On the Galois Group of Linear Difference-Differential Equations

Σχετικά έγγραφα
D Alembert s Solution to the Wave Equation

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Cyclic or elementary abelian Covers of K 4

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Matrices and Determinants

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Example Sheet 3 Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Every set of first-order formulas is equivalent to an independent set

Homework 3 Solutions

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Reminders: linear functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

4.6 Autoregressive Moving Average Model ARMA(1,1)

( y) Partial Differential Equations

2 Composition. Invertible Mappings

The ε-pseudospectrum of a Matrix

Fractional Colorings and Zykov Products of graphs

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Numerical Analysis FMN011

Tridiagonal matrices. Gérard MEURANT. October, 2008

ADVANCED STRUCTURAL MECHANICS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Differential forms and the de Rham cohomology - Part I

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Finite Field Problems: Solutions

New bounds for spherical two-distance sets and equiangular lines

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

A Lambda Model Characterizing Computational Behaviours of Terms

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

The Simply Typed Lambda Calculus

PARTIAL NOTES for 6.1 Trigonometric Identities

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Derivation of Optical-Bloch Equations

arxiv: v1 [math.ra] 19 Dec 2017

dim(u) = n 1 and {v j } j i

Commutative Monoids in Intuitionistic Fuzzy Sets

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Heisenberg Uniqueness pairs

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Uniform Convergence of Fourier Series Michael Taylor

Solution Series 9. i=1 x i and i=1 x i.

ST5224: Advanced Statistical Theory II

de Rham Theorem May 10, 2016

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Lecture 10 - Representation Theory III: Theory of Weights

Dr. D. Dinev, Department of Structural Mechanics, UACEG

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Finite difference method for 2-D heat equation

A Note on Intuitionistic Fuzzy. Equivalence Relation

( ) 2 and compare to M.

If we restrict the domain of y = sin x to [ π 2, π 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

Quadratic Expressions

SOLVING CUBICS AND QUARTICS BY RADICALS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

5. Choice under Uncertainty

Higher Derivative Gravity Theories

Lecture 15 - Root System Axiomatics

6.3 Forecasting ARMA processes

C.S. 430 Assignment 6, Sample Solutions

arxiv: v3 [math.ra] 24 Nov 2017

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Chapter 3: Ordinal Numbers

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Local Approximation with Kernels

Solutions to Exercise Sheet 5

Space-Time Symmetries

Lecture 21: Properties and robustness of LSE

Transcript:

On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19

Contents 1 Basic Notations and Concepts 2 Problem Statement 3 Ring of Sequences 4 Main Results 5 Future Work Ruyong Feng (KLMM, CAS) Galois Group 2 / 19

1. Basic Notations and Concepts In this talk, all fields are of characteristic zero. σ: shift operator; δ: differential operator (σδ = δσ) k: σδ-field with alg. closed constant field. Example: C(x, t) with σ(x) = x + 1 and δ = d dt Difference-differential equations: { σ(y ) = AY, δ(y ) = BY where Y = (y 1, y 2,, y n ) T, A GL n (k), B gl n (k). Integrable condition: σ(b)a = δ(a) + AB. Ruyong Feng (KLMM, CAS) Galois Group 3 / 19

1. Basic Notations and Concepts Example: Tchebychev polynomial T n (t) = n 2 [ n 2 ] m=0 Let Y = (T n (t), T n+1 (t)) T, then Y (n + 1, t) = ( 1) m (n m 1)! (2t) n 2m. m!(n 2m)! ( ( (n 1)t dy (n,t) dt = n 0 1 1 2t ) n 1 nt Y (n, t), ) Y (n, t). (Hermite polynomial, Legendre polynomial, Bessel polynomial, ) Ruyong Feng (KLMM, CAS) Galois Group 4 / 19

1. Basic Notations and Concepts R: σδ-picard Vessiot extension of k w.r.t. {σ(y ) = AY, δ(y ) = BY } if R is a simple σδ-ring (no nontrivial σδ-ideals); Z GL n (R) s.t. σ(z ) = AZ and δ(z ) = BZ ; R = k[z i,j, 1 det(z ) ] where Z = (Z i,j). Galois group of R over k: Gal(R/k) {σδ-k-automorphism of R} Gal(R/k) is a linear algebraic group over the constant field of k. Reference: Hardouin, C. and Singer, M. F., Differential Galois Theory of Linear Difference Equations, Math. Ann., 342(2), 333-377, 2008. Ruyong Feng (KLMM, CAS) Galois Group 5 / 19

2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) l Z, s.t. A(l, t), B(l, t) are well-defined and det(a(l, t)) 0 δ(y ) = B(l, t)y G δ l : Galois group over C(t) Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) l Z, s.t. A(l, t), B(l, t) are well-defined and det(a(l, t)) 0 δ(y ) = B(l, t)y G δ l : Galois group over C(t) Question: What are the relations among G σδ, G δ l and Gσ c? Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) l Z, s.t. A(l, t), B(l, t) are well-defined and det(a(l, t)) 0 δ(y ) = B(l, t)y G δ l : Galois group over C(t) Question: What are the relations among G σδ, G δ l and Gσ c? Note: σ(b)a = δ(a) + AB δ(y ) = B(l, t)y δ(y ) = B(m, t)y G δ l = Gδ m. Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

2. Problem Statement Example: Consider σ(y) = ty δ(y) = x t y Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

2. Problem Statement Example: Consider σ(y) = ty δ(y) = x t y G σδ = C Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

2. Problem Statement Example: Consider σ(y) = ty δ(y) = x t y G σδ = C σ(y) = cy, c C Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise δ(y) = l t y, l Z Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise δ(y) = l t y, l Z Gδ l = 1 Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise δ(y) = l t y, l Z Gδ l = 1 G σδ = G σ c G δ l, if c is not a root of unity. Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

. I will present partial results on the relations among G σδ, G δ l and Gσ c. To describe the relations among these groups, we would need to embed Picard Vessiot extensions of the above systems into the ring of sequences. Ruyong Feng (KLMM, CAS) Galois Group 8 / 19

3. Ring of Sequences F : differential field with derivation δ. The ring of sequences over F : S F := {a = (a 0, a 1, ) a i F }/ where a b d Z 0, s.t. a i = b i for all i d. Define a + b = (a 0 + b 0, a 1 + b 1, ), ab = (a 0 b 0, a 1 b 1, ), σ((a 0, a 1,, )) = (a 1, a 2,, ), δ((a 0, a 1,, )) = (δ(a 0 ), δ(a 1 ),, ). S F is a σδ-ring. Ruyong Feng (KLMM, CAS) Galois Group 9 / 19

3. Ring of Sequences Define σ F = 1 F and σ(x) = x + 1. Then F(x) becomes a σδ-field. F (x) can be σδ-embedded into S F : F(x) S F f (x) (0,, 0, f (N), f (N + 1),, ) where f (i) is well-defined for all i N. In particular, F S F b (b, b, b,, ). S F is a σδ-extension ring of F (x). Ruyong Feng (KLMM, CAS) Galois Group 10 / 19

3. Ring of Sequences F (x): σδ-field with alg. closed constant field. A(x, t) GL n (F(x)), B(x, t) gl n (F(x)). Let l Z >0 satisfy for all i l, A(i, t), B(i, t) are well-defined; det(a(i, t)) 0. K : quotient field of δ-pv extension of δ(y ) = B(l, t)y over F. U: fundamental matrix of δ(y ) = B(l, t)y in GL n (K ). Ruyong Feng (KLMM, CAS) Galois Group 11 / 19

3. Ring of Sequences Define V = (V 0, V 1,, ) GL n (S K ) as V 0 = = V l 1 = 0, V l = U, V l+1 = A(l + 1, t)v l, V l+2 = A(l + 2, t)v l+1,. Ruyong Feng (KLMM, CAS) Galois Group 12 / 19

3. Ring of Sequences Define V = (V 0, V 1,, ) GL n (S K ) as V 0 = = V l 1 = 0, V l = U, V l+1 = A(l + 1, t)v l, V l+2 = A(l + 2, t)v l+1,. Theorem: F(x)[V, 1/ det(v )] is a σδ-picard Vessiot extension of { σ(y ) = A(x, t)y, δ(y ) = B(x, t)y over F (x). Note: F (x)[v, 1/ det(v )] is a σδ-subring of S F. Ruyong Feng (KLMM, CAS) Galois Group 12 / 19

4. Main Results Let F = C(t). Lemma: G δ l is an algebraic subgroup of Gσδ (under isomorphism). Ruyong Feng (KLMM, CAS) Galois Group 13 / 19

4. Main Results Let F = C(t). Lemma: Gl δ is an algebraic subgroup of Gσδ (under isomorphism). Proof: ψ : Gl δ = Gal(K /C(t)) σδ-aut(s K /C(x, t)) ρ ψ(ρ) ψ(ρ)(a) = (ρ(a)) Ruyong Feng (KLMM, CAS) Galois Group 13 / 19

4. Main Results Let F = C(t). Lemma: Gl δ is an algebraic subgroup of Gσδ (under isomorphism). Proof: ψ : Gl δ = Gal(K /C(t)) σδ-aut(s K /C(x, t)) ρ ψ(ρ) ψ(ρ)(a) = (ρ(a)) ψ(gl δ ) Gσδ ψ(ρ) ψ(ρ) C(x,t)[V,1/ det(v )] Ruyong Feng (KLMM, CAS) Galois Group 13 / 19

4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. is a normal algebraic subgroup of Gσδ (under isomorphism). Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. G σ t is a normal algebraic subgroup of Gσδ (under isomorphism). : Galois group of σ(y ) = A(x, t)y over C(t)(x). Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. G σ t is a normal algebraic subgroup of Gσδ (under isomorphism). : Galois group of σ(y ) = A(x, t)y over C(t)(x). Theorem: G σ t (Ω) is conjugate over Ω to Gσδ Ω (Ω). Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. G σ t is a normal algebraic subgroup of Gσδ (under isomorphism). : Galois group of σ(y ) = A(x, t)y over C(t)(x). Theorem: G σ t (Ω) is conjugate over Ω to Gσδ Ω (Ω). Remark: Under the conjugation, Gt σ is an algebraic group defined over C and Gt σ (C) = Gσδ Ω. In this sense, Gσδ = Gt σ(c)gδ l. Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), Y (n, t). Ruyong Feng (KLMM, CAS) Galois Group 15 / 19

4. Main Results Example: G σδ = {( ) ξ 0 ξη = 1 0 η ξ, η C ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt } {( ) 0 ξ ξη = 1 η 0 ξ, η C ) Y (n, t), Y (n, t). } Ruyong Feng (KLMM, CAS) Galois Group 15 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C Y (n, t). Ruyong Feng (KLMM, CAS) Galois Group 15 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C Y (n, t). Ruyong Feng (KLMM, CAS) Galois Group 16 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), Y (n, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C Ruyong Feng (KLMM, CAS) Galois Group 16 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (1 1)t dy (1,t) = dt 1 1 1 1t ) Y (n, t), Y (1, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C Ruyong Feng (KLMM, CAS) Galois Group 17 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (1 1)t dy (1,t) = dt 1 1 1 1t ) Y (n, t), Y (1, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C {( ) ( )} G1 δ = 1 0 0 1, 0 1 1 0 Ruyong Feng (KLMM, CAS) Galois Group 17 / 19

4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), Y (n, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C {( ) ( )} G1 δ = 1 0 0 1, 0 1 1 0 G σδ = G σδ Ω Gδ 1 = Gσ t (C)Gδ 1 Ruyong Feng (KLMM, CAS) Galois Group 18 / 19

5. Future Work G σ t : Galois group of σ(y ) = A(x, t)y over C(t)(x) Gc σ : Galois group of σ(y ) = A(x, c)y over C(x) To give the complete results, one need to solve Problem: What are the relations between Gt σ and Gc σ? Ruyong Feng (KLMM, CAS) Galois Group 19 / 19