HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Σχετικά έγγραφα
4.6 Autoregressive Moving Average Model ARMA(1,1)

6.3 Forecasting ARMA processes

Durbin-Levinson recursive method

Introduction to the ML Estimation of ARMA processes

EE512: Error Control Coding

Stationary ARMA Processes

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Module 5. February 14, h 0min

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Math221: HW# 1 solutions

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Statistical Inference I Locally most powerful tests

5. Partial Autocorrelation Function of MA(1) Process:

Exercises to Statistics of Material Fatigue No. 5

Example Sheet 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Section 8.3 Trigonometric Equations

2. ARMA 1. 1 This part is based on H and BD.

The Simply Typed Lambda Calculus

Areas and Lengths in Polar Coordinates

2 Composition. Invertible Mappings

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Srednicki Chapter 55

Other Test Constructions: Likelihood Ratio & Bayes Tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Stationary ARMA Processes

Section 7.6 Double and Half Angle Formulas

Asymptotic distribution of MLE

6. MAXIMUM LIKELIHOOD ESTIMATION

Numerical Analysis FMN011

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Approximation of distance between locations on earth given by latitude and longitude

Notes on the Open Economy

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ST5224: Advanced Statistical Theory II

( y) Partial Differential Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Stationary Univariate Time Series Models 1

Solution Series 9. i=1 x i and i=1 x i.

w o = R 1 p. (1) R = p =. = 1

Uniform Convergence of Fourier Series Michael Taylor


Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Probability and Random Processes (Part II)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Every set of first-order formulas is equivalent to an independent set

Finite Field Problems: Solutions

Local Approximation with Kernels

If we restrict the domain of y = sin x to [ π 2, π 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework for 1/27 Due 2/5

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Lecture 7: Overdispersion in Poisson regression

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order Partial Differential Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

10.7 Performance of Second-Order System (Unit Step Response)

CRASH COURSE IN PRECALCULUS

CE 530 Molecular Simulation

FORMULAS FOR STATISTICS 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Supplementary Appendix

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Mean-Variance Analysis

derivation of the Laplacian from rectangular to spherical coordinates

Ηλεκτρονικοί Υπολογιστές IV

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Matrices and Determinants

C.S. 430 Assignment 6, Sample Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homework 8 Model Solution Section

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Problem Set 3: Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

PARTIAL NOTES for 6.1 Trigonometric Identities

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

SOLVING CUBICS AND QUARTICS BY RADICALS

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

EE 570: Location and Navigation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Transcript:

HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the forecasts and realized growth are given below:

d) The plot of out of sample forecasts are given below:

ARMA,) model: 095L)y t = 05 + 05L)ε t with ε t iidn0, σ ) y t = β 0 + β y t + θ ε t + ε t y t = 05 + 095y t 05ε t + ε t a) Stationarity: The stationarity of the ARMA,) process only depends on the AR lag polynomial In this case, the AR) condition that β = 095 < is met; accordingly, the time series process is stationary b) Innite order moving average representation: 095L)y t = 05 + 05L)ε t y t = 095L) 05 + 095L) 05L)ε t = 05 095 + 05L 095L ε t = 0 + 05L 095L ε t Generally, we have: φl)y t = θl)ε t y t = φl) θl)ε t = ψl)ε t Hence: θl) = φl)ψl) For the ARMA,), this gives: θ 0 + θ L) = φ 0 + φ L) ψ 0 + ψ L + ψ L + ) with θ 0 =, θ = 05, φ 0 =, and φ = 095 Using this identity, I can match the powers of the lag operator as follows: j = 0 : θ 0 = φ 0 ψ 0 j = : θ = φ 0 ψ + φ ψ 0 j : 0 = φ 0 ψ j + φ ψ j Solving for ψ j, I get: ψ 0 = θ0 φ 0 = =, ψ = θ φ φ 0 = θ φ = 05 + 095 = 045, ψ = φ ) j θ φ ) = 095) j 045) Accordingly, the innite order moving average representation is as follows: y t = 0 + ε t + 095) j 045)ε t j

c) Impulse response function: y t ε t k y t k, y t k, = ψ k = φ ) k θ φ ) = 095) k 045) d) Expectation with respect to F t k : E[y t F t k ] = 0 + E[ε t F t k ] + k 095) j 045)E[ε t j F t k ] + 095) j 045)ε t j = 0 + 095) j 045)ε t j j=k j=k e) Forecast error k-steps): e k t k = y t yt k k = ε t + k 095) j 045)ɛ t j f) Forecast error k-steps) variance: ) V are k t k F t k) = V arε t + k 095) j 045)ɛ t j F t k ) = σ + k 095) j 045) Distribution: e k t k N 0, σ + k 095) j 045) )) 3 a) Drift sample average of change in log CPI): 000865 b) Out-of-Sample Forecasts of log CPI: Table : Out-of-Sample Forecasts of log CPI Forecast 05Q4 06Q 06Q 06Q3 Formula u + y T u + y T 3u + y T 4u + y T Estimate 5479 54878 54965 5505 c) Prediction interval of log CPI neglecting parameter uncertainty): Estimate σ with T t y t y t u) = 00867

Table : Predictive Intervals Forecast 05Q4 06Q 06Q 06Q3 Formula u + y T ± 96σ u + y T ± 96 σ 3u + y T ± 96 3σ 4u + y T ± 96 4σ 5% 546 54638 5467 547 975% 5496 558 5559 5539 d) Prediction interval of growth of log CPI neglecting parameter uncertainty): Table 3: Predictive Intervals Forecast 05Q4 06Q 06Q 06Q3 Formula u ± 96σ u ± 96 σ 3u ± 96 3σ 4u ± 96 4σ 5% -00083-00066 -00033 00008 975% 0057 0044 00555 00688 e) ARMA model for rst dierenced log CPI series: After looking at ACF and PACF, I t an ARMA,) Table 4: ARMA,) Estimates Coecient Standard Error Constant -35E-05 000004 AR) 04044 0056464 MA) -084790 0045033 f) Impulse response function: We see that the process fades quickly over time, so it is stationary 3

Figure : Impulse Response Functions 4 Write y t = µ + i= ψ iɛ t i + ɛ t, its MA ) representation This exists if the series is stationary a) Best forecast: I expect y k t to be the better forecast of y t+k as it uses one more realization y t ; ie a strictly larger information set) and needs to extrapolate one less step ie, k < k + ) 4

b) Claim: yt k yt k+ =white noise yt k yt k+ = E[y t+k F t ] E[y t+k F t ] = k ψ j ε t+k j Hence, given information at t, I have: j=0 E[y k t y k+ t F t ] = ψ k E[ε t F t ] = 0, ie white noise k j=0 ψ j ε t+k j = ψ k ε t with ψ 0 = ) c) Interpretation: The dierence between the two unbiased conditional forecasts is the unexpected part, ie shock, realized between y t and y t ie, ε t scaled by the innite moving average representation coecient) This is white noise conditional on F t ; ie, has expectation of zero at time t ) d) V arψ k ε t ) = ψ k σ 0 if ψ k decays to zero as k increases Since we had assumed the series is stationary, this will always be the case 5 Exact log likelihood for an AR) model: AR) : y t = β 0 + β y t + ε t E[y ] = β0 β, V ary ) = σ β Unconditional: y N β0 β, σ β ) fy ; θ) = π σ lnfy ; θ)) = lnπ) σ ln ) β β exp y β 0 β ) σ β ) y β 0 β σ β ) Conditional: y t y t N β 0 + β y t, σ ) fy t y t ; θ) = exp π σ yt β0 βyt ) σ ) lnfy t y t ; θ)) = lnπ) lnσ ) yt β0 βyt ) σ Exact Log Likelihood: Lθ) = T ln fy t y t ; θ)) + ln fy ; θ)) t= 5

= T T lnπ) lnσ ) T t= y t β 0 β y t ) σ σ ln ) β y β 0 β ) σ β 6 a) σ + θ ) k = 0 Covy t, y t k ) = E[ɛ t θɛ t )ɛ t k θɛ t k )} = σ θ k = Covariance Matrix: σ + θ ) i j = 0 Σ ij = σ θ i j = 0 k 0 i j b) Likelihood Function: fy µ, Σ) = π) T/ Σ / exp y µ) Σ y µ) Conditional Log Likelihood: Ly µ, Σ) = T logπ) logσ) y µ) Σ y µ) 7 x i = ψ i ε i ψ i = ω + αx i x i = ωε i + αx i ε i fx i F i ; θ) = ψ i exp xi ψ i ) a) Conditional log likelihood conditional on x for sample N): The vector of parameters θ contains ω α The log likelihood can be written as follows: Lθ) = N lnψ i ) N x i ψ i = N lnω + αx i ) N ωε i+αx i ε i 6

b) First order conditions: [ω] : N + N [α] : N x i x i ) x ix i ) + N = 0 N = 0 N x i ) x ix i ) = N x i = N c) Re-expressing the rst order conditions in terms of ε: N ψ [ω] : iε i = N N ε i = N ) 0 = N ε i [α] : N ψ iε ix i ) x i = N ε ix i N x i = N 0 = N ε i )x i ω identies the level/constant, while α is identifying the slope coecient based on the orthogonality condition N ε i )x i = 0 7