογραφικό Σημείωμα
Δημήτριος Θ. Τόμτσης, Ph.D. Αναλυτικό Βιογραφικό Σημείωμα Τίτλοι σπουδών Πτυχίο: Μηχανικός Πληροφοριακών Συστημάτων, Πανεπιστήμιο Coventry, U.K,, 1991. Μεταπτυχιακό: Μηχανικός Τηλεπικοινωνιακών Συστημάτων
Διαβάστε περισσότεραCreative TEchnology Provider
1 Oil pplication Capacitors are intended for the improvement of Power Factor in low voltage power networks. Used advanced technology consists of metallized PP film with extremely low loss factor and dielectric
Διαβάστε περισσότεραSocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
Διαβάστε περισσότεραn 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
Διαβάστε περισσότερα[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Διαβάστε περισσότεραMedium Data on Big Data
IT 17081 Examensarbete 15 hp November 2017 Medium Data on Big Data Predicting Disk Failures in CERNs NetApp-based Data Storage System Albin Stjerna Institutionen för informationsteknologi Department of
Διαβάστε περισσότεραBig Data/Business Intelligence
Big Data/Business Intelligence 5 8 Φεβρουαρίου 2018 ΓΕΝΙΚΑ Το μάθημα αποτελείται από δύο ενότητες, η πρώτη σε Big Data και Data Analytics και η δεύτερη σε Business Intelligence. Η πρώτη ενότητα παρέχει
Διαβάστε περισσότεραAdaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Διαβάστε περισσότεραDevelopment of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
Διαβάστε περισσότεραStudy of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Διαβάστε περισσότεραFEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS
FEATURES RoHS compliant. Super low resistance, ultra high current rating. High performance (I sat) realized by metal dust core. Frequency Range: up to 1MHz. APPLICATION PDA, notebook, desktop, and server
Διαβάστε περισσότεραTraversing Assist System for Tracked Vehicles on Rough Terrain Based on Continuous Three-Dimensional Terrain-Scanning
,, Traversing Assist System for Tracked Vehicles on Rough Terrain Based on Continuous Three-Dimensional Terrain-Scanning Yoshito OKADA, Keiji NAGATANI and Kazuya YOSHIDA Department of Aerospace Engineering,
Διαβάστε περισσότεραΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Δρ. ΣΩΤΗΡΙΟΣ Α. ΔΑΛΙΑΝΗΣ
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Δρ. ΣΩΤΗΡΙΟΣ Α. ΔΑΛΙΑΝΗΣ ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ KAI ΜΗΧΑΝΙΚΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΔΑΚΤΩΡ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Institute of Sound
Διαβάστε περισσότεραQuantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks
98 Scientific Note X : Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks Kimiko Seno and Yoichi Motoyoshi,**- +, +, ;,**. -,/ Abstract:
Διαβάστε περισσότεραΕπεξεπγαζία Ήσος Φυνήρ 4 η Διάλεξη ΦΗΦΙΑΚΟ ΣΟΤΝΣΙΟ
Επεξεπγαζία Ήσος Φυνήρ 4 η Διάλεξη ΦΗΦΙΑΚΟ ΣΟΤΝΣΙΟ ΓΕΝΙΚΕ ΔΟΜΕ ΚΑΙ ΚΑΣΗΓΟΡΙΕ ΤΣΗΜΑΣΧΝ Θα αζρνιεζνύκε κε ηηο ηερληθέο θαη ηερλνινγίεο πνπ επηηξέπνπλ ηελ θσδηθνπνίεζε επεμεξγαζία θαη δηαλνκή ζηνλ ηειηθό
Διαβάστε περισσότεραEcho path identification for stereophonic acoustic echo cancellation without pre-processing
Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate
Διαβάστε περισσότεραReading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
Διαβάστε περισσότεραΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Master of science in Networking and Data Communications Ακαδημαϊκό Έτος 2013-2014 Συνδιοργάνωση Το ΤΕΙ Πειραιά και το πανεπιστήμιο Kingston της Μεγάλης Βρετανίας συνδιοργανώνουν
Διαβάστε περισσότεραSecure Cyberspace: New Defense Capabilities
Secure Cyberspace: New Defense Capabilities Dimitris Gritzalis November 1999 Υπουργείο Εθνικής Αμυνας Διημερίδα Πληροφορικής και Επιχειρησιακής Ερευνας Αθήνα, 2-3 Νοέμβρη 1999 Ασφάλεια στον Κυβερνοχώρο:
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
Διαβάστε περισσότεραΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής Πανεπιστήµιο Πειραιώς, Καραολή ηµητρίου 80, 18534 Πειραιάς Τηλ. 210 414-2147, e-mail: sofianop@unipi.gr
Διαβάστε περισσότεραQuery by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]
Query by Phrase: a 2 2 Query by Phrase QBP QBP GaP-NMF GaP-NMF GaP-NMF QBP. Music Information Retrieval MIR [ 2] [3 4]Query-by-Humming QBH MIDI [5 6] [7] Waseda University 2 National Institute of Advanced
Διαβάστε περισσότεραIdentifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto and Shigeo Morishima Abstract We
Διαβάστε περισσότεραΗρϊκλειτοσ ΙΙ. Πανεπιζηήμιο Θεζζαλίας. Τμήμα Μηχανικών Η/Υ και Δικτύων
Πανεπιζηήμιο Θεζζαλίας Τμήμα Μηχανικών Η/Υ και Δικτύων Γιαυοροποίηση Υπηρεσιών σε Αρχιτεκτονικές Δικονικών Γικτύων προσανατολισμένων στην Παροτή Υπηρεσιών Υποψήφιος Διδάκτορας Κώςτασ Κατςαλόσ Email: kkatsalis@inf.uth.gr
Διαβάστε περισσότεραΕφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία
Ελληνική ημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία Ενότητα 4 : Εφαρμογές της Τεχνητής Νοημοσύνης στη Γεωργία(3/3) Μελετίου Γεράσιμος 1 Ανοιχτά Ακαδημαϊκά
Διαβάστε περισσότεραFrom Secure e-computing to Trusted u-computing. Dimitris Gritzalis
From Secure e-computing to Trusted u-computing Dimitris Gritzalis November 2009 11 ο ICT Forum Αθήνα, 4-5 Νοέμβρη 2009 Από το Secure e-computing στο Trusted u-computing Καθηγητής Δημήτρης Γκρίτζαλης (dgrit@aueb.gr,
Διαβάστε περισσότεραAn Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
Διαβάστε περισσότεραE-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI Selective Amplifier of Periodic and Non-periodic Components in Concurrent Audio Signals with Spectral Control Envelopes Hirokazu Kameoka
Διαβάστε περισσότεραΠεριεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Μέθοδοι συµπίεσης ηχητικών. Βιβλιογραφία. Κωδικοποίηση µε βάση την αντίληψη.
Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Συµπίεση Ήχου Μέθοδοι συµπίεσης ηχητικών σηµάτων DPCM Συµπίεση σηµάτων οµιλίας Κωδικοποίηση µε βάση την αντίληψη Χαρακτηριστικά και εφαρµογές Ψυχοακουστική (psychoacoustics)
Διαβάστε περισσότεραA Convolutional Neural Network Approach for Objective Video Quality Assessment
A Convolutional Neural Network Approach for Objective Video Quality Assessment Patrick Le Callet, Christian Viard-Gaudin, Dominique Barba To cite this version: Patrick Le Callet, Christian Viard-Gaudin,
Διαβάστε περισσότεραA Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
Διαβάστε περισσότερατο προφίλ της γάστρας, η ίσαλος σχεδίασης, η καμπύλη εμβαδών εγκαρσίων τομών και η κατανομή του κέντρου βάρους των εγκαρσίων τομών κατά μήκος του
6.1. Εργασίες προς απόκτηση ακαδημαϊκού τίτλου Τ1. Γρηγορόπουλου, Γ.Ι. (1981), "Παραγωγή, φασματική ανάλυση και κατανομή μεγίστων τυχαίου κυματισμού", διπλωματική εργασία στην Εφαρμοσμένη και Πειραματική
Διαβάστε περισσότεραToward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.
SIG-SWO-041-05 SPAIDA: SPARQL Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- 1 2 Takuya Adachi 1 Naoki Fukuta 2 1 1 Faculty of Informatics, Shizuoka University
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS
ΤΟΜΕΑΣ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕΙ ΣΕΡΡΩΝ, ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Γεωπληροφορικής & Τοπογραφίας ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS ΣΥΜΕΩΝ
Διαβάστε περισσότερα1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
Διαβάστε περισσότερα* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***
J. Jpn. Soc. Soil Phys. No. +*2, p. +3,2,**2 * ** *** *** Influence Area of Stem Flow on a Soil of Deciduous Forest Floor by Electric Resistivity Survey and the Evaluation of Groundwater Recharge through
Διαβάστε περισσότεραΑνάπτυξη Δυνατοτήτων στην Εκπαίδευση μέσω της Πρωτοβουλίας GEO
Ανάπτυξη Δυνατοτήτων στην Εκπαίδευση μέσω της Πρωτοβουλίας GEO Χρηστιά Ελένη - Τριτάκης Βασίλειος - Τριτάκη Λήδα Ελληνικό Γραφείο GEO Εθνικό Αστεροσκοπείο Αθηνών Γενική Γραμματεία Έρευνας και Τεχνολογίας
Διαβάστε περισσότεραBayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
Διαβάστε περισσότεραsupporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z
Enhancement of Boundary Condition Relaxation Method for D Hopping Motion Planning of Biped Robots University oftokyo Tomomichi Sugihara and Yoshihiko Nakamura Abstract Boundary Condition Relaxation method[],
Διαβάστε περισσότεραΑνάπτυξη Δυνατοτήτων στην Εκπαίδευση μέσω της Πρωτοβουλίας GEO
Ανάπτυξη Δυνατοτήτων στην Εκπαίδευση μέσω της Πρωτοβουλίας GEO Χρηστιά Ελένη - Τριτάκης Βασίλειος - Τριτάκη Λήδα Ελληνικό Γραφείο GEO Εθνικό Αστεροσκοπείο Αθηνών Γενική Γραμματεία Έρευνας και Τεχνολογίας
Διαβάστε περισσότεραΔρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282
Η. Ξυδιάς: Βιογραφικό Σημείωμα (Μάιος 12) i Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων 84100 Ερμούπολη,
Διαβάστε περισσότεραGPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Διαβάστε περισσότεραER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Διαβάστε περισσότεραΕυφυές Σύστημα Ανάλυσης Εικόνων Μικροσκοπίου για την Ανίχνευση Παθολογικών Κυττάρων σε Εικόνες Τεστ ΠΑΠ
Ευφυές Σύστημα Ανάλυσης Εικόνων Μικροσκοπίου για την Ανίχνευση Παθολογικών Κυττάρων σε Εικόνες Τεστ ΠΑΠ ΚΩΔΙΚΟΣ MIS: 346961 Φορέας Υποβολής: Πανεπιστήμιο Ιωαννίνων - Τμήμα Πληροφορικής Φορέας Χρήστης:
Διαβάστε περισσότεραΜηχανουργική Τεχνολογία ΙΙ
Μηχανουργική Τεχνολογία ΙΙ Χαρακτηριστικά διεργασιών - Παραμετροποίηση-Μοντελοποίηση Associate Prof. John Kechagias Mechanical Engineer, Ph.D. Παραμετροποίηση - Μοντελοποίηση Στο κεφάλαιο αυτό γίνεται
Διαβάστε περισσότεραArchitecture for Visualization Using Teacher Information based on SOM
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 567-47 8-1 NTT 619-237 2-4 52-2194 1-5 E-mail: {k-fukui,numao}@sanken.osaka-u.ac.jp, saito@cslab.kecl.ntt.co.jp,
Διαβάστε περισσότερα